Общие сведения о полупроводниках
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Содержание

 

Введение

1 Полупроводниковые материалы

1.1 Общие сведения о полупроводниках

1.2 Классификация полупроводников

1.3 Собственная проводимость полупроводников

1.4 Примесная проводимость полупроводников

2 Органические полупроводники

2.1 Общая характеристика группы органических полупроводников

2.2 Характеристика отдельных групп органических полупроводников

2.3 Электропроводность органических полупроводников

2.4 Электропроводность низкомолекулярных органических полупроводников

2.5 Электрические свойства полимерных полупрводников

2.6 Механизм электропроводности

2.7 Фотопроводимость органических полупроводников

2.8 Практическое применение органических полупроводников

Экспериментальная часть

Заключение

Список литературы



Введение

Физика полупроводников, раздел физики, в котором исследуются электрические, оптические, магнитные, тепловые и другие свойства полупроводниковых материалов – широкого класса неорганических и органических веществ – и структур на их основе. Свойства полупроводников сильно зависят от внешних воздействий, а также наличия атомов примеси и собственных дефектов структуры (кристал ли чес кой решетки). С открытия Фарадеем в 1833 г. полупроводниковых свойств у Ag2S их отличительным признаком остается увеличение концентрации носителей заряда при нагревании, которое приводит к уменьшению электрического сопротивления материала. В отличие от металлов (проводников электричества) для полупроводников характерна чувствительность к свету (фото про води мость, люминесценция), электрическому полю (не линей ные электрические свойства, электрический пробой), ионизирующему излучению (радиа ци он ная физика) и др. Полупроводники оптимально сочетают чувствительность к внешним воздействиям и возможность контролируемого формирования в них элементов с различающимися свойствами. Благодаря этому физика полупроводников служит научным фундаментом для опто-, микро- и наноэлектроники, во многом определяющих технический прогресс современного общества.

Изучение органических полупроводников вызывает сейчас наибольший интерес, так как с данными исследованиями связаны многие перспективные разработки, такие как создание OLED-дисплеев, светочувствительных материалов (например, для процессов записи информации), в микроэлектронике, для изготовления различного рода датчиков. Исследование полупроводников органических важно для понимания процессов преобразования и переноса энергии в сложных физико-химических системах и, в особенности в биологических тканях. С полупроводниками органическими, в частности с ион-радикальными солями, связана перспектива создания сверхпроводников с высокой критической температурой.

Таким образом, рассмотрение в качестве темы курсовой работы «Органические полупроводники» является актуальным.

Объектом исследования являются органические полупроводники. Предметом исследования являются конкретные свойства органических полупроводников.

Для решения поставленной цели необходимо решить следующие задачи:

- дать общую характеристику класса проводников, рассмотрев их классификацию, собственную и примесную проводимость;

- дать характеристику класса органических полупроводников, привести характеристику отдельных соединений относящихся к данному классу, рассмотреть особенности электропроводимости органических полупроводников.

- рассмотреть перспективы практического применения класса органических полупроводников, экспериментальные разработки в данной области.

С целью достижения вышеуказанных целей произвести анализ научно-методической литературы.

 



Полупроводниковые материалы

Органические полупроводники

Механизм электропроводности

 

Объяснение процессов переноса тока в органических полупроводниках, и особенно в полимерах, пожалуй, наиболее серьезная проблема, возникающая при изучении этих интересных веществ. Здесь следует различать два вопроса: во-первых, как зарождаются носители тока и, во-вторых, каким образом они перемещаются в объеме твердого тела. Механизм возникновения носителей в сопряженных системах не вызывает особых трудностей для понимания. Зарождение носителей тока должно достаточно легко происходить на участках полимера с высокой степенью сопряжения, поскольку с ростом числа сопряженных связей снижается внутримолекулярный барьер для переброса электрона на свободные уровни молекулы и. следовательно, ослабевает возбуждение электрона при переходе в квазисвободное проводящее состояние внутри молекулы. Действительно, опытами по измерению проводимости на переменном токе показано, что энергия зарождения носителей внутри области сопряжения близка к нулю и уж во всяком случае значительно меньше энергии межмолекулярных переходов.

