4. Между хрусталиком и стекловидным телом.
Преломляющие среды имеют разные показатели преломления.
{Сложность оптической системы глаза затрудняет точную оценку хода лучей внутри него и оценку изображения на сетчатке. Поэтому пользуются упрощенной моделью - "редуцированным глазом", в котором все преломляющие среды объединяют в единую сферическую поверхность и они имеют один и тот же показатель преломления.
Большая часть преломления происходит при переходе из воздуха в роговицу - эта поверхность действует как сильная линза в 42 D, а также на поверхностях хрусталика.
Преломляющая сила
Преломляющая сила линзы измеряется ее фокусным расстоянием (f) . Это то расстояние позади линзы, на котором параллельные пучки света сходятся в одной точке.
Узловая точка- точка в оптической системе глаза через которую лучи идут не преломляясь.
Преломляющая сила рефракций любой оптической системы выражается в диоптриях.
Диоптрия - равна преломляющей силе линзы с фокусным расстоянием 100 см или 1 метр
Оптическая сила глаза вычисляется как обратное фокусное расстояние:
1/f= D
где f- заднее фокусное расстояние глаза (выраженное в метрах)
В нормальном глазу общая преломляющая сила диоптрического аппарата составляет 59 D при рассматривании далеких предметов и 70,5 D - при рассматривании близких предметов.
АККОМОДАЦИЯ
Для получения четкого изображения предмета на каком-то определенном расстоянии оптическая система должна быть перефокусирована. Для этого существуют 2-а простых способа –
а) смещение хрусталика относительно сетчатки, как в фотокамере (у лягушки); -( Уильям Бейц –американский офтальмолог –теория связана с поперечными и продольными мышцами -19 век)
б) или увеличение его преломляющей силы (у человека) – ( Герман Гельмгольц).
Приспособление глаза к ясному видению удаленных на разное расстояние предметов называют - аккомодацией. Аккомодация происходит путем изменения кривизны поверхностей хрусталика при помощи натяжения или расслабления ресничного тела. Усиление рефракции хрусталика при аккомодации на ближнюю точку достигается увеличением кривизны его поверхности, т.е. он становится более округлым, а на дальнюю точку плоским. Изображение на сетчатке получается действительным уменьшенным и обратным.
При аккомодации происходят изменения кривизны хрусталика, т.е. его преломляющей способности. Изменения кривизны хрусталика обеспечивается его эластичностью и цинновыми связками, которые прикреплены к ресничному телу. В ресничном теле находятся гладкомышечные волокна. При их сокращении тяга цинновых связок ослабляется (они всегда натянуты и растягивают капсулу сжимающую и уплощающую хрусталик). Хрусталик вследствие своей эластичности принимает более выпуклую форму, если происходит расслабление цилиарной мышцы (ресничное тело) - цинновые связки натягиваются и хрусталик уплощается.
Таким образом,ресничные мышцы являются аккомодационными мышцами.Они иннервируются парасимпатическими нервными волокнами глазодвигательного нерва. Если закапать атропин (выключается парасимпатическая система) нарушается ближнее зрение, так как происходит расслабление ресничного тела и натяжение цинновых связок - хрусталик уплощается. Парасимпатические вещества - пилокарпин и эзерин- вызывают сокращение ресничной мышцы и расслабление цинновых связок.
Хрусталик имеет выпуклую форму.
В глазу с нормальной рефракцией резкое изображение далекого объекта на сетчатке образуется только в том случае, если расстояние между передней поверхности роговицы и сетчаткой составляет 24, 4 мм (в среднем 25-30 см)
Расстояние наилучшего зрения - это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета.
Для нормального глаза молодого человека дальняя точка ясного видения лежит в бесконечности.
Ближняя точка ясного видения находится на расстоянии 10 см от глаза (ближе четко видеть нельзя лучи идут параллельно).
С возрастом из-за отклонения формы глаза или преломляющей силы диоптрического аппарата эластичность хрусталика падает.
В пожилом возрасте ближняя точка сдвигается (старческая дальнозоркость или пресбиопия), так в 25 лет ближняя точка располагается на расстоянии уже около 24 см, а к 60 годам уходит на бесконечность. Хрусталик с возрастом становится менее эластичным и при ослаблении цинновых связок его выпуклость или не изменяется или изменяется незначительно. Поэтому ближайшая точка ясного видения отодвигается от глаз. Коррекция этого недостатка за счет двояковыпуклых линз. Существуют еще две аномалии преломления лучей (рефракции) в глазу.
1. Близорукость или миопия (фокус перед сетчаткой в стекловидном теле).
2. Дальнозоркость или гиперметропия (фокус перемещается за сетчатку).
Основной принцип всех дефектов состоит в том, что преломляющая сила и длина глазного яблока не согласуется между собой.
