Устойчивость алгоритма к дифференциальному и
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

    линейному криптоанализу

    Исследования дифференциального и линейного криптоанализа значительно прояснили теорию проектирования надежных блочных шифров. Авторы алгоритма IDEA ввели понятие дифференциалов, обобщение основной идеи характеристик. Они утверждали, что можно создавать блочные шифры, устойчивые к атакам такого типа. В результате подобного проектирования появился алгоритм IDEA. Позднее это понятие было формализовано в работах Кайса Ниберг (Kaisa Nyberg) и Ларе Кнудсен, которые описали метод создания блочных шифров, доказуемо устойчивых к дифференциальному криптоанализу. Эта теория была расширена на дифференциалы высших порядков и частные дифференциалы. Как представляется, дифференциалы высших порядков применимы только к шифрам с малым числом раундов, но частные дифференциалы прекрасно объединяются с дифференциалами.

    Линейный криптоанализ появился сравнительно недавно, и продолжает совершенствоваться. Были определены понятия ранжирования ключей и многократных аппроксимаций. Кем-то была предпринята попытка объединения в одной атаке дифференциального и линейного методов криптоанализа. Пока неясно, какая методика проектирования сможет противостоять подобным атакам.

    Кнудсен добился известного успеха, рассматривая некоторые необходимые (но, возможно, недостаточные) критерии того, что он назвал практически стойкими сетями Файстеля - шифров, устойчивых как к дифференциальному, так и к линейному криптоанализу. Ниберг ввел для линейного криптоанализа аналог понятия дифференциалов в дифференциальном криптоанализе.

    Достаточно интересна, как представляется, двойственность дифференциального и линейного методов криптоанализа. Эта двойственность становится очевидной как при разработке методики создания хороших дифференциальных характеристик и линейных приближений, так и при разработке критерия проектирования, обеспечивающего устойчивость алгоритмов к обоим типам вскрытия. Пока точно неизвестно, куда заведет это направление исследований. Для начала Дэймен разработала стратегию проектирования алгоритма, основанную на дифференциальном и линейном криптоанализе.

Проектирование S -блоков

    Мощь большинства сетей Файстеля, а особенно их устойчивость к дифференциальному и линейному криптоанализу, напрямую связана с их S-блоками. Поэтому вопрос о том, что же образует хороший S-блок, стал объектом многочисленных исследований.

    S-блок - это просто подстановка: отображение m-битовых входов на n-битовые выходы. Применяется большая таблица подстановок 64-битовых входов на 64-битовые выходы. Такая таблица представляет собой S-блок размером 64*64 бит. S-блок с m-битовым входом и n-битовым выходом называется m * n-битовым S-блоком. Как правило, обработка в S-блоках - единственная нелинейная операция в алгоритме. Именно S-блоки обеспечивают стойкость блочного шифра. В общем случае, чем больше S-блоки, тем лучше.

    В алгоритме DES используются восемь различных 6*4-битовых S-блоков. В алгоритмах Khufu и Khafre предусмотрен единственный 8*32-битовый S-блок, в LOKI – 12*8-битовый S-блок, а в Blowfish и CAST – 8*32-битовые S-блоки. В IDEA S-блоком, по сути, служит умножение по модулю, это 16+16-битовый S-блок. Чем больше S-блок, тем труднее обнаружить статистические данные, нужные для вскрытия методами дифференциального или линейного криптоанализа. Кроме того, хотя случайные S-блоки обычно не оптимальны с точки зрения устойчивости к дифференциальному и линейному криптоанализу, стойкие S-блоки легче найти среди S-блоков большего размера. Большинство случайных S-блоков нелинейны, невырождены и характеризуются высокой устойчивостью к линейному криптоанализу, причем с уменьшением числа входных битов устойчивость снижается достаточно медленно.