 Гораздо сложнее вопрос о механизме перемещения носителей заряда между сопряженными молекулами или областями сопряжения, поскольку именно этой стадией лимитируется суммарный процесс электропроводности во всем объеме полимера. В любом предлагаемом механизме должен учитываться ряд установленных сейчас особенностей, которые необычны не только для органических веществ, но и для большинства хорошо изученных неорганических полупроводников. Рассмотрим важнейшие из таких особенностей.

Электронная неоднородность. Измерения разными методами (исследования на переменном токе; изучение шумов тока, влияния адсорбции иода и воздуха и др.) позволили прийти к выводу о микрогетерогенности структуры полупроводниковых полимеров, т.е. о том, что все полимеры состоят из отдельных хорошо проводящих областей (по всем вероятности, сильно сопряженных или конденсированных участков), разделенных плохо проводящими диэлектрическими участками, очевидно с неупорядоченной структурой полимерных молекул.

Характер обратимой температурной зависимости термо-эдс. В большинстве случаев коэффициент термо-эдс α или почти не зависит от температуры, или растет при нагревании. Это означает, что температурная зависимость α так же как температурная зависимость σ определяется изменением подвижности носителей при их постоянной концентрации, так как при таком механизме теория предсказывает слабый (логарифмический) рост α с увеличением температуры:

 

,(2.4)

 

где А — константа, зависящая от механизма рассеяния электронов;  и n — эффективная масса и концентрация носителей тока; и h - постоянные Больцмана и Планка; Т-абсолютная температура. Такие проводники называют вырожденными.

В случае, когда изменение значений α и σ в зависимости от температуры обусловлено главным образом экспоненциальным ростом концентрации носителей (невырожденные проводники), α будет согласно теории падать с ростом температуры пропорционально величине 1/T:

 

.(2.5)

 

Для некоторых полимеров обнаружено снижение α с температурой, однако и в этих случаях обычно имеет место снижение недостаточно сильное для того, чтобы его можно было отнести за счет определяющего влияния концентрации носителей.

Очень малая подвижность носителей заряда. Попытки измерить подвижность носителей в полимерах с помощью эффекта Холла оказывались, как правило, неудачными. Это означает, что подвижность носителей не превышает 0.005—0.01 см /в·сек. Лишь в нескольких случаях такие измерения дали положительные результаты: например, для одного из полиацепхинонных радикалов было получено очень малое значение подвижности: u = 0.04 см2 /в·сек, а для комплекса поливинилкарбазола с иодом u = 0,4 см2/в·сек. В полифталоцианине меди обнаружилась неожиданно высокая подвижность u = 2.5 10 см2/в·сек., однако воспроизвести измерение эффекта Холла не удалось, а подвижность, определенная по влиянию адсорбции кислорода на электропроводность, оказалась гораздо меньшей порядка 102 см2/в·сек. Столь малым значениям подвижности соответствует концентрация носителей тока в полимерах не более 1012-1017 в 1 см3.

Только тогда, когда, по-видимому, устраняется влияние диэлектрических прослоек (например, в результате термообработки полимера), возможно обнаружить более высокую подвижность: от единиц до 100 см2/в·сек.

При изучении полимерных полупроводников возникает ряд вопросов: какова природа электропроводности, чем объясняется низкая подвижность носителей тока, природа фотопроводимости и др.

Современное представление электропроводности неорганических полупроводников базируется на зонной теории.

Дли полимерных полупроводников обсуждаются перескоковый, туннельный и зонный механизмы проводимости.

Зонный механизм предполагает межмолекулярные электронные взаимодействия, приводящие к возникновению общей для всего объема полимера зоны проводимости, в которой концентрация носителей зависит от энергии вырывания электрона из сопряженной системы с переходом его в квазисвободное проводящее состояние (концентрация носителей тока зависит от ширины запрещенной зоны) и которая увеличивается с ростом температуры.

