Понятие системы электросвязи, канала связи. Обобщенная структурная схема электрической связи между двумя абонентами. Процесс прохождения сигнала и сообщения (информации)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Электросвязь – это связь, при которой передача информации любого вида (речевой, буквенно-цифровой, зрительной и т.д.) осуществляется электрическими сигналами, распространяющимися по проводам, или радиосигналами. В соответствии со способами передачи (переноса) сигналов различают проводную связь и радиосвязь; в различных системах. Электросвязь первую часто используют в сочетании с разновидностями второй (например, с радиорелейной связью, спутниковой связью). К электросвязи относят, кроме того, передачу информации при помощи оптических или других электромагнитных систем связи. По характеру передаваемых сообщений электросвязь подразделяется на следующие основные виды: телефонная связь, обеспечивающая ведение телефонных переговоров между людьми; телеграфная связь, предназначенная для передачи буквенно-цифровых сообщений – телеграмм; факсимильная связь, при которой передаётся графическая информация – неподвижные изображения текста или таблиц, чертежей, схем, графиков, фотографий и т.п.; передача данных (телекодовая связь), целью которой является передача информации, представленной в формализованном виде (знаками или непрерывными функциями), для обработки этой информации ЭВМ или уже обработанной ими; видеотелефонная связь, служащая для одновременной передачи речевой и зрительной информации. При помощи технических средств электросвязи осуществляются также проводное вещание, радиовещание (звуковое вещание) и телевизионное вещание.

Для установления электросвязи между отправителем (источником сообщений) и получателем (приёмником сообщений) служат: оконечные аппараты – передающий и приёмный; канал связи, образуемый с помощью одной или нескольких включенных последовательно систем передачи; кроме того, вследствие наличия большого количества оконечных передающих и приёмных аппаратов и необходимости их всевозможных попарных соединений для организации непрерывного (сквозного) канала между ними, используется система коммутационных устройств, состоящая из одной или нескольких коммутационных станций и узлов.

Канал электросвязи – технические устройства и физическая среда, в которых электрические сигналы распространяются от передатчика к приёмнику. Технические устройства (модуляторы, демодуляторы, усилители электрических колебаний, кодирующие устройства, дешифраторы и т.д.) размещают в оконечных и промежуточных пунктах линий связи (кабельных, радиорелейных и т.д.). Система передачи информации – каналообразующая аппаратура и другие устройства, обеспечивающие в совокупности образование множества каналов связи в одной линии связи.

Используемые в электросвязи каналы связи подразделяются на аналоговые и дискретные. Аналоговые каналы служат для передачи непрерывных электрических сигналов (примеры таких сигналов: напряжения и токи, получающиеся при электроакустических преобразованиях звуков речи, музыки, при развёртке изображений). Возможность передачи через данный канал связи непрерывных сигналов от того или иного источника обусловлена прежде всего такими характеристиками канала, как полоса пропускания частот и допустимая максимальная мощность передаваемых сигналов. Кроме того, поскольку любой канал подвержен различного рода помехам, то он характеризуется также минимальной мощностью электрического сигнала, которая должна в заданное число раз превышать мощность помех. Отношение максимальной мощности сигналов, пропускаемых каналом, к минимальной называется динамическим диапазоном канала связи.

Дискретные каналы служат для передачи импульсных сигналов. Такие каналы обычно характеризуются скоростью передачи информации (измеряемой в бит/сек) и верностью передачи. Дискретные каналы могут быть также использованы для передачи аналоговых сигналов и, наоборот, аналоговые каналы – для передачи импульсных сигналов. Для этого сигналы преобразуются; аналоговые в импульсные с помощью аналого-дискретных (цифровых) преобразователей, а импульсные в аналоговые с помощью дискретно (цифро) – аналоговых преобразователей.

