Ячейки в цепочке 1 имеют тип
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

LOCATE(x, L). Эта функция возвращает позицию объекта х в списке L.если в списке объект х встречается несколько раз, то возвращается позиция первого от начала списка объекта х. Если объекта х нет в списке L, то возвращается END(L).

3. RETRIEVE(p, L). Эта функция возвращает элемент, который стоит в позиции р в списке L. Результат не определён, если p = END(L) или в списке L нет позиции p. Элементы должны быть одного типа, который в принципе может возвращать функция. Однако на практике мы всегда можем изменить эту функцию так, что она будет возвращать указатель на объект типа elementtype.

4. DELETE(p, L). этот оператор удаляет элемент в позиции p списка L. Так, если список L состоит из элементов a1, a2, …, an, то после выполнения этого оператора он будет иметь вид a1, a2, …, ap-1, ap+1, …, an. Результат не определён, если в списке L нет позиции p или p = END(L).

5. NEXT(p, L) и PREVIOUS(p, L). Эти функции возвращают соответственно следующую и предыдущую позиции от позиции p в списке L.если р – последняя позиция в списке L, то NEXT(p, L) = END(L). Функция NEXT не определена, когда p = END(L). Функция PREVIOUS не определена, если p = 1. Обе функции не определены, если в списке L нет позиции p.

MAKENULL(L). Эта функция делает список L пустым и возвращает позицию END(L).

FIRST(L). Эта функция возвращает первую позицию в списке L. Если список пустой, то возвращается позиция END(L).

PRINTLIST(L). Печатает элементы списка L в порядке их расположения.

Стеки.

Стек – это специальный тип списка, в котором все вставки и удаления выполняются только на одном конце, называемом вершиной (top). Стеки также иногда называют «магазинами», а в английской литературе для обозначения стеков ещё используется аббревиатура LIFO (last-in-first-out – последний вошел – первый вышел). Интуитивными моделями стека могут служить колода карт на столе при игре в покер, книги, сложенные в стопку, или стопка тарелок на полке буфета; во всех этих моделях взять можно только верхний предмет, а добавить новый объект можно, только положив его на верхний. Абстрактные типы данных семейства STAK (Стек) обычно используют следующие пять операторов.

MAKENULL(S). Делает стек S пустым.

TOP(S). Возвращает элемент из вершины стека S. Обычно вершина стека идентифицируется позицией 1, тогда TOP(S) можно записать в терминах общих операторов списка как RETRIEVE(FIRST(S), S).

3. POP(S). Удаляет из вершины стека (выталкивает из стека), в терминах операторов списка этот оператор можно записать как DELETE(FIRST(S), S). Иногда этот оператор реализуется в виде функции, возвращающей удаляемый элемент.

PUSH(x, S). Вставляет элемент x в вершину стека S (заталкивает элемент в стек). Элемент, ранее находившийся в вершине стека, становится элементом, следующим за вершиной, и т.д. В терминах общих операторов списка данный оператор можно записать как INSERT(x, FIRST(S), S).

5. EMPTY(S). Эта функция возвращает значение true (истина), если стек S пустой, и      значение false (ложь) в противном случае.

Очереди.

Другой специальный тип списка – очередь (queue), где элементы вставляются с одного конца, называемого задним (rear), а удаляются с другого, переднего (front). Очереди также называют «списками типа FIFO» (аббревиатура FIFO расшифровывается как first-in-first-out: первым вошел – первым вышел). Операторы, выполняемые над очередями, аналогичны операторам стеков. Существенное отличие между ними состоит в том, что вставка новых элементов осуществляется в конец списка, а не в начало, как в стеках. Кроме того, различна устоявшаяся терминология для стеков и очередей. Для работы с очередями будут использоваться следующие операторы.

MAKENULL(Q) очищает очередь Q, делая её пустой.

FRONT(Q) – функция, возвращающая первый элемент очереди Q. Можно реализовать эту функцию с помощью операторов списка как RETRIEVE(FIRST(Q), Q).

ENQUEUE(x, Q) вставляет элемент x в конец очереди Q. С помощью операторов списка этот оператор можно выполнить следующим образом: INSERT(x, END(Q), Q).