С учетом всех указанных особенностей есть несколько вариантов объяснения механизма переноса тока в органических полупроводниках. Прежде всего пробуют использовать зонный механизм, детально разработанный для неорганических полупроводников. В применении к рассматриваемым сопряженным системам зонный механизм дает следующую картину. Взаимодействия между электронами ведут к возникновению общей для всего вещества зоны проводимости, в которой концентрация носителей экспоненциально растет с ростом температуры. При этом низкая подвижность объясняется узостью зон проводимости. Однако зонные представления вряд ли могут служить основой для построения общего механизма электропроводности в полупроводниковых полимерах, поскольку такой схеме в большинстве случаев противоречат положительный температурный ход α и слишком низкая подвижность, при которой понятие «зона» теряет смысл. В целом зонный механизм неприменим. В частности, зонному механизму противоречит температурный ход термо-Э.Д.С.

Согласно другому механизму, называемому туннельным, электропроводность определяется вероятностью межмолекулярного туннельного перехода электронов, иными словами, частотой квантовомеханического без активационного «просачивания» сквозь межмолекулярный барьер. Эффективность туннелирования пропорциональна концентрации электронов на возбужденных уровнях, которая в свою очередь экспоненциально растет с увеличением температуры. В некоторых случаях туннельный механизм подтверждается совпадением экспериментальных данных с расчетными, полученными с учетом формы барьеров. Однако и этот механизм, по-видимому не является главным в случае полимерных полупроводников, потому что согласно теоретическим расчетам он "маловероятен" для веществ с низкой подвижностью носителей.

Туннельный механизм предполагает, что истинная энергия активации проводимости определяется энергией перевода электрона на возбужденный уровень, поэтому для полимеров с системой сопряженных связей энергия активации проводимости должна быть мала и с ростом степени сопряжения в макромолекуле стремиться к нулю. Эффективность туннельных переходов пропорциональна концентрации электронов на возбужденных уровнях, которая растет с температурой. Измерения электропроводности на переменном токе говорят в пользу весьма малых энергий активации зарождения носителей внутри области сопряжения (~0,1 эв).

Перескоковый механизм электропроводности предполагает возможность протекания тока посредством активационных перескоков носителей тока из одной области хорошей проводимости полимера (по-видимому, области полисопряжения) в другую с преодолением энергетических барьеров, создаваемых плохо проводящими (диэлектрическими) барьерами (неупорядочной или несопряженной структурой). Повышение температуры не изменяет числа эффективных носителей тока, возникающих в полисопряженных областях (областях «коллективного» взаимодействия я-электронов), а увеличивает вероятность перескоков, т. е. их число (подвижность носителей). Считают, что перескоковый механизм наиболее вероятен в веществах с малой подвижностью носителей тока [0,005— 0,01 см2/(в·сек)], где эффект Холла не измеряется, хотя общая концентрация носителей может быть порядка 10 —10|8 см3 .

Пожалуй, наиболее удовлетворительное объяснение особенностей проводимости в органических полупроводниках в настоящее время можно дать с помощью перескокового механизма, согласно которому ток возникает благодаря активационным перескокам носителей из одной полисопряженной области в другую над диэлектрическими барьерами, создаваемыми неупорядоченной (несопряженной) структурой. Зарождение и перемещение носителей внутри полисопряженной области почти не требуют энергии активации. Рост температуры не изменяет концентрации носителей, а экспоненциально увеличивает вероятность перескоков, т.е. подвижность. Как показывает расчет, в системах с таким перемещением носителей наблюдать эффект Холла очень трудно. Теоретические работы последних лет указывают на большую вероятность перескокового механизма по сравнению с другими схемами для систем с низкой подвижностью носителей. В связи с этим интересно подчеркнуть, что измерениями на переменном токе удалось экспериментально подтвердить весьма малые значения энергии активации зарождения носителей внутри области сопряжения (около 0,1 эв), в то время как измерения на постоянном токе показали, что процесс электропроводности лимитируется стадией со значительной энергией активации (порядка 1,0 эв), т. е. очевидно, надбарьерными перескоками между участками сопряжения.

