Московский автомобильно-дорожный институт (ГТУ) МФ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Московский автомобильно-дорожный институт (ГТУ) МФ

Факультет «АТ»

Кафедра «О и БД»

КУРСОВАЯ РАБОТА

По предмету

«Прикладная Математика»

Выполнил студент 2ЭТ гр. Мусиев Г.М.

Проверил преподаватель Баламирзоев А.Г.

Махачкала 2008 г.



Оглавление

 

Введение

1. Решение нелинейных уравнений. Метод деления отрезка пополам. Метод касательных. Комбинированный метод хорд и касательных

2. Решение систем линейных алгебраических уравнений. Методом Крамера. Методом Гаусса. Метод Жордана Гаусса. Метод Зейделя

3. Математическая обработка результатов опыта. Аппроксимация функций. Полином Лагранжа. Метод наименьших квадратов

4. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера. Метод Рунге – Кутта

5. Практический раздел



Введение

В достаточно общем случае процесс решения прикладных задач состоит из следующих этапов:

1. постановка задачи и построение математической модели (этап моделирования);

2. выбор метода и разработка алгоритма (этап алгоритмизации) ;

3. запись алгоритма на языке, понятном ЭВМ (этап программирования);

4. отладка и исполнение программы на ЭВМ (этап реализации);

5. анализ полученных результатов (этап интерпретации).

Фабула практических задач связана с реальными объектами – производственными процессами и явлениями природы, физическими закономерностями, экономическими отношениями и т.п. Решение задач обычно начинается с описания исходных данных и целей на языке строго определенных математических понятий. Точную формулировку условий и целей решения называют математической постановкой задачи. Этап исследования и описания их с помощью математических терминов называется построением математической модели или моделированием. Построение математической модели является наиболее сложным этапом решения задачи. Математическая модель может иметь вид уравнения, системы уравнений или быть выраженной в форме иных, как угодно сложных, математических структур или соотношений самой различной природы. Математические модели, в частности могут быть непрерывными или дискретными, в зависимости от того, какими величинами – непрерывными или дискретными – они описаны.

Вслед за построением математической модели идет этап поиска и разработки алгоритма решения задачи который называется алгоритмизацией.

Особые трудности на этапе поиска алгоритма заключается в поиске методе решения задачи. Дело в том, что уже для достаточно простых моделей чаще всего не удается получить результат в аналитической форме. Пусть, к примеру, задача свелась к решению уравнения с одной переменной: x - tg x = 0 . При всей тривиальности этой задачи выразить корни уравнения путем аналитических преобразований не удается, и весь арсенал методов «точной» математики оказывается здесь беспомощным. В таких случаях приходится использовать приближенные математические методы, позволяющие получать удовлетворительные результаты. Основными методами решения подобных задач являются численные методы, при использовании которых результат получается путем вычислений. По этой причине наиболее естественный путь реализации численных методов – это использование ЭВМ.

На следующем этапе алгоритм задачи записывается на языке, понятном ЭВМ. Это- этап программирования, затем следует этап реализации- исполнение программы на ЭВМ и получение результатов решения.

Завершающий этап решения задачи - это анализ, или интерпретация результатов. На этом этапе происходит осмысливание полученных результатов, сопоставление их с результатами контрольного просчета, а также с данными, полученными экспериментальным путем. При этом одни результаты могут оказаться приемлемыми, а другие – противоречащими смыслу реальной задачи, такие решения следует отбросить. Высшим критерием пригодности полученных результатов в конечном итоге является практика.

В условиях использования ЭВМ численные методы являются мощным средством решения практических задач, хотя ЭВМ наоборот усложняет оценку точности получаемых результатов, как изложено в известном принципе Питера «ЭВМ многократно увеличивает некомпетентность вычислителя».

На общую погрешность задачи влияет целый ряд факторов, начиная с построения математической модели до производства вычислений. Сюда входят: неустранимая погрешность, погрешность метода, вычислительная погрешность и в итоге, полная погрешность вытекает из суммы всех погрешностей. При решении конкретных задач те или иные виды погрешностей могу отсутствовать или незначительно влиять на конечный результат, тем не менее, в каждом случае необходим полный анализ погрешностей всех видов. Это в полной мере относится и к неустранимой погрешности – погрешности математической модели.

