Методы обработки изображений
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

ВВЕДЕНИЕ

 

Важнейшая задача правоохранительных органов – повышение эффективности борьбы с любыми проявлениями преступной деятельности. Решение этой задачи требует активного использования в раскрытии и расследовании правонарушений современных научно-технических средств и методов.

Большинство преступлений сопровождается активным воздействием лиц, их совершающих, на различные элементы вещной обстановки события преступления. При этом возникают мельчайшие материальные образования – микрообъекты. Использование результатов исследования микрообъектов – одна из предпосылок повышения эффективности борьбы с преступностью.

К числу микрообъектов, широко встречающихся в криминалистической практике, относятся текстильные волокна. Связано это, прежде всего, с повсеместным использованием изделий из волокнистых материалов (предметы одежды, декоративно-обивочные и технические ткани, средства упаковки и т.д.). Информация, получаемая в результате обнаружения и исследования волокон, позволяет решать многие вопросы, играющие существенную роль в раскрытии преступлений. Особенно велико значение волокон одежды, так как они часто указывают на особенности (характер изделия, цвет, иногда индивидуальные свойства) предметов одежды преступника. Ценность микрообъектов – текстильных волокон для получения розыскной и доказательственной информации состоит в том, что они имеют довольно прочное сцепление со многими материалами, особенно с ворсистыми текстильными изделиями, и длительное время сохраняются на них, образуя устойчивые следы.

Современные возможности криминалистической экспертизы микрообъектов велики. Применение высокочувствительных методов исследования позволяет анализировать морфологическое строение, структуру, химический состав чрезвычайно малых количеств веществ и материалов, что дает обширную информацию о видовой принадлежности исследуемых микрообъектов, характере процессов, повлекших их образование, признаках и назначении предметов, частью которых они являются, а при наличии последних проводить идентификационное исследование.

Сказанное в полной мере относится и к текстильным волокнам. Каждая разновидность изделий из волокнистых материалов обладает комплексом особенностей, что обусловливается использованием при их получении волокон того или иного вида, формы, диаметра и длины, применением определенных приемов изготовления материала. Характерные свойства изделиям придают и технологические процессы обработки.

Задачами экспертного исследования текстильных волокон может быть решение ряда вопросов, имеющих как самостоятельное значение, так и являющихся отдельными этапами комплексного сравнительного исследования волокон между собой и с изделиями.

Уже само наличие волокон от определенных изделий, механизм их повреждения и локализация в конкретных местах исследуемых предметов нередко позволяют устанавливать фактические данные события преступления, такие как характер условий, в которых данные предметы находились, источник их происхождения, принадлежность к одному комплекту. По одинаковым перекрестным наслоениям волокон оказывается возможным устанавливать контакты предметов одежды между собой и с телом человека, что особо важно. Присутствие волокон определенного вида и назначения на предметах вещной обстановки позволяет получить информацию о внешних признаках изделия, от которого эти волокна могли быть отделены, что чрезвычайно важно для раскрытия неочевидных преступлений, розыска лиц, их совершивших.

Текстильные материалы, как правило, окрашены. Большое разнообразие используемых для их крашения способов и красителей, применение в ткацком производстве комбинаций цветных волокон, нитей, пряжи раскрывают широкие возможности сравнительного исследования микрообъектов – текстильных волокон по их цвету, способу крашения и свойствам красителей. Для исследования ограниченных количеств волокон в криминалистической практике апробирован ряд методов: визуальное сравнение, спектральные и хроматографические методы, химические реакции.

Человек с нормальным зрением различает в солнечном спектре до 160 цветовых оттенков. С этой точки зрения глаз человека является весьма точным аналитическим прибором для дифференциации окрашенных волокон.

Визуальная оценка цвета волокон осуществляется несколькими способами: невооруженным глазом, с помощью микроскопа и с применением светофильтров. Задача исследования при этом состоит в распознавании цветового оттенка и выражении его в конкретном названии (величине) или оценке сходства, различия сравниваемых объектов по цветовому оттенку и насыщенности цвета.

Простейший способ распознавания цвета состоит в сравнении волокон с эталонами, цветовые характеристики которых известны. Такое исследование может быть осуществлено невооруженным глазом или с использованием лупы. Визуальная оценка цвета волокон при их сравнении с эталонами должна проводиться при освещении, спектр излучения которого близок к солнечному свету. В противном случае при распознавании цветовых оттенков, особенно синих и фиолетовых, можно допустить ошибку. Визуальное сравнение цвета окрашенных микрообъектов носит субъективный характер, что вызывает определенные трудности в формулировке результатов исследования, так как различие или сходство цвета нельзя выразить в конкретных понятиях (величинах).

Всесторонняя объективная оценка цвета волокон может быть получена только спектрофотометрическим методом. В принципе, когда объект исследования не ограничен в размерах, спектральный анализ красителей волокон может быть осуществлен на любом спектрофотометре. Особенно эффективно в этом случае исследование растворов красителей, извлеченных соответствующими растворителями, или растворов непосредственно волокон. Исследование единичных элементарных волокон может быть осуществлено лишь с помощью специальных микроспектрофотометров, представляющих собой агрегат, состоящий из микроскопа, монохроматора, микроскопа-фотометра и электронно-вычислительной системы.

Исследование красителей может быть проведено химическими реакциями и методами бумажной и тонкослойной хроматографии.

