Построение общего решения матричным методом
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Матричный метод решения системы уравнений (1) основан на непосредственном отыскании фундаментальной матрицы этой системы.


 

 

Экспонентой eA матрицы А называется сумма ряда

где Е – единичная матрица.

Свойство матричной экспоненты:

а) если АВ=ВА, то еА+ВАВ= еВА;

б) если А=S-1*B*S, то еА=S-1*eB*S, где матрица S – это матрица преобразования переменных из собственного базиса в базис исходных переменных.

в) матрица y(t)=eAt является решением матричной задачи Коши:

т.е. является фундаментальной матрицей системы (1).

Из свойства в) следует, что решение y(t) системы (1) удовлетворяющее условию y(0)=y0, определяется выражением y(t)=eAt*y0. Таким образом, задача нахождения решений системы уравнений (1) эквивалентна задачи отыскания матрицы eAt по матрице А.

Для вычисления матрицы eAt удобно представить матрицу А в виде:

 

,

 

где матрица S – это матрица преобразования переменных из собственного базиса в базис исходных переменных, а B А – жорданова форма матрицы А, т.к. eAt = S-1*eBt*S.

Жорданова форма матрицы зависит от вида характеристических чисел.

1. Пусть характеристические числа действительные кратные, тогда Жорданова форма матрицы размерности nxn имеет вид:

 


 

где - действительный корень кратности n.

 

2. Если среди корней характеристического полинома имеются, как действительные разные, так и действительные кратные корни, то матрица В имеет вид:

 

 

где - действительные разные корни, а - действительный корень кратности 2.

3. При наличии среди корней характеристического полинома корней комплексно-сопряженных Жорданова клетка выглядит следующим образом:

 

 

где а  комплексно сопряженный корень характеристического полинома.

Так как в нашем случае среди характеристических чисел присутствуют, как комплексно-сопряженные корни л = 2 -  ∨ л = 2 + , так и действительный разные корни л = -1 ∨ л = 1,то жорданова матрица выглядит следующим образом:

 

 

Из уравнения A*S = S*В, где S – невырожденная матрица, получаем систему 16-го порядка, из которой находим элементы матрицы S. Полученная матрица S будет выглядеть следующим образом:

 

 

Решаем систему 16-го порядка из уравнения A*S = S*В


 

Доопределяем некоторые элементы и получаем следующую матрицу S:

 

 

Сделаем проверку A*S - S*В=0:

 

 


Значит матрица перехода найдена верно.

Для нахождения вектора решений y необходимо умножить матрицу S на , где - это вектор, элементы которого зависят от корней характеристического многочлена:

 

 

Для комплексных чисел  имеет следующий вид:

 

 

Для случая корней действительных разных:

 

 

В нашем случае  получается равной:

 

 =

Отсюда найдем общее решение у=S* , получим:


 

При подстановке решения в исходную систему получается верное равенство, из этого следует, что решение найдено верно:

 

 








Дата: 2019-07-24, просмотров: 197.