ТМ топливно-энергетического комплекса
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Одной из важных проблем исследования шлакозольных отвалов теплоэлектростанций (ТЭС) является изучение их состава и количества микропримесей, возможно, представляющих ценность как сырьё для извлечения этих микропримесей.

Рассмотрим результаты исследований минерального состава и элементов примесей для зол Рефтинской ГРЭС, работающей с 1970 г и обеспечивающей тепловой и электрической энергией значительную часть Свердловской области. Золы транспортируются по системе гидрозолоудаления и складируются в золоотвал, который занимает площадь 1500 га и содержит 120 млн.т золы при ежегодном складировании золошлаковых отходов около 3,1 млн.т.

Золоотвал Рефтинской ГРЭС вытянут с севера на юг. Его длина более 1000 м, ширина от 100 до 300 м и высота 10-15 м. Опробование поверхности отвала показало, что он имеет неоднородное строение, определяющееся чередованием зол различных по гранулометрическому составу (см. таблицу 1).

 

Таблица 1.

Гранулометрический состав (%) зол Рефтинской ГРЭС.

Тип золы

Размеры зёрен, мм

> 0,63 0,2 – 0,63 <0,2
Тонкозернистые золы с обломками шлака 22,8 28,4 48,8
Тонкозернистые золы 1,4 7,6 91
Пылеватые золы 0,4 1,7 97,9

 

Выделенные разновидности золы отражают её гранулометрическую сортировку при гидровыносе.

Тонкозернистые золы с обломками шлака распространены в северной части отвала. Тонкозернистые золы составляют основную массу тела золоотвала. Пылеватые золы распространены в виде субширотных полос шириной от 10 до 50 м по всей территории отвала.

Содержания микроэлементов в исходном угле и в золе в целом представлены в таблице 2.

 

Таблица 2.

Среднее содержание и коэффициент концентрации (КК) микроэлементов в сжигаемых углях и золах Рефтинской ГРЭС.

 

Содержание микроэлементов, n·10-3%/KK

Cu Zn Pb Be Cr Co Ba Ti V Mn Sc P Zr
Уголь 0,3 0,6 0,5 0,2 0,3 3 42 40 1,3 44 0,7 44 10,2
Золы в целом 1,4 4,67 2,083,47 1,382,76 0,2 1 0,1 0,33 2,9 0,97 20 0,48 800 20 2 1,54 70,11,59 1 1,43 1002,27 20 1,96

 

Из таблицы следует, что концентрация в золах большинства элементов возрастает (КК>1), для некоторых весьма значительно (ККTi=20, ККCu=4,67, ККZn=3,47, ККPb=2,76) и только для трёх элементов уменьшается (ККCr=0,33, ККCo=0,97, ККBa=0,48).

Наблюдаются определённые различия в содержании отдельных микроэлементов для указанных выше разновидностей зол. Так например, в тонкозернистых золах повышены содержания меди (ККCu=5,17) и хрома (ККCr=3,3), пылеватые золы характеризуются понижением содержания меди (ККCu=2,97) и цинка (ККZn=3,0) и повышением содержания почти всех остальных элементов (ККBe=1,55, ККBa=0,7 и др.). В золах, содержащих обломки шлаков повышены содержания хрома (ККCr=3,0) и марганца (ККMn=1,82).

Главным минералом, выявленным рентгеноструктурным анализом, является муллит {Al4[Al4(Si3Al)O19(F0,5O,OH)]} - высокотемпературная фаза с неупорядоченной структурой, а так же тридимит (SiO2) – минерал метастабильной фазы, характерный для молодых образований, в том числе для зол и шлаков.

Муллит, содержащий 71,83% Al2O3 и 28,17% SiO2 образуется при термическом перерождении ряда глинистых минералов (каолинит - Al4[Si4O10][OH]8, галлуазит, пирофиллит и др.), мусковита, гидрослюды и других природных алюмосиликатов. По экономическому значению и объёмам производства муллит входит в число важнейших искусственных минералов.

Содержание глинозёма (Al2O3) в золах сопоставимо с его содержанием в бокситах (С³45%), поэтому золы Рефтинской ГРЭС могут служить сырьём для производства алюминия. Попутно с глинозёмом возможно извлечение фосфора.