Указанные методы требуют для своей реализации специального оборудования и зачастую занимают много времени. К тому же текущая их реализация не соответствует современному уровню развития техники. Для реализации экспертизы необходимо из множества микрообъектов, собранных на месте происшествия выбрать те, которые представляют интерес для дальнейшего анализа. Поэтому и возникла задача создания системы, которая бы позволила быстро и без особых затрат решать задачу анализа цвета текстильных волокон независимо от их строения и происхождения. Задача эта в настоящее время решается в основном “вручную” большим числом работников лабораторий криминалистического анализа, т. е. требует от работников лабораторий постоянного физического и умственного напряжения, отрицательно влияет на зрение. Затраты времени и людских ресурсов при таком подходе к поиску волокон весьма значительны, т. к. количество обрабатываемых объектов очень велико. Использование для решения данных задач вычислительной техники избавит от необходимости привлечения к процессу анализа дорогостоящего специализированного оборудования и сократит потребление временных ресурсов. В данном дипломном проекте разрабатывается подсистема выделения, которая на исходных изображениях, представляющих собой фотографии различного типа волокон, осуществляет выделение волокон и позволяет дать ответ о присутствии искомых объектов заданного цвета. Подсистема выделения предназначена для использования на ранних этапах криминалистического анализа с целью уменьшения времени идентификации объектов, собранных с элементов вещной обстановки события преступления. В конечном итоге данное программное средство в совокупности с уже используемыми методами должно значительно упростить проведение экспертизы, сократить потребление людских и временных ресурсов.

 



ОБЗОР ЛИТЕРАТУРЫ

Текстильные волокна

 

Работа [1] посвящена анализу текстильных волокон применительно к решению задач криминалистической экспертизы, описаны основные методы анализа, приведены справочные данные по различным типам волокон, описана технология изготовления и промышленной обработки волокон. При оценке результатов исследования волокон бывает принципиально важным знать свойства и строение текстильных материалов. Текстильные материалы подразделяются на текстильные волокна, нити и пряжу, вырабатываемые из них, и текстильные изделия. К текстильным относятся волокна натурального происхождения и химические. Последние применяются в виде элементарных волокон, называемых элементарной нитью (единичное волокно неопределенно большой длины), либо в виде штапелек (кусочков элементарных волокон определенной длины). Конструктивными элементами текстильных изделий обычно являются нити и пряжа или непосредственно волокна (предметы валяльно-войлочного производства, нетканые материалы, нитки и т.д.). В настоящее время натуральные волокна в чистом виде применяются для выработки ограниченного ассортимента изделий. Обычно они используются в смеси с химическими волокнами. К натуральным относятся хлопок, лубяные волокна, шерсть и натуральный шелк. Химические волокна используются в текстильной промышленности как самостоятельно, так и в смеси с натуральными. В мировой практике наметилась устойчивая тенденция замены шерстяных, шелковых и хлопковых волокон на химические. Этим достигается не только экономия натурального сырья, но и возможность придания изделиям специально заданных потребительских свойств, оригинального внешнего вида.

Все химические волокна, в зависимости от характера исходного сырья, делятся на два класса: искусственные и синтетические. Искусственные волокна получают из полимерных материалов естественного происхождения, главным образом – целлюлозосодержащих; синтетические – из полимеров, образованных в результате химического синтеза. Несмотря на большое число разновидностей химических волокон, описанных в литературе, текстильная промышленность применяет довольно ограниченное их количество. В основном используются волокна, изготовляемые на основе целлюлозы и полиамидные, полиэфирные, полиакрилонитрильные; несколько в меньших масштабах – на основе хлор - и фторсодержащих полимеров, полиолефинов. Увеличение ассортимента химических волокон происходит преимущественно за счет модификации уже выпускаемых.

Для крашения текстильных материалов в основном используются два метода – поверхностное крашение и печать. Кроме того, широко применяется крашение химических волокон в массе.

Поверхностное крашение сводится к погружению текстильного материала в раствор красителя. Для крашения могут применяться как индивидуальные красители, так и их смеси. При этом процесс крашения может быть однованновым и многованновым, в последнем случае текстильные материалы поочередно погружаются в несколько растворов красителей (для изделий, выработанных из нескольких видов волокон). Материалу, состоящему из волокон разного вида, можно придать однородный цвет, если окрасить отдельные волокна в цвета, дающие внешне однородную окраску.

Крашение способом печати сводится к нанесению на полотно текстильного материала цветных рисунков или узоров с помощью печатных валиков. Осуществляется такое крашение на цилиндрических тканепечатных машинах с помощью паст красителей.

Поверхностное крашение и печать используются для текстильных материалов из любых волокон. Крашение в массе применяется исключительно для химических волокон. Оно сводится в введению мельчайших частичек красителей или пигментов в массу полимера (раствор или расплав) перед формованием волокна.

Для снятия текстильных волокон с поверхности предметов пользуются инструментами и липкими пленочными материалами. Инструментами в данном случае служат пинцеты, скальпели, шпатели и др. Наиболее эффективны адгезионные пленочные материалы. Преимущество их применения состоит в том, что при этом сохраняется картина распределения волокон в наслоениях и одновременно с волокнами снимаются другие сопутствующие им микрообъекты. Изъятые волокна могут быть подвергнуты предварительному микроскопическому исследованию непосредственно на пленке.

 

СТРУКТУРНОЕ ПРОЕКТИРОВАНИЕ

Работа с BMP – файлами

 

В данном дипломном проекте в качестве исходных данных для обработки используются фотографии, сохраненные в формате BMP, 24 бит на пиксель, с изображенными на них текстильными волокнами различного типа и окраски.

Файлы формата bitmap [6], содержащие битовое изображение, начинаются со структуры BITMAPFILEHEADER табл.3.1. Эта структура описывает тип файла и его размер, а также смещение области битов изображения.

 

Таблица 3.1.

Заголовок файла BITMAPFILEHEADER

Смещение Размер Имя Описание
0 2 BfType Тип файла. Поле содержит значение 0x4D42 (текстовая строка «ВМ»).
2 4 BfSize Размер файла в байтах. Это поле может содержать неправильное значение, так как в SDK для Windows 3.0 поле bfSize было описано неправильно (поле содержит размер файла в двойных словах). Обычно содержимое этого поля игнорируется, так как из-за ошибки в документации старые приложения устанавливали в этом поле неправильное значение.
6 2 BfReserved1 Зарезервировано, должно быть равно нулю.
8 2 BfReserved2 Зарезервировано, должно быть равно нулю.
10 4 BfOffBits Смещение битов изображения от начала файла в байтах.

 

Сразу после структуры BITMAPFILEHEADER в файле следует структура BITMAPNFOHEADER. Этот заголовок содержит описание изображения и, необязательно, карту цветов. Структура заголовка bitmap иногда рассматривается как BITMAPINFO с полями вплоть до карты цветов как BITMAPINFOFEADER табл. 3.2.

