Часть первая: больше теоретическая.
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Все процессы записи, обработки и воспроизведения звука так или иначе работают на один орган, которым мы воспринимаем звуки - ухо. Две штуки :). Без понимания того, что мы слышим, что нам важно, а что нет, в чем причина тех или иных музыкальных закономерностей - без этих и других мелочей невозможно спроектировать хорошую аудио аппаратуру, нельзя эффективно сжать или обработать звук. То, что здесь описано - лишь самые основы.

Снаружи мы видим так называемое внешнее ухо. Ничего особенного нас тут не интересует. Затем идет канал - примерно 0.5 см в диаметре и около 3 см в длину. Далее - барабанная перепонка, к которой присоединены кости - среднее ухо. Эти косточки передают вибрацию барабанной перепонки далее - на другую перепонку, во внутреннее ухо - трубку с жидкостью, около 0.2 мм диаметром и еще целых 3-4 см длинной, закрученная как улитка. Смысл наличия среднего уха в том, что колебания воздуха слишком слабы, чтобы напрямую колебать жидкость, и среднее ухо вместе с барабанной перепонкой и перепонкой внутреннего уха составляют гидравлический усилитель - площадь барабанной перепонки во много раз больше перепонки внутреннего уха, поэтому давление (которое равно F/S) усиливается в десятки раз.

Во внутреннем ухе по всей его длине натянута некая штука, напоминающая струну - еще одна вытянутая мембрана, жесткая к началу уха и мягкая к концу. Определенный участок этой мембраны колеблется в своём диапазоне, низкие частоты - в мягком участке ближе к концу, самые высокие - в самом начале. Вдоль этой мембраны расположены нервы, которые воспринимают колебания и передают их в мозг, используя два принципа:

Первый - ударный принцип. Поскольку нервы еще способны передавать колебания (бинарные импульсы) с частотой до 400-450 Гц, именно этот принцип влоб используется в области низкочастотного слуха. Там сложно иначе - колебания мембраны слишком сильны и затрагивают слишком много нервов. Ударный принцип немного расширяется до примерно 4 кГц с помощью трюка - несколько (до десяти) нервов ударяют в разных фазах, складывая свою пропускную способность. Этот способ хорош тем, что мозг воспринимает информацию более полно - с одной стороны, мы всё таки имеем легкое частотное разделение, а с другой - можем еще смотреть сами колебания, их форму и особенности, а не просто частотный спектр. Этот принцип продлен на самую важную для нас часть - спектр человеческого голоса. Да и вообще, до 4 кГц находится вся наиболее важная для нас информация.

 

Ну и второй принцип - просто местоположение возбуждаемого нерва, применяется для звуков более 4 кГц. Тут уже кроме факта нас вообще ничего не волнует - ни фаза, ни скважность.. Голый спектр.

Таким образом, в области высоких частот мы имеем чисто спектральный слух не очень высокого разрешения, а для частот близких к человеческому голосу - более полный, основанный не только на разделении спектра, а еще и на дополнительном анализе информации самим мозгом, давая более полную стерео - картину, например. Об этом - ниже.

 

Основное восприятие звука происходит в диапазоне 1 - 4 кГц, в этом же диапазоне заключено человеческий голос (да и звуки, издаваемые большинством важных нам процессов в природе). Корректная передача этого частотного отрезка - первое условие естественности звучания.

 

О чувствительности (по мощности и частотной)

 

Теперь о децибелах. Вкратце - аддитивная относительная логарифмическая мера громкости (мощности) звука, наиболее хорошо отражающая человеческое восприятие громкости, и в то же время достаточно просто вычисляемая.

 

В акустике принято измерять громкость в дБ SPL (Sound Power Level - не знаю как это звучит у нас). Ноль этой шкалы находится примерно на минимальном звуке, который слышит человек. Соответственно отсчет ведется в положительную сторону. Человек может осмысленно слышать звуки громкостью примерно до 120 дБ SPL. При 140 дБ ощущается сильная боль, при 150 дБ наступает повреждение ушей. Нормальный разговор - примерно 60 - 70 дБ SPL. Далее в этом разделе при упоминании дБ подразумевается дБ от нуля по SPL.

Чувствительность уха к разным частотам очень сильно различна. Максимальна чувствительность в районе 1 - 4 кГц, основные тона человеческого голоса. Звук 3 кГц - это и есть тот звук, который слышен при 0 дБ. Чувствительность сильно падает в обе стороны - например для звука в 100 Гц нам нужно уже целых 40 дБ (в 100 раз большая амплитуда колебаний), для 10 кГц - 20 дБ. Обычно мы можем сказать, что два звука отличаются по громкости, при разнице примерно в 1 дБ. Несмотря на это, 1 дБ - это скорее много, чем мало. Просто у нас очень сильно компрессированное, выровненное восприятие громкости. Зато весь диапазон - 120 дБ - воистину огромен, по амплитуде это миллионы раз!

 

Кстати, увеличение амплитуды в два раза соответствует увеличению громкости на 6 дБ. Внимание! не путайте: 12 дБ - в 4 раза, но разница 18 дБ - уже 8 раз! а не 6, как могло подуматься. дБ - логарифмическая мера)

 

Аналогична по свойствам и спектральная чувствительность. Мы можем сказать, что два звука (простых тона) отличаются по частоте, если разница между ними составляет около 0.3% в районе 3 кГц, а в районе 100 Гц требуется различие уже на 4%! Для справки - частоты нот (если брать вместе с полутонами, то есть две соседние клавиши фортепьяно, включая черные) отличаются на примерно 6%.

В общем, в районе 1 - 4 кГц чувствительность уха по всем параметрам максимальна, и составляет не так уж и много, если брать не логарифмированные значения, с которыми приходится работать цифровой технике. Примите на заметку - многое из того, что происходит в цифровой обработке звука, может выглядеть ужасно в цифрах, и при этом звучать неотличимо от оригинала.

 

В цифровой обработке понятие дБ считается от нуля и вниз, в область отрицательных значений. Ноль - максимальный уровень, представимый цифровой схемой.

 

Дата: 2019-07-24, просмотров: 265.