Таким образом, для большинства типичных полимерных полупроводников наиболее правдоподобным следует, по-видимому, признать перескоковый механизм, хотя высказано также мнение, что электрическое поведение полупроводниковых полимеров определяется наложением двух активационных процессов — изменение концентрации носителей тока и изменение их подвижности; подобный механизм предлагался ранее для низкомолекулярных органических полупроводников. В ряде случаев может оказаться пригодной и обычная зонная схема — например, когда подвижность носителей тока больше 1 см2/в·сек. или когда α снижается с увеличением температуры.

Нужно, однако, иметь в виду, что в некоторых группах полимеров электропроводность осуществляется заведомо по иным схемам. Это имеет место, в частности, когда подвижность превышает 10 см2/в·сек (в высокотемпературных образцах, в композициях с высоким содержанием металла или при образовании сильных КПЗ с полимерами), а также, когда обнаруживается резкое падение α с увеличением температуры. По всей вероятности, в этих случаях электропроводность имеет квазиметаллическую природу из-за сильных электронных взаимодействий в полимере. При этом концентрация носителей может возрасти до 1019 в 1 см3.

Экспериментальная часть

В рамках данной курсовой работы был исследован нафталин, в частности его электрические свойства. Сложность данного эксперимента заключалась в том, что почти все низкомолекулярные полупроводники, в том числе и нафталин, являются высокоомными проводниками. Поэтому сопротивление измерялось при больших температурах.

Образец нафталина был помещен в кювету из фторопласта. Используя мультиметр ММ-960, было измерено сопротивление органического полупроводника при различной температуре.

 

 

Полученные в ходе эксперимента результаты занесены в таблицу и по ним построен график зависимости логарифма электропроводности от обратной температуры 1/T.

Результаты измерений сопротивления при различных температурах.

№ опыта Т, температура, К R, сопротивление, 107 Ом 1/Т, 104 lnσ
1 483 1,73 48 -16,8
2 493 1,26 45 -15,8
3 503 0,91 43 -15,1
4 513 0,66 42 -14,7
5 523 0,49 40 -14,0
6 533 0,37 38 -13,3
7 543 0,27 37 -13,0
8 553 0,21 36 -12,6
9 563 0,16 34 -11,9
10 573 0,13 33 -11,6

 

График зависимости логарифма электропроводности от обратной температуры 1/T.

 

Полученная зависимость сходится с теоретическими результатами и соответствует формуле:

 

.

 

Используя данную формулу и результаты эксперимента можно вычислить :

.

Вывод: Полученное значение по порядку совпадает с табличными, но сравнить с точным численным значением невозможно, т.к. значения энергии активации, определяемые для одних и тех же веществ различными авторами, часто оказываются резко различными. Величина  может зависеть от условий приготовления исследуемого образца, от его структуры (аморфный слой, поликристаллический порошок или монокристалл), от условий предварительной его обработки, от того, исследовалась ли электропроводность в вакууме, в атмосфере, в атмосфере газа или на воздухе.

 



Заключение

В курсовой работе были рассмотрены особенности класса органических проводников, их практическое применение и экспериментальные разработки в данной области. Хочется сделать вывод, что исследования в области органических проводников являются одним из наиболее перспективных направлений при создании вакуумных фотоэлектронных приборов, спеновых вентилей в высокочувствительной магнитной записи и ячейках памяти персональных компьютеров, гибкой электроники, в частности гибких переносных компьютеров и дисплеев.

Японские ученые, в частности, работают над созданием легких, гибких и, в перспективе, недорогих переносных компьютеров и дисплеев. Владельцы таких компьютеров могли бы по окончании работы свернуть монитор и положить компьютер в сумку (подобные устройства уже представляются компаниями-разработчиками на выставках), а то и в карман. Основными материалами для подобной "гибкой электроники" являются аморфный гидрогенизированный кремний и органические полупроводники.

Таким образом, исследования в области создания новых органических полимеров с полупроводниковыми свойствами являются одним из перспективных направлений в сфере микроэлектроники.

 



Список литературы

1. Артемьев С.В. , Войкова Е.Д. , Коваль Г.И. , Шевцов М.К. Слои бихромированной желатины, сенсибилизированные для зелено-красной области спектра. / В сб. : Фотохимические процессы регистрации голограмм. Под. Ред. Варачевского В.А. , Л., 1983, с. 131-137

2. Богуславский Л. И., Ванников А. В., Органические полупроводники и биополимеры, М., 1968;

3. Бонч-Бруевич В.Л., Калашников С. Г. Физика полупроводников.- М.: Наука,1977.