 

Таблица 3.2.

Заголовок файла BITMAPINFOHEADER

Смещение Размер Имя Описание
14 4 BiSize Размер этого заголовка в байтах, (всегда 40)
18 4 BiWidth Ширина битового изображения в пикселях
22 4 BiHeight Высота битового изображения в пикселях
26 2 BiPlanes Число плоскостей изображения, должно быть 1
28 2 BiBitCount Количество бит на один пиксель. Может быть равно 1, 4, 8 или 24.
30 4 BiCompression Тип сжатия. BI_RGB – сжатие не используется; BI_RLE4 – сжатие изображения, в которых для представления одного пикселя используется 4 бита; BI_RLE8 – сжатие изображения, в которых для представления пикселя используется 8 бит;
34 4 BiSizeImage Размер сжатого изображения в байтах, или ноль
38 4 BiXPelsPerMeter Горизонтальное разрешение, в пикселях / на метр
42 4 BiYPelsPerMeter Вертикальное разрешение, в пикселях / на метр
42 4 BiYPelsPerMeter Вертикальное разрешение, в пикселях / на метр
46 4 BiClrUsed Количество используемых цветов, описание ниже
50 4 BiColorImportant Число «важных» цветов
54 4*N BmiColors Карты цветов

 

Поле biSizeImage может быть (и обычно бывает) нулем, если данные несжатые.

Изображения, использующие 1, 4 или 8 бит на пиксель должны иметь карту цветов. Размер карты цветов – обычно 2, 16 или 256 элементов данных соответственно, но может быть меньше, если изображение не нуждается в полном комплекте цветов. Если поле biClrUsed – ненулевое, оно содержит количество используемых цветов, которое также представляет собой число элементов данных в карте цветов. Если это поле – нулевое, карта цветов имеет полный размер. Для 24-битных изображений карты цветов отсутствуют, и изображение содержит непосредственные RGB цвета. Поле biClrUsed может быть ненулевое для создания таблицы цветов фиксированного размера.

Поскольку возможно, что устройство отображения не будет иметь столько доступных цветов, сколько требуется для изображения, элементы данных в карте цветов должны начинаться с наиболее важных цветов. Поле biClrImportant, если оно ненулевое, сообщает, сколько цветов важно для хорошего воспроизведения изображения.

Элементы данных карты цветов содержат четыре байта табл. 3.3.

 

Таблица 3.3.

Рис. 3.1. Гистограмма яркости изображения

 

Гистограммы сохраняются в bmp – файлах с целью улучшения визуального восприятия информации, т.к. наглядность в этом случае гораздо выше, чем у текстового представления.

Насыщенность S определяется через максимальные и минимальные компоненты RGB – представления. Насыщенность определяется относительным количеством белого, который надо добавить к полностью насыщенному цвету. Уровень белого определяется минимальной компонентой RGB – представления. Остальные две компоненты окрашивают белую подложку [5].

 

S= 1 - min(r, g, b)/max(r, g, b).(3.2)

 

Гистограмма насыщенности, пример которой представлен на рис. 3.2, сохраняется в файле Sa_gist.bmp.

 

Рис.3.2. Гистограмма насыщенности

 

Для вычисления цветности определяются сектора цветового круга, в которые данный цвет попадает. Цвет определяется большей по уровню компонентой RGB – представления. Сначала вычитается уровень белого – цвет приводится к насыщенному виду.

 

{r’, g’, b’} = {r - min, g - min, b - min}.(3.3)

 

Остается 2 ненулевых компоненты, возможные варианты соотношений между ними и цветностью представлены в табл. 3.4.

 

Таблица 3.4.

Ситуация Сектор Угол в секторе, j Цвет r’ ³ g’ 0° - 60° (g’/r’)60° j g’ > r’ 60° - 120° (r’/g’)60° 120° - j g’ ³ b’ 120° - 180° (b’/g’)60° 120° + j
Ситуация Сектор Угол в секторе, j Цвет b’ > g’ 180° - 240° (g’/b’)60° 240° - j b’ ³ r’ 240° - 300° r’/b’)60° 240° + j r’ > b’ 300° - 0° (b’/r’)60° 360° - j

 

Блок – схема данного алгоритма представлена на чертеже РТДП 5.000.003.

Следует отметить, что насыщенность лежит в диапазоне 0…1, в то время как цветность располагается на окружности (или другой топологически эквивалентной кривой). Существует ряд случаев, когда определить значение цветности с достаточной точностью невозможно. Это случаи так называемого серого цвета от черного до белого. Эти случаи характеризуются низким уровнем насыщенности [5].

Гистограмма цветности рис.3.3 сохраняется в файле Hu_gist.bmp. Кроме того, гистограммы сохраняются в текстовых файлах name.txt либо name_.txt в зависимости от выбора пункта главного меню, где name.bmp – имя исходного файла для дальнейшей обработки иными программными средствами в случае необходимости. При построении гистограмм согласно пункту 2 меню учитываются все пикселы изображения. При выборе операции “Создание H,S,B планов для точек с большой (малой) насыщенностью” при построении гистограмм учитываются лишь те точки, значение насыщенности которых соответствует задаваемым пользователем параметрам.

Гистограмма цветности в дальнейшем используется для выделения волокон на исходном изображении.

 

Рис. 3.3. Гистограмма цветности изображения

 

В случае достаточной насыщенности цвет определяется однозначно. При обработке цветных изображений данный алгоритм цветоопределения показывает достаточно высокую производительность и не уступает более сложным методам определения цветности, основанным на использовании непрерывных функций и выводящим метрики формально.

Используя полученные значения для цветности, и сравнивая их с порогом цветности можно выделить на изображении окрашенные и неокрашенные участки. Таким образом, если участок на изображении является неокрашенным, то, следовательно, не имеет дальнейшего смысла обработка данного участка на предмет определения наличия на нем окрашенных текстильных волокон.