Используемые в электросвязи системы передачи обычно обеспечивают одновременную и независимую передачу сообщений от многих источников к такому же числу приёмников. В таких системах многоканальной связи общая линия связи уплотняется несколькими десятками – несколькими тысячами индивидуальных каналов. Наибольшее распространение получили многоканальные системы с частотным разделением аналоговых каналов. При построении таких систем передачи каждому каналу связи отводится определённый участок области частот в полосе пропускания линейного тракта передачи, общего для всех передаваемых сообщений. Для переноса спектра сигнала в участок, отведённый ему в полосе частот группового тракта (частотного преобразования сигнала), используют амплитудную или частотную модуляцию (см. также Модуляция колебаний) групп «несущих» синусоидальных токов. При амплитудной модуляции (АМ) в соответствии с передаваемым сообщением изменяется амплитуда гармонических колебаний тока несущей частоты. В результате на выходе модулирующего устройства (модулятора) создаются колебания, в спектре которых кроме составляющей несущей частоты (несущей) имеются две боковые полосы. Поскольку каждая из боковых полос содержит полную информацию об исходном (модулирующем) сигнале, то в линию связи пропускают только одну из них, а другую и несущую подавляют с помощью полосно-пропускающих электрических фильтров или иных устройств. При частотной модуляции (ЧМ) в соответствии с передаваемым сообщением изменяется несущая частота. Системы с ЧМ обладают большей по сравнению с системами с АМ помехоустойчивостью, однако это преимущество реализуется лишь при достаточно большой девиации частоты, для чего необходима широкая полоса частот. Поэтому, например, в радиосистемах ЧМ применяют главным образом в диапазоне метровых (и более коротких) волн, где на каждый индивидуальный канал приходится полоса частот, в 10–15 раз большая, чем в системах с АМ, работающих на более длинных волнах. В радиорелейных линиях нередко используют сочетание АМ с ЧМ; с помощью АМ создаётся некоторый промежуточный спектр, который затем переводится в линейный диапазон частот с помощью ЧМ.

Для передачи сообщений различного вида требуются каналы с определённой шириной полосы пропускания. Характерная особенность современной системы передачи – возможность организации в одной и той же системе каналов, применяемых для различных видов электросвязи. При этом в качестве стандартного канала используется телефонный канал, называемый каналом тональной частоты (ТЧ). Он занимает полосу частот 300–3400 Гц. Для упрощения фильтрующих устройств, разделяющих соседние каналы, каналы ТЧ отделяются друг от друга защитными частотными интервалами и занимают (с учётом этих интервалов) полосу 4 кГц. Кроме передачи сигналов речи, каналы ТЧ используются также в факсимильной связи, низкоскоростной передаче данных (от 600 до 9600 бит/сек) и некоторых других видах электросвязи, учитывая большой удельный вес каналов ТЧ в сетях электросвязи, их принимают за основу при создании как широкополосных (> 4 кГц), так и узкополосных (< 4 кГц) каналов. Например, в радиовещании применяется канал с полосой втрое (иногда вчетверо) превышающей полосу канала ТЧ; для высокоскоростной передачи данных между ЭВМ, передачи изображений газетных полос и др. употребляются каналы, в 12, 60 и даже 300 раз более широкие; сигналы программ телевизионного вещания передаются через каналы с полосой, в 1600 раз превышающей полосу канала ТЧ (что составляет примерно 6 Мгц). На базе канала ТЧ (посредством его т. н. вторичного уплотнения) создаются каналы для телеграфирования с полосами пропускания 80, 160 или 320 гц, со скоростями передачи (соответственно) 50, 100 или 200 бит/сек. Линии радиорелейной связи позволяют создать 300, 720, 1920 каналов ТЧ (в каждой паре высокочастотных стволов); линии связи через ИСЗ – от 400 до 1000 и более (в каждой паре стволов). Проводные линии связи, используемые в системах передачи с частотным разделением каналов, характеризуются следующим числом каналов ТЧ: симметричные кабели 60 (в расчёте на две пары проводов); коаксиальные кабели – 1920, 3600 или 10 800 (на каждую пару коаксиальных трубок). Возможно создание систем с ещё большим числом каналов.

Наряду с системами передачи с частотным разделением каналов с 70-х гг. 20 в. началось внедрение систем, в которых каналы разделяются во времени на основе методов импульсно-кодовой модуляции (ИКМ), дельта-модуляции и др. При ИКМ каждый из передаваемых аналоговых сигналов преобразуется в последовательность импульсов, образующих определённые кодовые группы. Для этого в сигнале через заданные промежутки времени (равные половине периода, соответствующего максимальной частоте изменения сигнала) вырезаются узкие импульсы. Число, характеризующее высоту каждого вырезанного импульса, передаётся 8-значным кодом за время, не превышающее протяжённость (ширину) импульса. В промежутках времени между передачей кодовых групп данного сообщения линия свободна и может быть использована для передачи кодовых групп других сообщений. На приёмном конце линии производится обратное преобразование кодовых комбинаций в последовательность импульсов различной высоты, из которых с определённой степенью точности может быть восстановлен исходный аналоговый сигнал. При дельта-модуляции аналоговый сигнал сначала преобразуется в ступенчатую функцию, причём кол-во ступенек на период, соответствующий максимальной частоте изменения сигнала, в различных системах составляет 8–16. Передаваемая в линию последовательность импульсов отображает ход ступенчатой функции в изменении знака производной сигнала: возрастающие участки аналоговой функции (характеризующиеся положительной производной) отображаются положительными импульсами, спадающие участки (с отрицательной производной) – отрицательными. В промежутках между этими импульсами располагаются импульсы, образованные от других сигналов. При приёме импульсы каждого сигнала выделяются и интегрируются, в результате с заданной степенью точности восстанавливается исходный аналоговый сигнал.