4. Вайденбах В.А., Малыгина Г.Г. Ионное равновесие хромовокислой системы. - //Ж. научн. и прикл. фотогр. и кинематогр, 1968, , № 3, с. 165-167.

5. Выговский Ю.Н., Дработурин П.А., Коноп А.Г., Коноп С.П., Малов А.Н. Управление свойствами самопроявляющихся “красных” желатин-глицериновых систем / в. сб.: “Применение лазеров в науке и технике”. В.IX. -ИФ ИЛФ СО РАН: Иркутск -1997 - с. 149-159.

6. Выговский Ю.Н. Фазовые переходы в пленках дихромированного желатина при записи объемных и красных радужных голограмм. Дисс.. к.ф.-м.н., Иркутск: ИГУ.-1997 - 192 с.

7. Гутман Ф., Лайонс Л., Органические полупроводники, пер. с англ., М., 1970

8. Горелик С.С., Дашевский М. Я. Материаловедение полупроводников и металловедение.- М. Металлургия, 1973.

9. Шерстюк В.П. , Кошечко В.Г. , Атаманюк В.Ю. Исследование кинетики и механизма окисления трифениламинов хроматом натрия. //Журнал общей химии, 1980, 50, № 10, с. 2153-2159.

10. Шерстюк В.П. , Дилунг И.И. , Мазур Л.В. , Лялецкая О.А. Фотохимические и темновые реакции соединений хрома (VI), механизм дубления и фотографические свойства хромированных коллоидов. / В сб. “III Всесоюзн. Конф. по бессереб. и необ. процессам”. Фотохим. методы регист. информации и полупроводниковая фотограф.”, Вильнюс, май 1980, с. 205.

Содержание

 

Введение

1 Полупроводниковые материалы

1.1 Общие сведения о полупроводниках

1.2 Классификация полупроводников

1.3 Собственная проводимость полупроводников

1.4 Примесная проводимость полупроводников

2 Органические полупроводники

2.1 Общая характеристика группы органических полупроводников

2.2 Характеристика отдельных групп органических полупроводников

2.3 Электропроводность органических полупроводников

2.4 Электропроводность низкомолекулярных органических полупроводников

2.5 Электрические свойства полимерных полупрводников

2.6 Механизм электропроводности

2.7 Фотопроводимость органических полупроводников

2.8 Практическое применение органических полупроводников

Экспериментальная часть

Заключение

Список литературы



Введение

Физика полупроводников, раздел физики, в котором исследуются электрические, оптические, магнитные, тепловые и другие свойства полупроводниковых материалов – широкого класса неорганических и органических веществ – и структур на их основе. Свойства полупроводников сильно зависят от внешних воздействий, а также наличия атомов примеси и собственных дефектов структуры (кристал ли чес кой решетки). С открытия Фарадеем в 1833 г. полупроводниковых свойств у Ag2S их отличительным признаком остается увеличение концентрации носителей заряда при нагревании, которое приводит к уменьшению электрического сопротивления материала. В отличие от металлов (проводников электричества) для полупроводников характерна чувствительность к свету (фото про води мость, люминесценция), электрическому полю (не линей ные электрические свойства, электрический пробой), ионизирующему излучению (радиа ци он ная физика) и др. Полупроводники оптимально сочетают чувствительность к внешним воздействиям и возможность контролируемого формирования в них элементов с различающимися свойствами. Благодаря этому физика полупроводников служит научным фундаментом для опто-, микро- и наноэлектроники, во многом определяющих технический прогресс современного общества.

Изучение органических полупроводников вызывает сейчас наибольший интерес, так как с данными исследованиями связаны многие перспективные разработки, такие как создание OLED-дисплеев, светочувствительных материалов (например, для процессов записи информации), в микроэлектронике, для изготовления различного рода датчиков. Исследование полупроводников органических важно для понимания процессов преобразования и переноса энергии в сложных физико-химических системах и, в особенности в биологических тканях. С полупроводниками органическими, в частности с ион-радикальными солями, связана перспектива создания сверхпроводников с высокой критической температурой.