Информация о HSB – представлении исходного изображения хранится в одноименном файле с расширением *.hsb. Дальнейшие преобразования основаны на анализе содержимого данного файла. Здесь следует отметить, что для избежания ошибок следует предусмотреть наличие на диске »25 Мбайт свободного пространства в случае проведения полного анализа изображения, т.к. для проведения манипуляций с данными программа создает ряд графических и текстовых файлов.

 



Выбор исходного изображения

 

Исходное изображение может находиться в любом месте дискового пространства. Для того чтобы выбрать картинку для анализа используется операция “Изменить путь либо файл" главного меню программы. Пользователю предлагается выбрать новый путь для поиска либо оставить текущий каталог неизменным. Информация о найденных файлах формата bmp выводится в отдельном окне, которое предусматривает возможность вертикального скроллинга для выбора необходимого файла рис. 3.6. В окне выводятся имя файла и его размер, текущее имя подсвечивается мигающим курсором.

 

Рис. 3.6. Выбор исходного изображения

 

Переход между файлами осуществляется нажатием клавиш “вверх” либо “вниз” на клавиатуре. Выбор осуществляется нажатием клавиши Enter и имя выбранного файла отражается в главном меню программы. Если же файлов нужного формата не найдено, то в окне выдается сообщение “*.bmp файлы не найдены”. При ошибочном выборе пути либо диска выводятся сообщения “Ошибка пути” и “Ошибка выбора диска” соответственно. При обнаружении данных ошибок текущий путь остается неизменным и пользователь в случае необходимости может заново повторить ввод информации о нахождении анализируемых изображений на диске.

Для поиска файлов по маске *.bmp используются стандартные функции findfirst и findnext, описанные в файле dos.h. Найденная информация организуется в двунаправленный список для последующего использования при организации скроллинга и выбора имени файла для обработки. Пользователь в любой момент может изменить диск либо путь к файлам. Для изменения пути и диска используются функции chdir и chdrive, описанные в файлах библиотечных файлах BorlandC dir.h и direct.h соответственно. Данное обстоятельство позволяет программе функционировать независимо от расположения на диске.

 



Исходные данные

 

Программные средства вычислительной техники являются материальными объектами специфической интеллектуальной деятельности специалистов, состоящими из программных документально оформленных проектов, реализующих свои потребительские свойства[7] и качества в составе функционирующих вычислительных систем или систем обработки данных.

Программные средства вычислительной техники как товарная продукция может быть двух видов:

1) научно-техническая продукция;

2) продукция производственно-технического назначения.

В современных рыночных экономических условиях Республики Беларусь программные средства как товарная продукция соответствующих научно-технических организаций выступает преимущественно в виде научно-технической продукции, представляющей собой функционально завершенные и имеющие товарный вид программные средства вычислительной техники, реализуемые покупателям по рыночным отпускным ценам.

В результате разработки и применения программных средств вычислительной техники экономический эффект достигается за счет экономии трудовых, материальных и финансовых ресурсов на основе:

1) снижения трудоемкости алгоритмизации программирования и отладки программ (задач) за счет использования программного средства в процессе разработки автоматизированных систем и систем обработки данных;

2) сокращения расходов на оплату машинного времени и других ресурсов на отладку и сдачу задач в эксплуатацию;

3) снижения расходов на материалы (магнитные ленты, магнитные диски и прочие материалы);

4) ускорения ввода в эксплуатацию новых систем;

5) улучшение показателей основной деятельности предприятий в результате использования программных средств.

Расчет экономической эффективности программных средств вычислительной техники основан на принципах комплексной оценки эффективности мероприятий, направленных на ускорение научно-технического прогресса.

Расчет экономического эффекта от программных средств осуществляется у разработчика и у потребителя. У разработчика экономический эффект выступает в виде прибыли, остающейся в распоряжении предприятия от реализации программного средства (4.1):

 

П = Р - С - Н , (4.1)

 

гдеР - доход (выручка) от реализации программного средства за минусом налога на добавленную стоимость;

С - себестоимость программного средства;

Н - общая сумма налогов и других платежей, определяемая в соответствии с действующим законодательством.

У пользователя затраты на программное средство складываются из единовременных и эксплуатационных (текущих) затрат. Единовременные затраты представляют собой расходы на приобретение программного средства по рыночным ценам (себестоимость НИОКР, включая затраты на испытания, отладку, доработку, приобретение специального оборудования и прибыль организации-разработчика), транспортировку, монтаж (старого оборудования демонтаж) и наладку нового оборудования, связанного с использованием нового программного средства.

Эксплуатационные (текущие) затраты организации-пользователя состоят из затрат на заработную плату по подготовке данных и анализу их обработки, затраты на оплату времени работы вычислительных ресурсов, устройств ввода-вывода, средств массовой памяти (магнитные диски и ленты), коммуникационных средств, необходимых для выполнения функций программы, затрат материалов и прочих затрат.

На основе технико-экономического анализа функциональных и конструктивных особенностей создаваемого программного средства и источников экономической эффективности определяются показатели, по которым рассчитывается экономия всех видов ресурсов, оказывающих влияние на величину экономического эффекта.

Исходные данные по разработанному программному средству представлены в табл. 4.1.

 

Таблица 4.1.

Исходные данные

Наименование показателей Буквенные обозначения Единицы измерения Количество
Коэффициент новизны Кн Единиц 1
Группа сложности   Единиц 3
Дополнительный коэффициент сложности Ксл Единиц 0,12
Поправочный коэффициент, учитыва-ющий использование типовых программ Кт Единиц 1
Установленная плановая продолжи-тельность разработки Трт Лет 1
Годовой эффективный фонд времени Фэф Дней 230
Продолжительность рабочего дня Тч Час 8
Тарифная ставка 1-го разряда, месячная Тм тыс.руб. 11,5
Коэффициент премирования Кп Единиц 1,4
Норматив дополнительной заработной платы Нзд % 10
Ставка отчислений в фонд социальной защиты населения Нсзс % 35
Ставка чрезвычайного налога Ннч % 4
Ставка отчислений в фонд занятости Ннз % 1
Норматив командировочных расходов Нрнк % 30
Норматив прочих затрат Нпз % 20
Норматив накладных расходов Нрн % 100
Ставка налога на добавленную стоимость Ндс % 20

 

В разработке программного средства участвуют исполнители перечисленные в табл. 4.2.


