СТРУКТУРНО-ФУНКЦИОНАЛЬНАЯ ОРГАНИЗАЦИЯ ЧЕЛОВЕЧЕСКОГО ТЕЛА
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Человек занимает в ряду позвоночных высшее место, относится к типу хордовых, chordata; подтипу позвоночных, vertebrata; классу млекопитающих, mammalia, для которых характерно живорождение и питание новорожденных молоком матери. В классе млекопитающих человек относится к подклассу рождающих, theria, имеющих плаценту и молочные железы; отряду приматов, primates; подотряду обезьян и человекообразных обезьян, anthropoidea; надсемейству человекоподобных, hominoidea; семейству человека, hominide, и виду человек разумный, homo sapiens.

В строении тела человека условно можно выделить следующие уровни организации:

1. Организменный (организм человека как единое целое).

2. Системоорганный (системы органов).

3. Органный (органы).

4. Тканевой (ткани).

5. Клеточный (клетки).

6. Субклеточный (клеточные органеллы и корпускулярно-фибрил-лярно-мембранные структуры).

Следует отметить, что в представленной структурной организации тела человека прослеживается четкая соподчиненность. Организменный, системоорганный и органный уровни строения тела человека являются анатомическими объектами исследования, тканевой, клеточный и субклеточный — объектами гистологических, цитологических и ультраструктурных исследований. Изучение структурной организации тела человека целесообразно начинать с простейшего морфологического уровня — клеточного, основным элементом которого является клетка. Тело взрослого человека состоит из огромного количества клеток (примерно 1012-1014).

 

КЛЕТКА

СТРОЕНИЕ И ФУНКЦИИ. Клетка — это элементарная структурная, Функциональная и генетическая единица всех живых организмов. Она была открыта в 1665 г. Р. Гуком. Форма и размеры клеток варьируют, однако существуют общие принципы их строения (рис. 1). Любая клетка имеет клеточную мембрану — плазмолемму (цитолемму), которая отделяет ее от внеклеточной среды или окружающих клеток. Молекулярную основу плазмолеммы составляют два слоя фосфолипидов со встроенными в них белками, которые выполняют роль белковых каналов или пор.

 

Рис. 1. Схема микроскопического строения животной клетки:

Ядро; 2 — плазмолемма; 3 — микроворсинки; 4 — эндоцитозные вакуоли; 5 — гранулярная эндоплазматическая сеть; 6 — митохондрия; 7 — лизосомы; 8 — рибосомы; 9 — микрофиламенты; 10— агранулярная эндоплазматическая сеть; 11 — комплекс Гольджи; 12 — центриоль и микротрубочки; 13 — выделение гранул

 

 

Важнейшие функции плазмолеммы — пограничная, биотрансформирующая, транспортная и рецепторная. Пограничная функция заключается в отграничении цитоплазмы от окружающей среды и взаимодействии с ней. Биотрансформирующая функция — это обеспечение биохимических превращений поступающих в клетку веществ, в том числе и лекарственных. Транспортная функция — это перенос через мембрану веществ, необходимых для поддержания постоянства внутренней среды. Транспорт может быть пассивным (фильтрация, диффузия, осмос) и активным (белковые насосы). Рецепторная функция — это способность клетки к избирательному взаимодействию с определенными химически активными веществами (гормонами, медиаторами и др.).

Кроме оболочки (плазмолеммы) каждая клетка состоит из двух основных компонентов — ядра и цитоплазмы.

Ядро окружено ядерной оболочкой — кариолеммой (нуклеолеммой). Она отделяет ядро от цитоплазмы, выполняя формообразующую и транспортную функции. Ядро заполнено ядерным соком — кариоплазмой, в состав которой входят белки, необходимые для синтеза нуклеиновых кислот. В ядре осуществляется хранение, передача и реализация генетической информации, регуляция жизнедеятельности клетки.

Основной единицей хранения генетической информации служит хроматин, состоящий из комплекса ДНК и соответствующий хромосомам, которые не различимы как индивидуальные структуры в интерфазном ядре.

Цитоплазма участвует в процессах метаболизма и поддержания постоянства внутренней среды клетки. Она содержит постоянно присутствующие структуры, специализированные на выполнении определенных функций, которые называют органеллами (органоидами) и временными компонентами — включениями, образованными в результате накопления продуктов метаболизма. Выделяют органеллы общего назначения и специализированные. В свою очередь органеллы общего назначения по наличию мембраны классифицируют на мембранные и немембранные. К мембранным органеллам относят: эндоплазматическую сеть, комплекс Гольджи, лизосомы и пероксисомы, вакуоли, митохондрии; немембранными являются рибосомы, клеточный центр, микротрубочки и микрофиламенты, реснички (табл. 1).

Эндоплазматическая сеть (ЭПС) обеспечивает синтез липидов, углеводов и белков, служит главным депо ионов Са2+, обеспечивает транспорт веществ внутри клетки. Выделяют две разновидности ЭПС: гранулярную (шероховатую) и агранулярную (гладкую).