Среди элементов примесей особое внимание привлекают редкие элементы Sc, Zr, Ti и B. Необходимы дальнейшие исследования с целью их количественной оценки.

Складирование золошлаковых отходов сопряжено с широкомасштабным их воздействием на окружающую среду (ОС), выражающееся в отчуждении земель и загрязнении атмосферы, подземных и поверхностных вод. Однако, проблема использования шлакозольных отвалов до настоящего времени не решена. Ежегодно утилизируется в основном в производстве стройматериалов менее 1% от образующегося за тот же период времени количества золы.

О воздействии золоотвалов на ОС можно судить по результатам обследования золоотвалов АО «Свердловэнерго», входящего в состав РАО «ЕЭС».

Воздействие на водные ресурсы.

На всех электростанциях АО «Свердловэнерго» организовано оборотное водоснабжение. Однако, несмотря на наличие замкнутого цикла водоснабжения, в действительности существует сброс загрязнённых вод с золоотвалов в поверхностные и подземные водные системы. Основной причиной сброса являются фильтрационные потери оборотной воды из гидрозолоотвалов через ограждающие дамбы и их основания.

Химический состав оборотной воды электростанций АО «Свердловаэнерго» характеризует таблица 3.

 

Таблица 3

Химический состав оборотной воды электростанций АО «Свердловэнерго».

Элемент

Содержание, мг/л*

ПДК элементов в воде водоёмов различного назначения

Кратность превышения ПДК**

Хозяйственно бытового назначения, мг/л

Рыбохозяйственного пользования, мг/л

Al 0,61 – 2,73

0,5

-

-  
V 0,0046 – 0,23

-

0,001

4,6 – 230  
Fe 0,14 –0,39

0,3

0,1

1,4 – 3,9  
Si 6,1 – 16,4

10,0

-

-  
Mn 0,024 – 0,087

-

0,01

2,4 – 8,7  
Cu 0,002 – 0,014

1,0

0,001 медь-ион

2 – 14  
Mo 0,0009 – 0,067

0,25

0,0004 по Мо +6

2,3 – 170  
As 0,2 – 0,9

-

0,05

4 – 18  
Ni 0,0049 – 0,031

0,1

0,01 по иону

0 – 3,1  
Ti 0,042 – 0,28

0,1

-

-  
F 0,2 – 10

0,7

0,05

4 – 200  
Cr 0,0026 – 0,051

0,5

0,005

0 – 10,2  
               

* Изменение содержания каждого из элементов обусловлено сжиганием углей разных типов и зольности (Экибастузский – до 43%, Волчанский – 20-37%, Буланашский – 20-37%, Кузнецкий – до 22%).

**Использованы значения рыбохозяйственных ПДК.

 

Из таблицы 3 следует, что в оборотных водах всех золоотвалов имеет место превышение ПДК для всех элементов, а для V, Мо и F - до 170-230 раз. Объём сброса оборотной воды с золоотвалов АО «Свердловэнерго» составляет не менее 7,6 млн3/год в поверхностные водоёмы (реки, ручьи) и более 50 млн3/год в горизонты подземных вод посредством фильтрации через основания дамб.

Воздействие на земельные ресурсы.

Площади, занимаемые каждым золоотвалом, измеряются сотнями гектаров, составляя в целом для АО «Свердловэнерго» не менее 3100 га, а с учётом площади санитарно-защитных зон (около 1700 га) из землепользования исключается 4800 га только для одной Свердловской области.

Воздействие на атмосферу.

Основными источниками загрязнения атмосферы являются пылящие поверхности золоотвалов. Их негативное воздействие заключается в загрязнении воздушного бассейна неорганической пылью в результате ветровой эрозии сухой части поверхности отвалов. Результаты расчётов показали, что для золоотвалов АО «Свердловэнерго» площадь пылящих поверхностей составляет около 600 га, т.е. около 20% общей площади золоотвалов, а суммарный объём пылевыделения превышает 1700 т/год.

Риск экологических последствий аварийных ситуаций.