Таблица 4.2.

Исполнители программного средства

Исполнитель Тарифный разряд Тарифный коэффициент, Тк Продолжительность участия в разработке (дней)
Руководитель 13 2,84 200
Инженер-программист без категории 9 2,09 230

 


Материалы (М)

 

Расходы по статье «Материалы» (М) определяются на основании сметы затрат, разрабатываемой на программное средство, с учетом действующих нормативов. По статье «Материалы» отражаются расходы на магнитные носители, перфокарты, бумагу, красящие ленты и другие материалы, необходимые для разработки программного средства. Нормы расхода материалов в суммарном выражении (Нм) определяются в расчете на 100 машинных команд. Сумма затрат материалов рассчитывается по формуле:

 

М = Нм * Vо / 100,(4.14)

 

где Нм - норма расхода материалов в расчете на 100 команд программного средства (тыс.руб.);

Vо - общий объем программного средства (условных машинных команд).

М = 88 * 37 700/ 100 = 33,2 тыс.руб.

Спецоборудование (Рс)

 

Расходы по статье «Спецоборудование» (Рс) включают затраты средств на приобретение типовых и изготовление вспомогательных специального назначения технических и программных средств, необходимых для разработки конкретного программного средства, включая расходы на их проектирование, изготовление, отладку, установку и эксплуатацию. Сумма затрат по статье «Спецоборудование» (Рс) определяется в соответствии со сметой расходов, которая составляется перед разработкой. Так как для разработки конкретного программного средства специальное оборудование или специальные программы не приобретались, то расходы по этой статье не определяются.



Машинное время (Рм)

 

Расходы по статье "Машинное время" (Рм) включают оплату машинного времени, необходимого для разработки и отладки программного средства, которое определяется по нормативам (в машино-часах) на 100 команд (Нмв) машинного времени в зависимости от характера решаемых задач и типа ПЭВМ, определяются по формуле:

 

Рм = Цм * Vо * Нмв/100,(4.15)

 

где Цм- цена одного машино-часа (тыс.руб);

Vо- общий объем программного средства (машинных команд); Нмв- норматив расхода машинного времени на отладку 100 машинных команд (машино-часов).

Рм = 0.5 * 37 700 * 2,1 /100= 395,8 тыс.руб.

 

Прочие затраты (Пз)

 

Расходы по статье "Прочие затраты" (Пз) включают затраты на приобретение и подготовку специальной научно-технической информации и специальной литературы. Определяются по смете расходов на программное средство по формуле:

 

Пз = Зо*Нпз/100,(4.17)

 

где Нпз - норматив прочих затрат (Нпз=20%).

 

Пз = 681,3*20/100 = 136,2 тыс.руб.(4.18)

 

Накладные расходы (Рн)

 

Затраты по статье «Накладные расходы» (Рн), связанные с необходимостью содержания аппарата управления, вспомогательных хозяйств и опытных (экспериментальных) производств, а так же с расходами на общехозяйственные нужды, относятся на программное средство по нормативу (Нрн) в процентном отношении к основной заработной плате исполнителей.

 

Рн = Зо * Нрн / 100, (4.19)

 

где Нрн- норматив накладных расходов (Нрн=100%).

Рн = 681,3*100/100 = 681,3 тыс.руб.

 



Выводы по разделу

 

Создаваемые программные средства могут предназначаться как для совершенно новых, ранее не решавшихся или решавшихся ручным способом задач, так и для традиционных задач, решаемых с помощью программных средств, которые можно совершенствовать.

В результате применения нового программного средства пользователь может понести значительные капитальные затраты на приобретение и освоение программного средства, доукомплектования новыми техническими средствами и пополнения оборотных средств. Однако, если приобретенное программное средство будет в достаточной степени эффективнее базового, то дополнительные капитальные затраты окупятся.

Аналоги разрабатываемого ПС существуют как за рубежом, так и в нашей стране, но данные по ним мы получить не можем из-за патентно-правовой защиты информации, а так же из-за того, что данные разработки имеют высокий уровень секретности. В Республике Беларусь работы в данной области ведутся только несколькими крупными институтами и в Министерстве внутренних дел.

В связи с этим расчет экономического эффекта от применения программного средства пользователем не может быть произведен, хотя разработанное программное средство позволяет получить экономию времени при обработке информации, что связано с экономией многих ресурсов — трудовых, материальных, финансовых. Трудовые расходы связаны с сокращением трудоемкости выполняемых работ. Материальные расходы связаны с сокращением расходов на материалы (магнитные диски, бумагу и т.д.). Финансовые расходы связаны с денежными расходами (прочие затраты и накладные расходы). Этим достигается экономический эффект для пользователя.

Чистая прибыль от реализации ПС (Пч = 691,7 тыс. руб. ) остается организации-разработчику ( отдельному разработчику ) и представляет собой экономический эффект от создания нового программного средства ВТ.

Таким образом, данная разработка является экономически целесообразной.

 


5. ОХРАНА ТРУДА И ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ. БЕЗОПАСНОСТЬ ОПЕРАТОРА-КРИМИНАЛИСТА ПРИ РАБОТЕ С КОМПЬЮТЕРОМ


Выводы по разделу

 

Для организации безопасной работы оператора с компьютером необходимо минимизировать влияние вредных факторов. Особое внимание следует уделить снижению воздействия различного рода излучений.

1. Для снижения воздействия электромагнитных излучений в случае использования мониторов с неполной защитой рекомендуется применение защитных фильтров. Здесь следует особо отметить продукцию фирмы «Русский Щит»[8], которой разработана технология полной защиты пользователей персональных компьютеров от вредных излучений дисплеев. Данная технология включает в себя подавление электростатического поля, переменных электрической и магнитной составляющих электромагнитных излучений путем нанесения электропроводных покрытий на внутреннюю поверхность корпуса дисплея и его заземления, установкой специальных магнитных шунтов на основные источники магнитного излучения магнитного поля. Данная технология предусматривает встраивание непосредственно в дисплей оптического защитного фильтра, защищающего пользователя от излучений со стороны экрана дисплея, и уменьшающего блики с целью улучшения восприятия информации. Продукция этой фирмы обладает хорошими характеристиками и сравнительно небольшой стоимостью.