При миопии - глазное яблоко слишком длинно, а преломляющая сила имеет нормальную величину.Лучи сходятся перед сетчаткой в стекловидном теле, а на сетчатке возникает круг расстояния. У близорукого дальняя точка ясного видения находится не в бесконечности, а на конечном, близком расстоянии. Корректирование - необходимо уменьшить преломляющую силу глаза, используя вогнутые линзы с отрицательными диоптриями.
При гиперметропии и пресбиопии (старческая), т.е. дальнозоркости, глазное яблоко является слишком коротким и поэтому параллельные лучи отдалеких предметов собираются сзади сетчатки, а на ней получается расплывчатое изображение предмета. Этот недостаток рефракции может быть компенсирован путем аккомодационного усилия, т.е. увеличением выпуклости хрусталика. Коррекция с помощью положительных диоптрий, т.е. двояковыпуклых линз.
Астигматизм - (относится к аномалиям рефракции) связан с неодинаковым преломлением лучей в разных направлениях (н-р по вертикальному и горизонтальному меридиану). Все люди в небольшой степени являются астигматиками. Это связано с несовершенством строения глаза в результате не строгой сферичности роговицы (используют цилиндрические стекла).
Движение глаз.
У млекопитающихся с бинокулярным зрением при рассматривании окружающих предметов глаза движутся коорденированно. Движение глаз осуществляется одновременно и содружественно. Содружественные движения глаз (конвергенция и дивергенция) При рассматривании угол между зрительными осями обоих глаз меняется: при фиксации далекой точки зрительные оси почти параллельны, при фиксации близкой точки - сходятся. Эти движения называют конвергентными или дивергентными.
Движение глаз осуществляется при помощи 6 мышц: 2 косые и 4 прямые мышцы - наружная, внутренняя, верхняя и нижняя. При непрерывном воздействии света на рецепторы, импульсация прекращается, т.е. происходит адаптация. Глаза никогда не находятся в стоянии при рассматривании предмета - глаз непрерывно мелко дрожит и дрейфует (медленно смещается с точки фиксации взора).
Глазодвигательная система человека выполняет следующие задачи:
1) сохраняет неподвижным изображение внешнего мира на сетчатке во время движения относительно этого мира;
2) выделяет во внешнем мире некоторые объекты, помещает их в зоне сетчатки с высоким разрешением (зрительная ямка, fovea) и прослеживает их движениями глаз и головы;
3) скачкообразные (саккадические перемещения взора для рассматривания внешнего мира (саккады - быстрые скачки) .
С Е Т Ч А Т К А
При изучении сетчатки мы должны выяснить следующие проблемы: Во-первых,каким образом палочки и колбочки преобразуют поглощаемый ими свет в электрические и химические сигналы. Во- вторых, как последующие клетки двух других слоев -биполяры, горизонтальные, амакриновые и ганглиозные - интерпретируют эту информацию. В месте пересечения сетчатки оптической осью глаза расположена небольшая область - желтое пятно - диаметром около 1,5 мм. Желтая окраска обусловлена присутствием каротиноидов. В центре пятна находится углубление - центральная ямка, в которой формируется четкое изображение, т.к. слои нейронов смещены к периферии и фоторецепторы открыты для восприятия световых лучей. Место выхода зрительного нерва из глазного яблока - диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому не чувствительно к свету.
Сетчатка по своему строению и происхождению представляет собой нервный центр, в котором происходит первичная обработка зрительных сигналов, преобразование их в нервные импульсы, передающиеся в головной мозг.
Она имеет сложную многослойную структуру. Здесь расположены два вида вторично-чувствующих, различных по своему функциональному значению фоторецепторов и несколько видов нервных клеток. Возбуждение фоторецепторов активирует первую нервную клетку сетчатки - биполярный нейрон. Возбуждение биполярных нейронов активирует ганглиозные клетки сетчатки, передающие свои импульсы в подкорковые зрительные центры. В процессах передачи и переработки информации в сетчатке участвуют также горизонтальные и амакриновые клетки. Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют часть мозга, вынесенной на периферию.
Наружный слой сетчатки образован одним рядом эпителиальных клеток, содержащих большое количество различных внутриклеточных органелл, включая меланосомы, придающие этому слою черный цвет. Он содержит пигмент фусцин, который поглощает свет, препятствует его отражению и рассеиванию, что способствует четкости восприятия.
Пигментные клетки, принимают участие в обмене веществ в фоторецепторах в синтезе зрительного пигмента. К слою пигментного эпителия изнутри примыкает слой фоторецепторов, которые своими светочувствительными члениками обращены в сторону, провотиположную свету.
