ТЕХНОГЕННЫЕ МЕСТОРОЖДЕНИЯ
(конспект лекций)
ОГЛАВЛЕНИЕ
1. Понятие техногенное месторождение (ТМ), особенности и перспективы разработки
2. Способы образования и классификация ТМ
3. Состав и строение ТМ
3.1. ТМ топливно-энергетического комплекса
3.2. ТМ угольной подотрасли
3.3. ТМ цветных и редких металлов
3.4. ТМ черных металлов
4. Методика и техника геолого-экономической оценки ТМ
4.1. Основные этапы исследования ТМ
4.2. Аппаратурно-методическое обеспечение аналитических исследований ТМ
4.3. Метрологическое обеспечение качества полевых и лабораторных анализов состава отложений ТМ
5. Формирование банка данных (БД) и мониторинг ТМ
5.1. Технология формирования банка данных по техногенным месторождениям (БД ТМ)
5.2. Мониторинг ТМ
6. Геоэкологическое картирование и составление эколого-геологических карт (ЭГК) по техногенным месторождениям
Использованная литература
Перечень вопросов к зачету по всему курсу
Практические работы
Работа 1
Работа 3
Состав и строение ТМ
Состав и строение ТМ определяются целым рядом факторов, важнейшими среди которых являются:
1) условия образования (добыча и обогащение руд и угля, переработка концентратов руд, сжигание угля и т.д.);
2) состав исходного сырья (месторождения цветных и редких металлов, полиметаллические, железорудные и другие типы коренных месторождений);
3) физико-химические и механические процессы климатического воздействия и выветривания отвалов. Они интенсивно окисляются, выщелачиваются и разрушаются, что приводит к изменению минералогического и вещественного состава техногенных отложений, выносу элементов и образованию ореолов рассеяния вокруг отвалов. Особенно это проявляется для отходов добычи и обогащения сульфидных руд, так как они при окислении и выветривании быстро разрушаются и переходят в окисленные минеральные формы, требующие при утилизации особых технологий извлечения полезных компонент
В приповерхностной зоне техногенных отложений под воздействием кислорода, воды, фильтрационных электрических полей и других факторов происходят интенсивное растворение и миграция металлов и их соединений. При этом могут образовываться обеднённые и обогащённые металлом участки с восстановленными и окисленными формами его нахождения. Например, в участках хвостохранилищ с восстановленными сульфидами нередко наблюдаются повышенные содержания золота, а в зонах окисления возможно накопление серебра.
В настоящее время опыт разведки техногенных месторождений невелик. Наиболее тщательно такие исследования выполнены на Урале, поэтому ниже приводятся особенности состава и строения ТМ в основном Урала, используя в некоторых случаях так же обобщённые данные по месторождениям бывшего СССР.
ТМ угольной подотрасли
При добыче и обработке ископаемых углей возникает большое количество отходов, содержащих кроме пустой породы значительное количество угля.
Первую группу этих отходов составляют углесодержащие вскрышные (при открытой добыче угля) и шахтные породы, т.е. ТМ горнодобывающей промышленности, возникающие при добыче полезных ископаемых (см. классификацию ТМ). К настоящему времени нет достаточных сведений о ежегодных масштабах образования и складирования в отвалах подобных отходов. Наиболее изучены они в Кузнецком бассейне, где, по ориентировочным расчётам, ежегодно получают 12-15 млн.т вскрышных пород со средней зольностью 72-86%.
Вторую группу представляют отходы углеобогатительных фабрик, где они составляют 5-40% от перерабатываемой массы добытого сырья и превышают 1 млн.т/год на каждой фабрике. В зависимости от способов обогащения угля образуются кусковые и мелкодисперсные отходы соответственно при гравитационном и флотационном методах обогащения. Выход кусковых углеотходов обогатительных фабрик Кузнецкого бассейна составил в 1987 году около 11,5 млн.т, а Уральских – 4,8 млн.т.
Крупность зёрен при флотационном обогащении менее 1 мм. Представление о крупности кусковых отходов даёт таблица 4.
Таблица 4.
Гранулометрический состав отходов гравитационного обогащения.
Фракция, мм | 0 - 1 | 1 - 6 | 6 - 113 | 13 - 25 | 25 – 50 | >50 |
Содержание, % | 1,5 | 2 | 3 | 14,8 | 50,6 | 28,1 |
Зольность, % | 72,4 | 82,3 | 86,2 | 80,3 | 78,8 | 85 |
Содержание мелкой фракции (<13 мм) не превышает 6,5%, а зольность почти не зависит от размера кускового материала.
Представление о химическом составе отходов обогатительных фабрик можно получить, проанализировав данные таблицы 5.