Таблица 1. Классификация органелл

Органеллы общего назначения

Специализированные органеллы мембранные немембранные   Эндоплазматическая сеть Комплекс Гольджи Лизосомы и пероксисомы Вакуоли Митохондрии Рибосомы Клеточный центр Микротрубочки и микрофиламенты Реснички Акросома сперматозоида Микроворсинки эпителия тонкой кишки Микротрубочки вкусовых луковиц Мерцательные реснички клеток эпителия дыхательных путей  

 

На наружной поверхности мембраны агранулярной сети отсутствуют рибосомы, поэтому она имеет гладкую форму. Пластинчатый комплекс (комплекс Гольджи) синтезирует полисахариды и гликопротеины, обеспечивает химическую доработку секрета и его транспорт за пределы клетки, а также обеспечивает усложнение структуры белка, синтезированного ЭПС.

Лизосомы и пероксисомы осуществляют переваривание поглощенных клетками веществ, а также расщепление биогенных макромолекул. Они содержат ферменты, обеспечивающие метаболизм различных веществ, в том числе чужеродных (включая лекарственные), и обезвреживание токсичных продуктов обмена. Вакуоли обеспечивают хранение различных веществ, в том числе продуктов обмена. Митохондрии участвуют в генерации и аккумуляции энергии. Рибосомы синтезируют белки. Клеточный центр принимает участие в. делении клеток.

Микротрубочки обеспечивают поддерживающую функцию; микрофиламенты выполняют сократительную функцию, принимают участие в образовании межклеточных контактов.

Кроме органелл общего значения существуют специализированные. Например, акросома сперматозоида играет важную роль в механизме оплодотворения; микроворсинки клеток эпителия тонкой кишки способствуют процессам всасывания; микротрубочки рецепторных клеток вкусовых луковиц языка участвуют в кодировании информации о свойствах пищевых веществ; мерцательные реснички клеток эпителия трахеи и бронхиального дерева обеспечивают дренажную функцию дыхательных путей.

Кроме того, в клетке имеются необязательные элементы — включения, которые подразделяют на трофические — питательные: капли жира, гликоген; секреторные: гормоны, биологически активные вещества; экскреторные — подлежащие удалению: мочевина; пигментные — эндогенные (внутренние) — меланин, и экзогенные — поступившие снаружи: пыль, красители (например, в татуировках).

Одно из важных свойств клетки — размножение. Соматические клетки делятся путем митоза, половые — мейоза. В результате митоза клетка получает полный (диплоидный) набор хромосом — 23 пары. В результате мейоза в половых клетках остается половинный (гаплоидный) набор хромосом.

Время существования клетки от одного деления до другого или от деления до гибели называют клеточным циклом. Он состоит из нескольких периодов:

а) 1-й — фаза деления (М);

б) 2-й — пресинтетический период (G1) — период накопления различных веществ;

в) 3-й — синтетический период (S) — происходит образование питательных веществ, удвоение генетического материала;

г) 4-й — постсинтетический (G2) — клетка готовится к делению.

Химический состав клетки. В состав клетки входит около 70 химических элементов периодической системы Д. И. Менделеева. В животной клетке около 98% массы составляют четыре элемента: водород, кислород, углерод и азот, которые относят к макроэлементам. Ниже приведен химический состав животной клетки, % общей массы клетки:

вода......................................................................................... 70

неорганические ионы............................................................ 1

белки....................................................................................... 18

РНК и ДНК............................................................................ 1,5

липиды.................................................................................. 5

полисахариды........................................................................ 2

низкомолекулярные продукты обмена веществ................ 2,5

Кроме макроэлементов в клетке присутствуют элементы в десятых и сотых долях процента: натрий, калий, кальций, хлор, фосфор, сера, железо и магний — макро-микроэлементы. Каждый из них выполняет важную функцию в клетке. Например, ионы натрия, калия и хлора обеспечивают проницаемость клеточных мембран для различных веществ и проведение импульса по нервному волокну. Кальций и фосфор участвуют в формировании костной ткани, кроме того, кальций принимает участие в свертывании крови. Железо входит в состав гемоглобина эритроцитов, магний содержится в ряде ферментов.

Остальные элементы (цинк, медь, йод, фтор и др.) содержатся в очень малых количествах — в общей сложности до 0,02 % — микроэлементы. В специализированных клетках они участвуют в образовании биологически активных веществ: цинк входит в состав гормона поджелудочной железы — инсулина; йод — компонент гормонов щитовидной железы. Большинство металлов-микроэлементов входят в состав различных ферментов. Все химические элементы находятся в организме в виде ионов или входят в состав различных неорганических и органических соединений.

Приложение 5

Закрепление материала

Составьте глоссарий по теме «Клетка»:

  1. Клетка
  2. Органоид
  3. Фагоцитоз
  4. Пиноцитоз
  5. Эукариоты
  6. Прокариоты
  7. Кариоплазма
  8. Цитоплазма
  9. Гомеостаз

                                 

Дата: 2019-07-24, просмотров: 173.