Строение фоторецепторов
Основными светочувствительными элементами (рецепторами) являются два вида клеток: одни в виде стебелька - палочки 110-123 млн. (высота 30 мкм, толщина 2мкм), другие более короткие и более толстые -колбочки 6-7 млн. (высота 10мкм, толщина 6-7 мкм). Они распределены в сетчатке неравномерно. Центральная ямка сетчатки(fovea centralis) содержит только колбочки(до 140 тыс. на 1 мм). По направлению к периферии сетчатки их число уменьшается, а число палочек возрастает. Каждый фоторецептор - палочка или колбочка состоит из чувствительного к действию света наружного сегмента содержащего зрительный пигмент и внутреннего сегмента, который содержит ядро и митохондрии обеспечивающие энергетические процессы в фоторецепторной клетке Наружный сегмент светочувствительный участок, где световая энергия преобразуется в рецепторный потенциал Электронно-микроскопические исследования выявили, что наружный сегмент заполнен мембранными дисками, образованными плазматической мембраной. В палочках, в каждом наружном сегменте, содержится 600-1000 дисков, которые представляют собой уплощенные мембранные мешочки, уложенные как столбик монет. В колбочках мембранных дисков меньше. Это частично объясняет более высокую чувствительность палочки к свету ( палочку может возбудить всего один квант света, а для активации колбочки требуется больше сотни квантов).
Каждый диск представляет собой двойную мембрану, состоящую из двойного слоя молекул фосфолипидов, между которыми находятся молекулы белка. С молекулами белка связан ретиналь, входящий в состав зрительного пигмента родопсина. Наружный и внутренний сегменты фоторецепторной клетки разделены мембранами, через которые проходит пучок из 16-18 тонких фибрил. Внутренний сегмент переходит в отросток, с помощью которого фоторецепторная клетка передает возбуждение через синапс на контактирующую с ней биполярную нервную клетку
Наружные сегменты рецепторов обращены к пигментному эпителию, так что свет в начале проходит через 2 слоя нервных клеток и внутренние сегменты рецепторов, а потом достигает пигментного слоя. Колбочки функционируют в условиях больших освещенностей - обеспечивают дневное и цветовое зрение, а палочки - отвечают за сумеречное зрение.
Видимый нами спектр электромагнитных излучений заключен между коротковолновым (длина волны от 400нм) излучением, которое мы называем фиолетовым цветом и длинноволновым излучением (длина волны до 700 нм) называемым красным цветом. В палочках находится особый пигмент- родопсин , (состоит из альдегида витамина А или ретиналя и белка) или зрительный пурпур, максимум спектра, поглощения которого находится в области 500 нанометров. Он ресинтезируется в темноте и выцветает на свету. При недостатке витамина А нарушается сумеречное зрение -"куриная слепота".
В наружных сегментах трех типов колбочек (сине-, зелено- и красно-чувствительных) содержится три типа зрительных пигментов, максимум спектров поглощения которых находится в синей (420 нм), зеленой(531 нм) и красной(558 нм) частях спектра. Красный колбочковый пигмент получил название - "йодопсин". Структура йодопсина близка к родопсину.
Рассмотрим последовательность изменений:
Молекулярная физиология фоторецепции: Внутриклеточные регистрации от колбочек и палочек животных показали, что в темноте вдоль фоторецептора течет темновой ток, выходящий из внутреннегосегмента и входящий в наружный сегмент. Освещение приводит к блокаде этого тока. Рецепторный потенциал модулирует выделение медиатора (глутамата ) в синапсе фоторецептора. Было показано, что в темноте фоторецептор непрерывно выделяет медиатор, который действует деполяризующим образом на мембраны постсинаптических отростков горизонтальных и биполярных клеток.
Палочки и колбочки обладают уникальной среди всех рецепторов электрической активностью, их рецепторные потенциалы при действии света - гиперполяризующие , потенциалы действия под их влиянием не возникают.
{ При поглощении света молекулой зрительного пигмента - родопсина в ней происходит мгновенная изомеризация ее хромофорной группы: 11-цис-ретиналь превращается в транс-ретиналь. Вслед за за фотоизомеризацией ретиналя происходят пространственные изменения в белковой части молекулы: она обесцвечивается и переходит в состояние метородопсина II В результате этого молекула зрительного пигмента приобретает способность к взаимодействию с другим примембранным белком гуанозин трифосфат(ГТФ) - связывающим белком – трансдуцином (Т).
В комплексе с метародопсином трансдуцин переходит в активное состояние и обменивает связанный с ним в темноте ганозитдифосфат(ГДФ) на (ГТФ). Трансфдуцин + ГТФ, активируют молекулу другого примеммбранного белка - фермента фосфодиэстеразы(ФДЭ). Активированная ФДЭ разрушает несколько тысяч молекул цГМФ.
Дата: 2019-07-24, просмотров: 220.