Экологический риск, т.е. вероятность возникновения неблагоприятных для ОС и человека последствий складирования золошлаковых отходов на золоотвалах обуславливается возможностью прорыва ограждающих дамб, что в действительности хотя и не часто, но имеет место.

Таким образом, в свете рассмотренного воздействия золоотвалов на ОС, совершенно очевидна необходимость проведения исследований по утилизации техногенных отходов, накапливающихся в золоотвалах топливно-энергетического комплекса России. В решении этой проблемы заинтересован и топливно-энергетический комплекс, выплачивающий многие сотни миллионов рублей в год за загрязнение ОС, складирование отходов, изъятия земель.



ТМ угольной подотрасли

 

При добыче и обработке ископаемых углей возникает большое количество отходов, содержащих кроме пустой породы значительное количество угля.

Первую группу этих отходов составляют углесодержащие вскрышные (при открытой добыче угля) и шахтные породы, т.е. ТМ горнодобывающей промышленности, возникающие при добыче полезных ископаемых (см. классификацию ТМ). К настоящему времени нет достаточных сведений о ежегодных масштабах образования и складирования в отвалах подобных отходов. Наиболее изучены они в Кузнецком бассейне, где, по ориентировочным расчётам, ежегодно получают 12-15 млн.т вскрышных пород со средней зольностью 72-86%.

Вторую группу представляют отходы углеобогатительных фабрик, где они составляют 5-40% от перерабатываемой массы добытого сырья и превышают 1 млн.т/год на каждой фабрике. В зависимости от способов обогащения угля образуются кусковые и мелкодисперсные отходы соответственно при гравитационном и флотационном методах обогащения. Выход кусковых углеотходов обогатительных фабрик Кузнецкого бассейна составил в 1987 году около 11,5 млн.т, а Уральских – 4,8 млн.т.

Крупность зёрен при флотационном обогащении менее 1 мм. Представление о крупности кусковых отходов даёт таблица 4.

 

Таблица 4.

Гранулометрический состав отходов гравитационного обогащения.

Фракция, мм 0 - 1 1 - 6 6 - 113 13 - 25 25 – 50 >50
Содержание, % 1,5 2 3 14,8 50,6 28,1
Зольность, % 72,4 82,3 86,2 80,3 78,8 85

 

Содержание мелкой фракции (<13 мм) не превышает 6,5%, а зольность почти не зависит от размера кускового материала.

Представление о химическом составе отходов обогатительных фабрик можно получить, проанализировав данные таблицы 5.

 

Таблица 5

Характеристика углеотходов.

Угольный бассейн

Зольность

Химический состав, %

C SiO2 Al2O3 Fe2O3 CaO MgO S
Кузнецкий 64 – 90 4 – 22 57 – 70 14 – 26 3 – 10 1 – 7 0,3 – 3 0,1-1,4
Челябинский 66 – 80 9 - 25 53 – 56 22 – 24 11 – 18 2 – 5 3 – 4 0-0,8
Кизеловский 60 – 68 17 – 23 53 – 58 12 – 22 16 – 22 0,8 – 2 0,8 – 2 7 – 10

 

Преобладающей горной породой в углеотходах уральских месторождений является аргиллит, в небольших количествах присутствуют алевролиты, песчаники, карбонаты и сульфиды.

Основные минералы представлены каолинитом (20-40%), гидрослюдами (5-25%) и кварцем (30-40%). Кизеловские отходы имеют повышенное содержание сульфидов железа, следствием чего является более высокое содержание в них серы.

Содержание углерода зависит от качества обогащения.

Углеотходы представляют интерес для цементной промышленности, которая может утилизировать значительный их объём. Например, в Польше ежегодно используют 40 000 т отходов углеобогащения, применяя их в качестве компонента исходного сырья цемента в количестве 8-18%. На Днепродзержинском цементном заводе в сырьевую смесь вводят 8-9% углеотходов. На Одесском цементном заводе используют углемоечные отходы коксохимического производства для частичной замены глины и снижения расходов топлива на обжиг клинкера (около 11%).

Воздействие отходов обогащения углей на ОС аналогично, по-видимому, воздействию золоотвалов ТЭС, рассмотренному выше.



Дата: 2019-07-24, просмотров: 186.