Таблица 5
Характеристика углеотходов.
Угольный бассейн | Зольность | Химический состав, % | ||||||
C | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | S | ||
Кузнецкий | 64 – 90 | 4 – 22 | 57 – 70 | 14 – 26 | 3 – 10 | 1 – 7 | 0,3 – 3 | 0,1-1,4 |
Челябинский | 66 – 80 | 9 - 25 | 53 – 56 | 22 – 24 | 11 – 18 | 2 – 5 | 3 – 4 | 0-0,8 |
Кизеловский | 60 – 68 | 17 – 23 | 53 – 58 | 12 – 22 | 16 – 22 | 0,8 – 2 | 0,8 – 2 | 7 – 10 |
Преобладающей горной породой в углеотходах уральских месторождений является аргиллит, в небольших количествах присутствуют алевролиты, песчаники, карбонаты и сульфиды.
Основные минералы представлены каолинитом (20-40%), гидрослюдами (5-25%) и кварцем (30-40%). Кизеловские отходы имеют повышенное содержание сульфидов железа, следствием чего является более высокое содержание в них серы.
Содержание углерода зависит от качества обогащения.
Углеотходы представляют интерес для цементной промышленности, которая может утилизировать значительный их объём. Например, в Польше ежегодно используют 40 000 т отходов углеобогащения, применяя их в качестве компонента исходного сырья цемента в количестве 8-18%. На Днепродзержинском цементном заводе в сырьевую смесь вводят 8-9% углеотходов. На Одесском цементном заводе используют углемоечные отходы коксохимического производства для частичной замены глины и снижения расходов топлива на обжиг клинкера (около 11%).
Воздействие отходов обогащения углей на ОС аналогично, по-видимому, воздействию золоотвалов ТЭС, рассмотренному выше.
ТМ черных металлов
ТМ этой группы, как и ТМ цветных и редких металлов формируются при добыче, обогащении и переработке продуктов обогащения коренных руд чёрных металлов (Fe, Ti, Mn, Cr). Они так же, как правило, относятся к месторождениям смешенного типа, т.е. пригодны для доизвлечения различных металлов и для получения стройматериалов.
Для месторождений Урала этой группы наблюдается аналогичное соотношение запасов для разных их типов:
· ТМ вскрышных и скальных пород и некондиционных руд - >5 000млн. т;
· ТМ хвостов обогащения - ~900 млн. т;
· ТМ шлаков металлургических комбинатов - ~200 млн. т.
Наибольший интерес среди ТМ чёрных металлов вызывают в последнее время хвосты мокрой магнитной сепарации титаномагнетитовых руд Качканарского ГОК’а (Урал). Хвостохранилище занимает площадь 2000´200 м=40 га. В среднем в него ежегодно поступает около 34 млн.т хвостов. Материал их достаточно однороден, с преобладающим фракционным составом 1-4 мм. Распределение металла по поверхности хвостохранилища равномерное. Как следствие однородности состава шламов в них отмечаются стабильные содержания одного из редких металлов–скандия (CSc»130 г/т), представляющего промышленный интерес.
ТМ металлургических предприятий представляют довольно сложные объекты. Строение подобных ТМ рассмотрим на примере ТМ Челябинского электрометаллургического комбината (АО «ЧЭМК»).
Шлаковые отвалы ЧЭМК формируются с начала ферросплавного производства в 1931г. и продолжают функционировать по настоящее время. Они имеют в плане близкую к изометрической форму плоского типа (соотношение площади верхней поверхности и нижнего основания меньше двух). Площадь отвала около 38 га. Мощность тела отвала 16-31 м, средняя её величина – 22,55 м. Плотность материала – 2,5 т/м3.
Вывалка шлаков и отходов различного состава производилась хаотически, без соблюдения системы складирования, поэтому строение отвала сложное. Большая часть его поверхности покрыта пылями различных производств и саморассыпающихся шлаков, которые впоследствии проходят процесс литификации (слёживания), превращаясь в сцементированные тонкообломочные породы.
В отвале содержится около 653 тыс.т марганца. Основное перспективное направление переработки – использование в качестве строительного материала с предварительным извлечением металлических фаз. Характерными стройматериалами, которые могут быть получены из шлаков чёрной металлургии, являются:
· гранулированные шлаки;
· шлаковая пемза как заполнитель бетона;
· шлаковата;
· литой шлаковый щебень;
· шлаковое литьё (брусчатка, плитки, бордюрный камень и пр.);
· стеклокерамические изделия;
· вяжущие добавки в цемент;
· минеральные добавки для улучшения почв.
Формирование банка данных (БД) и мониторинг ТМ
Решение задач, возникающих при переработке ТМ, требует их мониторинга, который является необходимой частью единой технологической цепочки при формировании банка данных по ТМ (БД ТМ).
