Обтекаемый током i прямолинейный проводник длиной l (рис. 1), расположенный в магнитном поле с индукцией В, испытывает механическую силу
(1)
где β- угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Рис. 1.
Для системы из нескольких обтекаемых током проводников можно всегда представить, что любой из этих проводников расположен в магнитном поле, созданном токами других проводников, и соответствующим образом взаимодействует с этим полем, т. е. между проводниками, охваченными общим магнитным потоком, всегда возникают механические силы. Эти силы называются электродинамическими.
Аналогичные силы возникают между проводником, обтекаемым током, и ферромагнитной массой.
Направление действия силы
Направление действия силы определяется «правилом левой руки».
Направление действия силы может быть также определено из следующего общего положения: силы, действующие в контуре с током, стремятся изменить конфигурацию контура так, чтобы охватываемый контуром магнитный поток увеличился.
Удобным для определения направления действия электродинамической силы является метод, предложенный академиком В.Ф. Миткевичем, основанный на представлении бокового распора и тяжения магнитных линий.
Рисуют и накладывают друг на друга картины магнитных полей, создаваемых током каждого из проводников. Благодаря боковому распору магнитных силовых линий сила, действующая на проводник, направлена в сторону, где поле ослаблено (рис. 2).
Методы расчета электродинамических сил
Расчет электродинамических сил ведется обычно либо на основании закона взаимодействия проводника с током и магнитным полем (первый метод), либо по изменению запаса магнитной энергии системы (второй метод).
Первый метод
Расчет электродинамических сил на основании закона взаимодействия проводника с током и магнитным полем. Возьмем систему из двух произвольно расположенных проводников 1 и 2 (рис. 3), обтекаемых токами i 1 и i 2 . Напряженность магнитного поля, создаваемого элементом dy проводника 2 в месте расположения элемента dx проводника 1, будет
(2)
где α — угол между вектором ρ и направлением тока по элементу dy .
Весь проводник 2 создает в месте расположения элемента dx напряженность магнитного поля
(3)
Элементарная сила, действующая на элемент dx, обтекаемый током i1
(4)
где ρ — угол между вектором магнитной индукции В = μ0 Hdx и вектором тока i 1;
μ0 — магнитная проницаемость воздуха.
Полную силу F взаимодействия между проводниками 1 и 2 получим после интегрирования dFdx по всей длине проводника 1:
(5)
Считая токи i 1 и i 2 неизменными по всей длине проводника, уравнение (5) можно переписать в виде произведения членов:
(6)
Первый член этого выражения зависит только от значений токов. Второй член зависит только от взаимного геометрического расположения проводников и представляет собой безразмерную величину. Эту величину часто называют коэффициентом контура, который обозначим буквой с. Тогда
(7)
т.е. сила взаимодействия между двумя проводниками, обтекаемыми токами i 1 и i2, пропорциональна произведению этих токов (квадрату тока при i 1 = i 2) и зависит от геометрии проводников.
Подставив в уравнение (7) значение μ0 = 4π10-7 и вычисляя силу в ньютонах, получим
(8)
Второй метод
Расчет электродинамических сил по изменению запаса электромагнитной энергии контуров. Электромагнитное поле вокруг проводников и контуров с током обладает определенным запасом энергии. Электромагнитная энергия контура, обтекаемого током i ,
(9)
Электромагнитная энергия двух контуров, обтекаемых токами i 1 и i 2 ,
(10)
где L 1 , L 2 — индуктивности контуров; М — взаимная индуктивность контуров.
Всякая деформация контура (изменение расположения отдельных его элементов или частей) или изменение взаиморасположения контуров приводят к изменению запаса электромагнитной энергии. При этом работа сил в любой системе равна изменению запаса энергии этой системы:
(11)
здесь dW — изменение запаса энергии системы при деформации системы в направлении х под действием силы F .
На указанном законе (11) и основан второй метод определения электродинамических сил в контурах. Электродинамическая сила в контуре или между контурами, действующая в направлении х, равна скорости изменения запаса энергии системы при деформации ее в том же направлении:
(12)
Согласно сказанному электродинамическая сила в контуре, обтекаемом током i ,
(13)
а электродинамическая сила между двумя взаимосвязанными контурами с токами i1 и i2 будет
(14)
Дата: 2019-07-24, просмотров: 177.