2. Необходимо строго следить за соответствием мощности рентгеновского излучения и электромагнитных излучений приведенным в данном разделе требованиям [12]. С этой целью в лабораториях следует устанавливать только сертифицированное оборудование, соответствующие требованиям Low Radiation [8].

3. Кроме защиты от излучений необходимо обеспечить соответствие рабочего места эргономическим требованиям [8] и организовать правильный отдых операторов и обеспечить оптимальное освещение помещения с целью избежания переутомления и снижения нервно-эмоциональных и психофизических нагрузок [10].

 



ЗАКЛЮЧЕНИЕ

 

В ходе дипломного проектирования была разработана подсистема выделения текстильных волокон на изображениях, являющаяся частью системы обработки волокон при проведении экспертизы.

Приведенные экономические расчеты показали, что разработка данной подсистемы является целесообразной.

Программа предназначена для сотрудников лабораторий криминалистического анализа, занимающихся обработкой изображений текстильных волокон, и не требует знаний в области компьютерной техники, легка и понятна в эксплуатации. Ее использование в совокупности с другими методами должно повысить эффективность работ по исследованию волокон. В целом разработанная подсистема полностью реализует цель, определенную в ходе дипломного проектирования.

 



ЛИТЕРАТУРА

 

1. Афанасьева Л.И., Вртанесян Е.В. Текстильные волокна – источник розыскной и доказательственной информации - М.:1982.

2. Семенков О.И., Абламейко С.В. Обработка и отображение информации в растровых графических системах -Мн.: Наука и техника 1989.

3. Карелина А.В., Печерский Ю.Н. Теоретико-графические методы в распознавании образов -Кишинев: Штиинца 1978.

4. Пясецкий В.В. Цветное телевидение в вопросах и ответах -Мн.:Пламя 1994.

5. Абламейко С.В., Берейшик В.И. Распознавание объектов графических изображений: обзор методов -Мн.:1998.

6. Романов В.Ю.Популярные форматы файлов для хранения графических изображений на IBM PC – М.: Унитех, 1992.

7. Елецких Т.В. и др. Методические указания по технико-экономическому обоснованию дипломных проектов - Мн.: БГУИР, 1996.

8. Cуслов В.А., Козак А.Ф. Инженерная подготовка и организация работы в кабинете вычислительной техники в средних учебных заведениях Брест:1998.

9. Подборка журналов Мир ПК: №10-1996г.; №4-1997г.; №7-1997г.

10. Подборка журналов Домашний компьютер. 1996 - 1998 г.г.

11. СанПиН 2.2.2.542 – 96 Гигиенические требования к видеодисплейным терминалам, персональным электронно-вычислительным машинам и организация работы на них: Госкомсанэпидемнадзор России. - М.: 1996.

12.ГОСТ 27954 – 88. Российский стандарт на видеомониторы персональных ЭВМ.

ВВЕДЕНИЕ

 

Важнейшая задача правоохранительных органов – повышение эффективности борьбы с любыми проявлениями преступной деятельности. Решение этой задачи требует активного использования в раскрытии и расследовании правонарушений современных научно-технических средств и методов.

Большинство преступлений сопровождается активным воздействием лиц, их совершающих, на различные элементы вещной обстановки события преступления. При этом возникают мельчайшие материальные образования – микрообъекты. Использование результатов исследования микрообъектов – одна из предпосылок повышения эффективности борьбы с преступностью.

К числу микрообъектов, широко встречающихся в криминалистической практике, относятся текстильные волокна. Связано это, прежде всего, с повсеместным использованием изделий из волокнистых материалов (предметы одежды, декоративно-обивочные и технические ткани, средства упаковки и т.д.). Информация, получаемая в результате обнаружения и исследования волокон, позволяет решать многие вопросы, играющие существенную роль в раскрытии преступлений. Особенно велико значение волокон одежды, так как они часто указывают на особенности (характер изделия, цвет, иногда индивидуальные свойства) предметов одежды преступника. Ценность микрообъектов – текстильных волокон для получения розыскной и доказательственной информации состоит в том, что они имеют довольно прочное сцепление со многими материалами, особенно с ворсистыми текстильными изделиями, и длительное время сохраняются на них, образуя устойчивые следы.

Современные возможности криминалистической экспертизы микрообъектов велики. Применение высокочувствительных методов исследования позволяет анализировать морфологическое строение, структуру, химический состав чрезвычайно малых количеств веществ и материалов, что дает обширную информацию о видовой принадлежности исследуемых микрообъектов, характере процессов, повлекших их образование, признаках и назначении предметов, частью которых они являются, а при наличии последних проводить идентификационное исследование.

Сказанное в полной мере относится и к текстильным волокнам. Каждая разновидность изделий из волокнистых материалов обладает комплексом особенностей, что обусловливается использованием при их получении волокон того или иного вида, формы, диаметра и длины, применением определенных приемов изготовления материала. Характерные свойства изделиям придают и технологические процессы обработки.

Задачами экспертного исследования текстильных волокон может быть решение ряда вопросов, имеющих как самостоятельное значение, так и являющихся отдельными этапами комплексного сравнительного исследования волокон между собой и с изделиями.

Уже само наличие волокон от определенных изделий, механизм их повреждения и локализация в конкретных местах исследуемых предметов нередко позволяют устанавливать фактические данные события преступления, такие как характер условий, в которых данные предметы находились, источник их происхождения, принадлежность к одному комплекту. По одинаковым перекрестным наслоениям волокон оказывается возможным устанавливать контакты предметов одежды между собой и с телом человека, что особо важно. Присутствие волокон определенного вида и назначения на предметах вещной обстановки позволяет получить информацию о внешних признаках изделия, от которого эти волокна могли быть отделены, что чрезвычайно важно для раскрытия неочевидных преступлений, розыска лиц, их совершивших.