Таким образом, рассмотрение в качестве темы курсовой работы «Органические полупроводники» является актуальным.

Объектом исследования являются органические полупроводники. Предметом исследования являются конкретные свойства органических полупроводников.

Для решения поставленной цели необходимо решить следующие задачи:

- дать общую характеристику класса проводников, рассмотрев их классификацию, собственную и примесную проводимость;

- дать характеристику класса органических полупроводников, привести характеристику отдельных соединений относящихся к данному классу, рассмотреть особенности электропроводимости органических полупроводников.

- рассмотреть перспективы практического применения класса органических полупроводников, экспериментальные разработки в данной области.

С целью достижения вышеуказанных целей произвести анализ научно-методической литературы.

 



Полупроводниковые материалы

Общие сведения о полупроводниках

 

К классу полупроводников обычно относят большую группу твердых тел, удельная проводимость которых при комнатной температуре (T=300K) изменяется в очень широких пределах.

Числовое значение этой величины: (10-13-10-1 1/Oм.см) значительно выше, чем у изоляторов: (10-26-10-14 1/Oм.см), но намного ниже, чем у металлов: (1-102 1/Oм.см).

Если твердые тела классифицировать по механизму электропроводности, то нетрудно установить, что между полупроводниками и изоляторами не существует принципиального различия. Характерной особенностью полупроводников., отличающей их от металлов, является возрастание электропроводности s с ростом температуры, причём, как правило, в достаточно широком интервале температур возрастание происходит экспоненциально:

 

 = 0ехр (-EA/кТ).(1.1.)

 

Здесь k — Больцмана постоянная, EAэнергия активации электронов в полупроводниках., (s0 — коэффициент пропорциональности (в действительности зависит от температуры, но медленнее, чем экспоненциальный множитель). С повышением температуры тепловое движение разрывает связи электронов, и часть их, пропорциональная exp (—EA/kT), становится свободными носителями тока.

 Связь электронов может быть разорвана не только тепловым движением, но и различными внешними воздействиями: светом, потоком быстрых частиц, сильным электрическим полем и т.д. Поэтому для полупроводников характерна высокая чувствительность электропроводности к внешним воздействиям, а также к содержанию примесей и дефектов в кристаллах, поскольку во многих случаях энергия EA для электронов, локализованных вблизи примесей или дефектов, существенно меньше, чем в идеальном кристалле данного полупроводника. Возможность в широких пределах управлять электропроводностью полупроводников изменением температуры, введением примесей и т. д. является основой их многочисленных и разнообразных применений.

Различают собственную и примесную проводимости полупроводников.

 

Рис.1

 

Важнейшее свойство полупроводников - возможность изменять свою электрическую проводимость под воздействием различных факторов: температуры, освещения, радиоактивного излучения и др.

Полупроводники представляют собой весьма многочисленный класс материалов. В него входят сотни самых разнообразных веществ – как элементов, так и химических соединений. Полупроводниковыми свойствами могут обладать как неорганические, так и органические вещества, кристаллические и аморфные, твердые и жидкие, немагнитные и магнитные. Несмотря на существенные различия в строении и химическом составе, материалы этого класса роднит одно замечательное качество- способность сильно изменять свои электрические свойства под влиянием небольших внешних энергетических воздействий. Одна из возможных схем классификации полупроводниковых материалов приведена на рис.2.

Рис. 2. Классификация полупроводниковых материалов по составу и свойствам.

 

Различие между полупроводниками и диэлектриками является скорее количественным, чем качественным. Формула (1.1) относится в равной мере и к диэлектрикам, электропроводность которых может стать заметной при высокой температуре. Точнее было бы говорить о полупроводниковом состоянии неметаллических веществ, не выделяя полупроводники в особый класс, а к истинным диэлектрикам относить лишь такие, у которых в силу больших значений EA и малых s0 электропроводность могла бы достигнуть заметных значений только при температурах, при которых они полностью испаряются.

Дата: 2019-07-24, просмотров: 206.