К числу причин следует отнести также промахи, допускаемые в результате решения задачи: использование не тех данных, неверной программы вычислений и т.д. Поэтому необходима грубая прикидка ожидаемого результата, а это невозможно без ознакомления с понятиями приближенных методов вычислений, поэтом рассмотрим некоторые методы приближенных вычислений, применяемые в прикладной математике.



Метод Жордана - Гаусса.

Схема с выбором главного элемента состоит в том, что требование неравенства нулю диагональных элементов akk, на которые происходит деление в процессе исключения, заменятся более жестким: из всех элементов К-го столба выбрать наибольший по модулю и переставить уравнения так, чтобы этот элемент оказался на месте элемента акк. Выбор главного элемента и связанная с ним перестановка строк необходимы в тех случаях, когда на каком-либо i-ом шаге акк=0 либо же акк очень мало по остальными элементами i- го столбца: при делении на такое «малое» акк будут получаться большие числа с большими абсолютными погрешностями, в результате чего решение может сильно исказиться.

Ниже излагается алгоритм полного исключения неизвестных или метод Жордана – Гаусса. Суть метода состоит в том, что, рассмотрев первое уравнение, в нем неизвестное с коеффициэнтом, отличным от нуля (в дальнейшем разрешающий элемент ), и разделив первое уравнение на этот коэффициент, с помощью первого уравнения исключают это неизвестное из всех уравнений, кроме первого. Выбрав во втором уравнении неизвестное с коэффициентом, отличным от нуля, и разделив на него второе уравнение, с помощью второго исключают другие неизвестные из всех уравнений, кроме второго и т.д., т.е. с помощью одного уравнения производят полное исключение одного неизвестного. Процесс продолжается до тех пор, пока не будут использованы все уравнения.

Как известно, системы линейных алгебраических уравнений могут имеет одно решение, множество решений или системы несовместны. При элементарных преобразованиях элементов матрицы системы эти случаи выявляются в следующем:

1. В процессе исключений левая часть I –го уравнения системы обращается в нуль, а правая часть равна некоторому числу, отличному от нуля. т.е. 0 2+ =bc 0.

Это означает, что система не имеет решений, так как I – му уравнению не могут удовлетворять никакие значения неизвестных;

2. Левая и правая части I – го уравнения обращаются в нуль. Это означает, что I – ое уравнение является линейной комбинацией остальных, ему удовлетворяет любое найденное решение системы, поэтому оно может быть отброшено. В системе количество неизвестных больше количества уравнений и, следовательно, такая система имеет множество решений;

3. После того как все уравнения использованы для исключения неизвестных получено решение системы.

Таким образом, конечной целью преобразований Жордана-Гаусса является получение из заданной линейной системы

 

a11x1 + a12x2 + … + a1nxn = b1,n+1
a21x1 + a22x2 + … + a2nxn = b2,n+1
am1x1 + am2x2 + … + amnxn = bm.n+1

 

Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

 

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

 

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Решим следующую систему уравнений:

 

 

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

 

 

Проведём следующие действия:

· К строке 2 добавим: -4 * Строку 1.

· К строке 3 добавим: -9 * Строку 1.

Получим:

 

 

· К строке 3 добавим: -3 * Строку 2.

· Строку 2 делим на -2

 

 

· К строке 1 добавим: -1 * Строку 3.

· К строке 2 добавим: -3/2 * Строку 3.

 

 

· К строке 1 добавим: -1 * Строку 2.

 

 

В правом столбце получаем решение:

 

.

 



Полином Лагранжа.