Рис.2. Сегменты, состоящие из связных блоков.

Если размер таблицы сегментов невелик, её можно хранить в основной памяти. В противном случае её можно хранить последовательным способом в отдельных блоках. Если нужно найти запись с ключом х, вычисляется h(x) и находится блок таблицы сегментов, содержащий указатель на первый блок сегмента h(x), пока не обнаружится блок, который содержит запись с ключом х. Если исчерпаны все блоки в связном списке для сегмента h(x), приходим к выводу, что х не является ключом ни одной из записей.

Такая структура оказывается вполне эффективной, если в выполняемом операторе указываются значения ключевых полей. Среднее количество обращения к блокам, требующееся для выполнения оператора, в котором указан ключ записи, приблизительно равняется среднему количеству блоков в сегменте, которое равно n/bk, если n – количество записей, блок содержит b записей, а k соответствует количеству сегментов. Таким образом, при такой организации данных операторы, использующие значения ключей, выполняются в среднем в k раз быстрее, чем в случае неорганизованного файла. К сожалению, ускорения операций, не основанных на использовании ключей, добиться не удаётся, поскольку при выполнении подобных операций приходится анализировать практически всё содержимое сегментов. Единственным универсальным способом ускорения операций, не основанных на использовании ключей, по-видимому, является применение вторичных индексов.

Чтобы вставить запись с ключом, значение которого равняется х, нужно сначала проверить, нет ли в файле записи с таким же значением ключа. Если такая запись есть, выдаётся сообщение об ошибке, поскольку мы предполагаем, что ключ уникальным образом идентифицирует каждую запись. Если записи с ключом х нет, мы вставляем новую запись в первый же блок цепочки для сегмента h(x), в которыё эту запись удаётся вставить. Если запись не удаётся вставить ни в какой из существующих блоков сегмента h(x), файловой системе выдаётся команда найти новый блок, в который будет помещена эта запись. Этот новый блок затем добавляется в конец цепочки блоков сегмента h(x).

Чтобы удалить запись с ключом х, нужно сначала найти эту запись, а затем установить её бит удаления. Ещё одной возможной стратегией удаления (которой, впрочем, нельзя пользоваться, если мы имеем дело с закреплёнными записями) является замена удалённой записи на последнюю запись в цепочке блоков сегмента h(x). Если такое изъятие последней записи приводит к опустошению последнего блока в сегменте h(x), этот пустой блок можно затем вернуть файловой системе для повторного использования.

Хорошо продуманная организация файлов с хешированным доступом требует лишь незначительного числа обращений к блокам при выпол6нении каждой операции с файлами. Если мы имеем дело с хорошей функцией хеширования, а количество сегментов приблизительно равно количеству записей в файле, делённому на количество записей, которые могут уместиться в одном блоке, тогда средний сегмент состоит из одного блока. Если не учитывать обращения к блокам, которые требуются для просмотра таблицы сегментов, типичная операция поиска данных, основанного на ключах, потребует лишь одного обращения к блоку, а операции вставки, удаления или изменения потребуют двух обращений к блокам. Если среднее количество записей в сегменте намного превосходит количество записей, которые могут уместиться в одном блоке, можно периодически реорганизовывать таблицу сегментов, удваивая количество сегментов и деля каждый сегмент на две части.

Ячейки в цепочке 1 имеют тип

type

      recordtype = record

             cursor: integer;

             prt recordtype

      end

На цепочку можно ссылаться с помощью переменной header (заголовок), имеющей тип recordtype, header указывает на анонимную запись типа recordtype 1 .Эта запись имеет 4 значения в поле cursor. Рассматривается 4 как индекс массива reclist. Эта запись имеет истинный указатель в поле prt на другую анонимную запись, которая, в свою очередь, указывает на индекс 4 массива reclist и имеет нуль-указатель в поле prt.

Абстрактный тип данных «Список».

Списки являются чрезвычайно гибкой структурой, так как их легко сделать большими или меньшими, и их элементы доступны для вставки или удаления в любой позиции списка. Списки также можно объединять, или разбивать на меньшие списки. Списки регулярно используются в приложениях, например в программах информационного поиска, трансляторах программных языков или при моделировании различных процессов. Методы управления памятью широко используют технику обработки списков. Далее будут описаны основные операции, выполняемые над списками, и представлены структуры данных для списков, которые эффективно поддерживают различные подмножества таких операций.