Каналы ИКМ и дельта-модуляции (без оконечных аналого-цифровых преобразующих устройств) – дискретные и часто используются непосредственно для передачи дискретных сигналов. Основным достоинством систем с временным разделением каналов является отсутствие накопления шумов в линии; искажение формы сигналов при их прохождении устраняется с помощью регенераторов, устанавливаемых на определённом расстоянии друг от друга (аналогично усилителям в системах с частотным разделением). Однако в системах с временным разделением существует шум «квантования», возникающий при преобразовании аналогового сигнала в последовательность кодовых чисел, характеризующих этот сигнал лишь с точностью до единицы. Шум «квантования», в отличие от обычного шума, не накапливается по мере прохождения сигнала в линии.

К сер. 70-х гг. разработаны системы с ИКМ на 30, 120 и 480 каналов; находятся в стадии разработки системы на несколько тыс. каналов. Развитие систем передачи с разделением каналов во времени стимулируется тем, что в них широко используют элементы и узлы ЭВМ, и это в конечном счёте приводит к удешевлению таких систем как в проводной связи, так и радиосвязи. Весьма перспективны импульсные системы передачи на основе находящихся в стадии разработки волноводных и световодных линий связи (число каналов ТЧ может достигать 105 в волноводной трубе диаметром примерно 60 мм или в паре стеклянных световодных нитей диаметром 30–70 мкм).

Для развития современных коммутационных станций и узлов характерны тенденции использования в коммутационных устройствах быстродействующих миниатюрных герметизированных контактов (например, герконов) для реализации соединений, а для управления процессами соединений – специализированных ЭВМ. Коммутационные станции и узлы такого типа получили название квазиэлектронных. Введение ЭВМ позволяет предоставлять абонентам дополнительные услуги: возможность применения сокращённого (с меньшим кол-вом знаков) набора номеров наиболее часто вызываемых абонентов; установку аппаратов на «ожидание», если номер вызываемого абонента занят; переключение соединения с одного аппарата на другой и т.д. С внедрением систем передачи с временным разделением каналов намечается возможность перехода к чисто электронным (без механических контактов) станциям и узлам коммутации. В таких системах коммутируются непосредственно дискретные каналы (без преобразования дискретных сигналов в аналоговые). В результате происходит объединение (интеграция) процессов передачи и коммутации, что служит предпосылкой к созданию интегральной сети связи, в которой сообщения всех видов передаются и коммутируются едиными методами.

На рис. 2 приведена схема, обеспечивающая телефонную связь между двумя абонентами. Вызов осуществляется через звонок, имеющийся в телефонном аппарате. В таких переговорных устройствах можно использовать телефонные аппараты, у которых исправны лишь трубка, звонок и рычажный переключатель.

 

Рис. 2.

 

Телефонные аппараты Е1 и Е2 (рис. 2) соединяют трехпроводной линией, в которую подают переменное и постоянное напряжения. Переменное напряжение снимают с обмотки II сетевого трансформатора Т1, постоянное – с параметрического стабилизатора напряжения (R1, VD2, CD двухполупериодного выпрямителя (VD1) питание которого осуществляется от обмотки III трансформатора.

Если первый абонент (у него телефонный аппарат Е1) хочет вызвать второго абонента, он должен нажать кнопку переключателя SB1. При этом переменное напряжение с обмотки II трансформатора подается на телефонный аппарат Е2, и в нем звонит звонок. При снятых трубках обоих телефонных аппаратов источник постоянного напряжения включается последовательно с аппаратами – можно вести разговор. Второй же абонент для вызова первого нажимает кнопку переключателя SB2.



Дата: 2019-07-24, просмотров: 120.