Пусть Функция F(x) задана табл. 4.1. Построим многочлен Ln (x), степень которого не выше, чем n, и для которого выполнены условия интерполяции

 

Ln(x0)=y0, Ln(x1)=y1,…, Ln(xn)=yn. (4.6)

 

Будем искать Ln (x) в виде

 

Ln (x),=l0(x)+l1(x)+…+ln(x), (4.7)

 

где l1(x) – многочлен степени n, причем

 


l1(xл)=  (4.8)

 

Очевидно, что требование (4.8) с учетом (4.7) вполне обеспечивает выполнение условий (4.6).

Многочлены l1(x)составим следующим образом:

 

l1(x)=Сi(x - x0)(x - x1) (xi - xi-1)(xi – xi=1) (xi – xn) (4.9)

 

где Ci – коэффициент, значение которого найдем из первой части условия (4.8):

 

Сi =

 

(заметим, что ни один множитель в знаменателе не равен нулю). Подставим Ci в (4.9) и далее с учетом (4.7) окончательно имеем:

 

Ln (x)=  (4.10)

 

Это и есть интерполяционный многочлен Лагранжа. По таблице исходной функции F формула (4.10) позволяет довольно просто составить «внешний вид» многочлена.


Метод наименьших квадратов.

1) На практике часто приходится решать такую задачу. пусть для двух функционально связанных величин x и y известны n пар соответствующих значений (x1,y1),(x2,y2),…,(xn,yn). Требуется в наперед заданной формуле y=f(x, a1, a2,…,am) определить m параметров a1, a2, …,am (m<n) так, чтобы в эту x и y.

Считается (исходя из принципов теории вероятностей), что наилучшими являются те значения a1, a2, …,am, которые обращают в минимум сумму

 

 

(т.е. сумму квадратов отклонений значений y, вычисленных по формуле, от заданных), поэтому сам способ и получил название способа наименьших квадратов.

 Это условие дает систему m уравнений, из которых определяются a1,a2,…,am:

 

 (1)

(f=1,2,…, m).

 

На практике заданную формулу y=f (xk,a1, a2, …, am) иногда приходится (в ущерб строгости полученного решения) преобразовывать к такому виду, чтобы систему (1) было проще решать (см. ниже подбор параметров в формулах y=Aecx и y=Axq). Частные случаи: а) y=a0xm-1+…+ am(m+1 параметров a0, a1, …, am;; n>m+1).

Система (1) принимает следующий вид:

 

 (2)


Эта система m+1 уравнений с m+1 неизвестными всегда имеет единственное решение, так как ее определитель отличен от нуля.

               

Для определения коэффициентов системы (2) удобно составить вспомогательную таблицу

 

 

В последней строке записывают сумму элементов каждого столбца, которые и являются коэффициентами системы (2).

Систему (2) обычно решают методом Гаусса.

 

б) y=Aecx.

 

Для упрощения системы (1) эту формулу, связывающую х и у, предварительно логарифмируют и заменяют формулой

 

1g y=1g .

 

Система (1) примет в этом случае следующий вид:

 

 (3)

 

Вспомогательная таблица имеет вид

.
       

 

Из систему (3) определяют с и 1g A.

 

в) y=Axq.

 

Эту формулу также предварительно логарифмируют и заменяют следующей:

 

 

Система (1) теперь примет вид

 

 (4)

 

Соответствующим образом изменяется и вспомогательная таблица.

 2) Часто бывает необходимо заменить наилучшим образом некоторую заданную функцию у =f(x) на отрезке [a, b] многочленом m-й степени:  Применение способа наименьших квадратов в этом случае приводит к отысканию коэффициентов а0, а1, …, аm из условия минимума интеграла

 


 

 

Необходимые условия минимума этого интеграла приводят к системе m+1 уравнений с m+1 неизвестными a0, a1, a2,..., am, из которых определяют все эти коэффициенты:

 

 (5)

 



Практический раздел

Московский автомобильно-дорожный институт (ГТУ) МФ

Факультет «АТ»

Кафедра «О и БД»

КУРСОВАЯ РАБОТА

По предмету

«Прикладная Математика»

Выполнил студент 2ЭТ гр. Мусиев Г.М.

Дата: 2019-07-24, просмотров: 209.