Текстильные материалы, как правило, окрашены. Большое разнообразие используемых для их крашения способов и красителей, применение в ткацком производстве комбинаций цветных волокон, нитей, пряжи раскрывают широкие возможности сравнительного исследования микрообъектов – текстильных волокон по их цвету, способу крашения и свойствам красителей. Для исследования ограниченных количеств волокон в криминалистической практике апробирован ряд методов: визуальное сравнение, спектральные и хроматографические методы, химические реакции.

Человек с нормальным зрением различает в солнечном спектре до 160 цветовых оттенков. С этой точки зрения глаз человека является весьма точным аналитическим прибором для дифференциации окрашенных волокон.

Визуальная оценка цвета волокон осуществляется несколькими способами: невооруженным глазом, с помощью микроскопа и с применением светофильтров. Задача исследования при этом состоит в распознавании цветового оттенка и выражении его в конкретном названии (величине) или оценке сходства, различия сравниваемых объектов по цветовому оттенку и насыщенности цвета.

Простейший способ распознавания цвета состоит в сравнении волокон с эталонами, цветовые характеристики которых известны. Такое исследование может быть осуществлено невооруженным глазом или с использованием лупы. Визуальная оценка цвета волокон при их сравнении с эталонами должна проводиться при освещении, спектр излучения которого близок к солнечному свету. В противном случае при распознавании цветовых оттенков, особенно синих и фиолетовых, можно допустить ошибку. Визуальное сравнение цвета окрашенных микрообъектов носит субъективный характер, что вызывает определенные трудности в формулировке результатов исследования, так как различие или сходство цвета нельзя выразить в конкретных понятиях (величинах).

Всесторонняя объективная оценка цвета волокон может быть получена только спектрофотометрическим методом. В принципе, когда объект исследования не ограничен в размерах, спектральный анализ красителей волокон может быть осуществлен на любом спектрофотометре. Особенно эффективно в этом случае исследование растворов красителей, извлеченных соответствующими растворителями, или растворов непосредственно волокон. Исследование единичных элементарных волокон может быть осуществлено лишь с помощью специальных микроспектрофотометров, представляющих собой агрегат, состоящий из микроскопа, монохроматора, микроскопа-фотометра и электронно-вычислительной системы.

Исследование красителей может быть проведено химическими реакциями и методами бумажной и тонкослойной хроматографии.

Указанные методы требуют для своей реализации специального оборудования и зачастую занимают много времени. К тому же текущая их реализация не соответствует современному уровню развития техники. Для реализации экспертизы необходимо из множества микрообъектов, собранных на месте происшествия выбрать те, которые представляют интерес для дальнейшего анализа. Поэтому и возникла задача создания системы, которая бы позволила быстро и без особых затрат решать задачу анализа цвета текстильных волокон независимо от их строения и происхождения. Задача эта в настоящее время решается в основном “вручную” большим числом работников лабораторий криминалистического анализа, т. е. требует от работников лабораторий постоянного физического и умственного напряжения, отрицательно влияет на зрение. Затраты времени и людских ресурсов при таком подходе к поиску волокон весьма значительны, т. к. количество обрабатываемых объектов очень велико. Использование для решения данных задач вычислительной техники избавит от необходимости привлечения к процессу анализа дорогостоящего специализированного оборудования и сократит потребление временных ресурсов. В данном дипломном проекте разрабатывается подсистема выделения, которая на исходных изображениях, представляющих собой фотографии различного типа волокон, осуществляет выделение волокон и позволяет дать ответ о присутствии искомых объектов заданного цвета. Подсистема выделения предназначена для использования на ранних этапах криминалистического анализа с целью уменьшения времени идентификации объектов, собранных с элементов вещной обстановки события преступления. В конечном итоге данное программное средство в совокупности с уже используемыми методами должно значительно упростить проведение экспертизы, сократить потребление людских и временных ресурсов.

 



ОБЗОР ЛИТЕРАТУРЫ

Текстильные волокна

 

Работа [1] посвящена анализу текстильных волокон применительно к решению задач криминалистической экспертизы, описаны основные методы анализа, приведены справочные данные по различным типам волокон, описана технология изготовления и промышленной обработки волокон. При оценке результатов исследования волокон бывает принципиально важным знать свойства и строение текстильных материалов. Текстильные материалы подразделяются на текстильные волокна, нити и пряжу, вырабатываемые из них, и текстильные изделия. К текстильным относятся волокна натурального происхождения и химические. Последние применяются в виде элементарных волокон, называемых элементарной нитью (единичное волокно неопределенно большой длины), либо в виде штапелек (кусочков элементарных волокон определенной длины). Конструктивными элементами текстильных изделий обычно являются нити и пряжа или непосредственно волокна (предметы валяльно-войлочного производства, нетканые материалы, нитки и т.д.). В настоящее время натуральные волокна в чистом виде применяются для выработки ограниченного ассортимента изделий. Обычно они используются в смеси с химическими волокнами. К натуральным относятся хлопок, лубяные волокна, шерсть и натуральный шелк. Химические волокна используются в текстильной промышленности как самостоятельно, так и в смеси с натуральными. В мировой практике наметилась устойчивая тенденция замены шерстяных, шелковых и хлопковых волокон на химические. Этим достигается не только экономия натурального сырья, но и возможность придания изделиям специально заданных потребительских свойств, оригинального внешнего вида.

Все химические волокна, в зависимости от характера исходного сырья, делятся на два класса: искусственные и синтетические. Искусственные волокна получают из полимерных материалов естественного происхождения, главным образом – целлюлозосодержащих; синтетические – из полимеров, образованных в результате химического синтеза. Несмотря на большое число разновидностей химических волокон, описанных в литературе, текстильная промышленность применяет довольно ограниченное их количество. В основном используются волокна, изготовляемые на основе целлюлозы и полиамидные, полиэфирные, полиакрилонитрильные; несколько в меньших масштабах – на основе хлор - и фторсодержащих полимеров, полиолефинов. Увеличение ассортимента химических волокон происходит преимущественно за счет модификации уже выпускаемых.