    Размер т важнее размера п. Увеличение размера п снижает эффективность дифференциального криптоанализа, но значительно повышает эффективность линейного криптоанализа. Действительно, если п ≥ 2m - т, наверняка существует линейная зависимость между входными и выходными битами S-блока. А если п ≥ 2m , линейная зависимость существует даже только между выходными битами. Заметная доля работ по проектированию S-блоков состоит в изучении булевых функций. Для обеспечения безопасности, булевы функции S-блоков должны отвечать определенным требованиям. Они не должны быть ни линейными, ни аффинными, ни даже близкими к линейным или аффинным функциям. Число нулей и единиц должно быть сбалансированным, и между различными комбинациями битов не должно быть никаких корреляций. При изменении значения любого входного бита на противоположное выходные биты должны вести себя независимо. Эти критерии проектирования так же связаны с изучением бент-функций ( bent functions ): функций, которые, как можно показать, оптимально нелинейны. Хотя они определены просто и естественно, их изучение очень трудно.

    По-видимому, очень важное свойство S-блоков - лавинный эффект: сколько выходных битов S-блока изменяется при изменении некоторого подмножества входных битов. Нетрудно задать для булевых функций условия, выполнение которых обеспечивает определенный лавинный эффект, но проектирование таких функций задача сложная. Строгий лавинный критерий (Strict Avalanche Criteria - SAC) гарантирует изменение ровно половины выходных битов при изменении единственного входного бита. В одной из работ эти критерии рассматриваются с точки зрения утечки информации.

    Несколько лет назад крипгографы предложили выбирать S-блоки так, чтобы таблица распределения различий для каждого S-блока была однородной. Это обеспечило бы устойчивость к дифференциальному криптоанализу за счет сглаживания дифференциалов на любом отдельном раунде. В качестве примера такого проектирования можно назвать алгоритм LOKI. Однако такой подход иногда облегчает дифференциальный криптоанализ. На самом деле, удачнее подход, гарантирующий наименьшее значение максимального дифференциала. Кванджо Ким (Kwangjo Kim) выдвинул пять критериев проектирования S-блоков, напоминающих критерии проектирования S-блоков DES.

    Выбор хороших S-блоков - нелегкая задача. Известно множество конкурирующих подходов ее решения; среди hих можно выделить четыре основных.

ü Случайный выбор. Ясно, что небольшие случайные S-блоки ненадежны, но крупные случайные S-блоки могут оказаться достаточно хорошими. Случайные S-блоки с восемью и более входами достаточно стойки, еще лучше 12-битовые S-блоки. Стойкость S-блоков возрастает, если они одновременно и случайны, и зависят от ключа.

ü Выбор с последующим тестированием. В некоторых шифрах сначала генерируются случайные S-блоки, а затеи их свойства тестируются на соответствие требованиям.

ü Разработка вручную. При этом математический аппарат используется крайне незначительно: S-блоки создаются с использованием интуитивных приемов. Барт Пренел (Bart Preneel) заявил, что «... теоретически интересные критерии недостаточны (для выбора булевых функций S-блоков)...», и «... необходимы специальные критерии проектирования».

ü Математическая разработка. S-блоки создаются в соответствии с законами математики, поэтому обладают гарантированной устойчивостью к дифференциальному и линейному криптоанализу и хорошими рассеивающими свойствами.

 

    Раздавались призывы объединить «математический» и «ручной» подходы, но реально, по-видимому, конкурируют случайно выбранные S-блоки и S-блоки с определенными свойствами. К преимуществам последнего подхода можно отнести оптимизацию против известных методов вскрытия — дифференциального и линейного криптоанализа. Однако в этом случае неясна степень защиты от неизвестных методов вскрытия. Разработчики DES знали о дифференциальном криптоанализе, поэтому S-блоки DES оптимизированы надлежащим образом. Но, вероятнее всего, о линейном криптоанализе они не знали, и S-блоки DES очень слабы по отношению к такой атаке. Случайно выбранные S-блоки в DES были бы слабее к дифференциальному криптоанализу, но устойчивее к линейному криптоанализу.

    С другой стороны, случайные S-блоки могут быть и неоптимальны к данным атакам, но они могут быть достаточно большими и, следовательно, достаточно стойкими. Кроме того, они, скорее всего, окажутся достаточно устойчивыми к неизвестным методам вскрытия. Споры все еще кипят, но лично мне кажется, что S-блоки должны быть такими большими, насколько это возможно, случайными и зависящими от ключа.

 

Дата: 2019-07-24, просмотров: 158.