В математике список представляет собой последовательность элементов определённого типа, который в общем случае будет обозначаться как elementtype (тип элемента). Список будет часто представляться в виде последовательности элементов, разделённых запятыми: a1, a2, …, an, где n > 0 и все ai имеют тип elementtype. Количество элементов n будет называться длиной списка. Если n > 1 ,то а1 называется первым элементом списка. В случае n = 0 список будет называться пустым, т.е. не содержащий элементов.

Важное свойство списка заключается в том, что его элементы можно линейно упорядочить в соответствии с их позицией в списке. Говорится, что элемент аi предшествует аi+1 для i = 1, 2, …, n-1 и аi следует за ai-1 для i = 2, 3, …, n. Говорится также, что элемент аi имеет позицию i. Кроме того, постулируется существование позиции, следующей за последним элементом списка. Функция END(L) будет возвращать позицию, следующую за позицией n в n-элементном списке L. Следует отметить, что позиция END(L), рассматриваемая как расстояние от начала списка, может изменяться при уменьшении или увеличении списка, в то время как другие позиции имеют фиксированное (неизменное) расстояние от начала списка.

Для формирования абстрактного типа данных на основе математического определения списка нужно задать множество операторов, выполняемых над объектами типа LIST2 (список). Однако не существует одного множества операторов, выполняемых над списками, удовлетворяющего сразу все приложения.

Чтобы показать некоторые общие операторы, выполняемые над списками, предположим, что имеем приложение, содержащее список почтовой рассылки, который мы хотим очистить от повторяющихся адресов. Концептуально эта задача решается очень просто: для каждого элемента списка удаляются все последующие элементы, совпадающие с данным. Однако для записи такого алгоритма необходимо определить операторы, которые должны найти первый элемент списка, перейти к следующему элементу, осуществить поиск и удаление элементов.

Теперь перейдём к непосредственному определению множества операторов списка. Примем обозначения: L – список объектов типа elementtype, x – объект этого типа, p – позиция элемента в списке. Следует отметить, что «позиция» имеет другой тип данных, чья реализация может быть различной для разных реализаций списков. Обычно позиция понимается как множество целых положительных чисел, но на практике могут встретиться другие представления.

1. INSERT(x, p, L). Этот оператор вставляет объект х в позицию р и далее в следующую, более высокую позицию. Таким образом, если список L состоит из элементов а1, a2, …,an, то после выполнения этого оператора он будет иметь вид      а1, a2, …, ap-1, x, ap, …, an. Если р принимает значение END(L), то будем иметь    a1, a2, …, an, x. Если в списке L нет позиции р, то результат выполнения этого оператора не определён.

LOCATE(x, L). Эта функция возвращает позицию объекта х в списке L.если в списке объект х встречается несколько раз, то возвращается позиция первого от начала списка объекта х. Если объекта х нет в списке L, то возвращается END(L).

3. RETRIEVE(p, L). Эта функция возвращает элемент, который стоит в позиции р в списке L. Результат не определён, если p = END(L) или в списке L нет позиции p. Элементы должны быть одного типа, который в принципе может возвращать функция. Однако на практике мы всегда можем изменить эту функцию так, что она будет возвращать указатель на объект типа elementtype.

4. DELETE(p, L). этот оператор удаляет элемент в позиции p списка L. Так, если список L состоит из элементов a1, a2, …, an, то после выполнения этого оператора он будет иметь вид a1, a2, …, ap-1, ap+1, …, an. Результат не определён, если в списке L нет позиции p или p = END(L).

5. NEXT(p, L) и PREVIOUS(p, L). Эти функции возвращают соответственно следующую и предыдущую позиции от позиции p в списке L.если р – последняя позиция в списке L, то NEXT(p, L) = END(L). Функция NEXT не определена, когда p = END(L). Функция PREVIOUS не определена, если p = 1. Обе функции не определены, если в списке L нет позиции p.

Дата: 2019-07-24, просмотров: 226.