Exercise 11. Translate the following sentences from Russian into English
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

1.  Для того, чтобы закрепить два металлических листа, используются одновременно два электрода.

2. Прочность шва значительно ниже, чем при других видах сварки.

3. Как и точечная сварка, роликовая сварка использует два электрода, чтобы применить давление и ток для соединения двух листов.

4. Преимущества этого вида сварки включают также достаточное использование энергии, небольшую деформацию детали и отсутствие присадочного материала.

 

Exercise 12. Give English equivalents of the following words:

сварка встык, контактная сварка, шов, соединение, электрод, присадочный материал, одновременный процесс, деталь, ток, промышленные роботы, точечные швы

Exercise 13. Use the following words and phrases in sentences of your own:

electrode, spot welding, resistance welding, seam welding, butt welding, current, pressure, fusion, flash welding, metal surfaces

Text 4. Spot welding

 

Spot welding . Spot welding is a resistance welding method used to join two to four overlapping metal sheets which are up to 3 mm thick each. In some applications with only two overlapping metal sheets, the sheet thickness can be up to 6 mm. Two copper electrodes are simultaneously used to clamp the metal sheets together and to pass current through the sheets. When the current is passed through the electrodes to the sheets, heat is generated due to the higher electrical resistance where the surfaces contact each other. As the heat dissipates into the work, the rising temperature causes a rising resistance, and the heat is then generated by the current through this resistance. The surface resistance lowers quickly, and the heat is soon generated only by the materials' resistance. The water cooled copper electrodes remove the surface heat quickly, since copper is an excellent conductor. The heat in the center has nowhere to go, as the metal of the workpiece is a poor conductor of heat by comparison. The heat remains in the center, melting the metal from the center outward. As the heat dissipates throughout the workpiece in less than a second the molten, or at least plastic, state grows to meet the welding tips. When the current is stopped the copper tips cool the spot weld, causing the metal to solidify under pressure. Some coatings, such as zinc, cause localized heating due to its high resistance, and may require pulsation welding to dissipate the unwanted surface heat into the copper tips.

If excessive heat is applied, or applied too quickly, the molten area may extend to the outside, and with its high pressure (typically 30,000 psi) will escape the containment force of the tips with a burst of molten metal called expulsion. When this occurs, the metal will be thinner and have less strength than a weld with no expulsion. The common method of checking a weld is a peel test, technically called "coach peel", as expulsion weakens the material by thinning, and makes it pass the peel test easier. A better test is the tensile test, which is much more difficult to perform, and requires calibrated equipment.

The advantages of the method include efficient energy use, limited workpiece deformation, high production rates, easy automation, and no required filler materials. When high strength in shear is needed, spot welding is used in preference to more costly mechanical fastening, such as riveting. While the shear strength of each weld is high, the fact that the weld spots do not form a continuous seam means that the overall strength is often significantly lower than with other welding methods, limiting the usefulness of the process. It is used extensively in the automotive industry— cars can have several thousand spot welds. A specialized process, called shot welding, can be used to spot weld stainless steel.

There are three basic types of resistance welding bonds: solid state, fusion, and reflow braze. In a solid state bond, also called a thermo-compression bond, dissimilar materials with dissimilar grain structure, e.g. molybdenum to tungsten, are joined using a very short heating time, high weld energy, and high force. There is little melting and minimum grain growth, but a definite bond and grain interface. Thus the materials actually bond while still in the “solid state”. The bonded materials typically exhibit excellent shear and tensile strength, but poor peel strength. In a fusion bond, either similar or dissimilar materials with similar grain structures are heated to the melting point (liquid state) of both. The subsequent cooling and combination of the materials forms a “nugget” alloy of the two materials with larger grain growth. Typically, high weld energies at either short or long weld times, depending on physical characteristics, are used to produce fusion bonds. The bonded materials usually exhibit excellent tensile, peel and shear strengths. In a reflow braze bond, a resistance heating of a low temperature brazing material, such as gold or solder, is used to join either dissimilar materials or widely varied thick/thin material combinations. The brazing material must “wet” to each part and possess a lower melting point than the two workpieces. The resultant bond has definite interfaces with minimum grain growth. Typically the process requires a longer (2 to 100 ms) heating time at low weld energy. The resultant bond exhibits excellent tensile strength, but poor peel and shear strength.

 

Vocabulary:

Spot welding  - точечная сварка copper electrode  - медный электрод conductor - проводник riveting  - соединять заклепками Fusion - сплав subsequent - последовательный grain - зерно alloy - сплав

 

Дата: 2019-07-24, просмотров: 252.