Для крашения текстильных материалов в основном используются два метода – поверхностное крашение и печать. Кроме того, широко применяется крашение химических волокон в массе.

Поверхностное крашение сводится к погружению текстильного материала в раствор красителя. Для крашения могут применяться как индивидуальные красители, так и их смеси. При этом процесс крашения может быть однованновым и многованновым, в последнем случае текстильные материалы поочередно погружаются в несколько растворов красителей (для изделий, выработанных из нескольких видов волокон). Материалу, состоящему из волокон разного вида, можно придать однородный цвет, если окрасить отдельные волокна в цвета, дающие внешне однородную окраску.

Крашение способом печати сводится к нанесению на полотно текстильного материала цветных рисунков или узоров с помощью печатных валиков. Осуществляется такое крашение на цилиндрических тканепечатных машинах с помощью паст красителей.

Поверхностное крашение и печать используются для текстильных материалов из любых волокон. Крашение в массе применяется исключительно для химических волокон. Оно сводится в введению мельчайших частичек красителей или пигментов в массу полимера (раствор или расплав) перед формованием волокна.

Для снятия текстильных волокон с поверхности предметов пользуются инструментами и липкими пленочными материалами. Инструментами в данном случае служат пинцеты, скальпели, шпатели и др. Наиболее эффективны адгезионные пленочные материалы. Преимущество их применения состоит в том, что при этом сохраняется картина распределения волокон в наслоениях и одновременно с волокнами снимаются другие сопутствующие им микрообъекты. Изъятые волокна могут быть подвергнуты предварительному микроскопическому исследованию непосредственно на пленке.

 

Методы обработки изображений

 

Процесс распознавания объектов изображений представляет собой совокупность этапов выделения признаков, характеристик и классификации объектов по ним. Полученная на первом этапе информация является входной к этапу классификации. В качестве такой информации обычно используется либо контурное, либо скелетное представление объекта (когда текстурные характеристики не анализируются). Это связано с тем, что существенно расширяются возможности распознавания, когда объекты представлены в таком виде. Однако следует отметить, что скелетное и контурное представления имеют свои особенности, преимущества, недостатки и по сравнению друг с другом, и по сравнению с другими характеристиками, получаемыми на первом этапе.[2]

Контурное представление кажется более предпочтительным, нежели скелетное, в плане информативности. Очевидно, информативность контура выше, поскольку, имея контурное представление всегда можно получить скелетное, в то время как обратная операция не дает однозначного результата. Таким образом, происходит потеря некоторой информации об объекте. Иногда это приводит к упрощению процесса распознавания, а иногда затрудняет его. Следует отметить, что в плане доступности информации предпочтительным является скелетное представление. Действительно, осуществить структурный анализ формы объекта по скелету проще, чем по контуру. Это связано с тем, что в скелетном представлении явно выражены узлы (точки ветвления), линии, углы. Таким образом совместное использование распознавания по контуру и по скелету представляется наиболее целесообразным, когда требуется повышенное качество распознавания и не накладываются временные ограничения. К сожалению последнее возможно далеко не всегда. Поэтому обычно используется какое-либо одно представление в зависимости от класса объектов, подлежащих распознаванию. Например, для распознавания линейных объектов используются скелеты, а для площадных – контура.

По виду анализа алгоритмы[3] распознавания объектов по контуру можно разделить на три группы:

статистический;

структурный;

синтаксический.

По технологии обработки контурной информации среди алгоритмов распознавания можно выделить три основные группы:

алгоритмы, отслеживающие и обрабатывающие только граничные точки;

алгоритмы, отслеживающие граничные и некоторые другие точки;

алгоритмы, выделяющие и обрабатывающие граничные элементы (точки, штрихи) статистическими методами.

Методы выделения контура условно можно разделить на следующие группы: методы выделения перепадов яркости; методы отслеживания(или обхода) контуров; сканирующие методы выделения контуров.

В методах первого класса в окрестности каждой точки вычисляют градиент перепада яркости. Точки резкого изменения градиента выделяются как контурные. Таким образом, строится контурная модель, часто состоящая из набора незамкнутых штрихов. Эти методы в основном используются в полутоновых и цветных изображениях. На основании такой модели очень трудно описать форму объектов. Поэтому чаще всего исходные изображения сводят к бинарным. На последних в основном используются методы двух других классов, так как контур можно получить путем локального логического анализа изображения. Сканирующие методы позволяют выделять контуры объектов в процессе однократного просмотра исходного изображения. Для этого используются описания двух соседних строк изображения, списковые структуры, методы переиндексации.

Методы отслеживания наиболее проработаны и просты в реализации. Однако в большинстве из них сначала выделяются границы, а затем осуществляется их аппроксимация. Это требует больших затрат памяти и времени.

Более универсальный подход – совмещение этапов отслеживания и аппроксимации контура. Эффективность с точки зрения машинного времени для сжатия контурного описания достигается за счет применения локальных методов линейной аппроксимации, основанных на анализе геометрических особенностей заданной кривой. Различные эвристики позволяют сделать операцию аппроксимации, линейно зависящей от количества точек контура.

На исходном растре возможно наличие посторонних шумов. Поэтому для выделения элементарных объектов графического изображения необходимо устранить эти шумы.

Существует много критериев, по которым оценивается улучшенное изображение. Это, например, улучшение качества снимка для его визуального восприятия, минимизация среднеквадратичного отклонения исходного изображения от обработанного, сравнение с эталоном и т.д. В нашем случае нет идеального изображения, к которому нужно стремиться или с которым можно сравнивать. Цель фильтрации шумов графических изображений заключается в устранении помех, которые могут повлиять на структуру и форму выделенных объектов. Другими словами, данная операция должна подготовить изображение для операций утоньшения и выделения контуров с тем, чтобы в последующем на растровом изображении были выделены объекты, в точности соответствующие исходным. Исходя из анализа графических изображений, для разработки надежных алгоритмов фильтрации выделены основные виды помех, присутствующие на изображении.

 

Дата: 2019-07-24, просмотров: 225.