Целью создания БД является:
1. Представление информации о ТМ в виде, позволяющем
· отслеживать запасы ценных компонент, содержащихся в этих месторождениях, и
· управлять опасными отходами на всех этапах обращения с ними, а именно, при их
Ø образовании,
Ø накоплении
Ø транспортировке,
Ø переработке,
Ø обезвреживании,
Ø захоронении;
2. Обеспечение областных, муниципальных и районных органов управления, специалистов, предпринимателей и общественность информацией о ТМ, в том числе,
Ø об опасных отходах, их перемещении, причинах не использования;
Ø о прогнозируемых процессах, вызванных их наличием;
Ø об оценках риска для здоровья человека и возможных путях его снижения;
Ø о технологиях переработки, а так же
Ø о затратах, связанных с реализацией мероприятий по их утилизации;
3. Дать ответ на два основные вопроса, обусловленных существованием ТМ:
§ какова эколого-экономическая целесообразность использования ресурсов ТМ в данном районе?
§ каков риск сохранения того или иного ТМ, т.е. как влияет его сохранение на качество других ресурсов (водных, сельскохозяйственных и т.д.)?
В процессе формирования БД ТМ решаются следующие задачи:
1. Аудит объекта на основе применения оптимального комплекса измерительного оборудования и аппаратуры;
2. Формирование обновляющихся характеристик ТМ, в том числе по результатам опробования;
3. Мониторинг ТМ, в том числе слежение за запасами полезных компонент в них;
4. Повышение достоверности информации о ТМ за счёт комплексирования данных, поступающих из разных источников;
5. Паспортизация и сертификация ТМ;
6. Экспертиза способов переработки ТМ и оценка их экономической целесообразности, т.е. поиск рациональных технологий переработки ТМ и выдача рекомендаций по способам использования ТМ;
7. Оценка существующих и прогнозируемых ущербов, связанных с наличием ТМ;
8. Поиск потенциальных потребителей продуктов переработки ТМ;
9. Поиск ТМ, удовлетворяющих определённым требованиям потенциальных потребителей;
10. Выявление приоритетных проектов переработки ТМ;
11. Учёт земель, отчуждённых под ТМ;
12. Формирование учётных документов;
13. Формирование карт ТМ:
14. Поддержка БД налогов и штрафных санкций за нарушение экологии и норм природопользования. Например, при формировании БД ТМ топливно-энергетического комплекса Урала было установлено, что для золоотвалов АО «Свердловэнерго» отсутствуют санитарно-защитные зоны. Это приводит к занижению суммарной площади земельных отводов и суммы соответствующего земельного налога на 58%. Золоотвалы двух электростанций АО «Свердловэнерго» расположены в водоохранных зонах водных объектов, вследствие чего, согласно действующим нормативным документам, платежи за размещение отходов на них должны быть увеличены в 5 раз. Кроме того, не учитывается объём пылевыделения с золоотвалов и отсутствует учёт сброса из золоотвалов оборотных вод с многократным превышением ПДК по таким элементам как Mn, V, F, As, Cu и др. Это, помимо экологических последствий, приводит к занижению соответствующих платежей на сумму не менее 270 млн.руб. в год (в ценах 1997 г.). В целом было установлено, что суммарное занижение платежей за загрязнение ОС, складирование отходов и изъятие земель составило по АО «Свердловэнерго» в 1996 г. 2,33 млрд. рублей.
Мониторинг ТМ
Мониторинг ТМ обеспечивает периодическое обновление геоинформационных пакетов (ГИП). Источником информации служит пакет данных представленный в таблице 8.
ГИП обычно состоит из следующих информационных слоёв:
1) образ земной поверхности – цифровая модель по космо- и аэросъёмке в оптическом диапазоне с разрешением от нескольких сантиметров до нескольких десятков метров;
2) инфраструктура – цифровая топооснова коммуникаций, застройки, сетей и т.д.;
3) рельеф – цифровая модель рельефа с морфологическими объектами и физическими параметрами радарного сканирования;
4) ландшафт – модель градации растительности и гидросферного покрова по оптическому и радарному сканированию;
5) геохимия – элементный состав, радиоактивность, сорбированные газы, нефтепродукты и другие физико-химические параметры грунтового покрова;
6) геофизика – аномальные геофизические естественные и искусственные поля, интегральные и дифференциальные параметры на различных глубинных срезах, начиная от дневной поверхности;
7) геология – геологические объекты, элементы и параметры покровного и глубинного строения земной коры;
8) гидросфера – карты открытых и подземных гидросистем, фильтрационных потоков и водно-физических параметров;
9) геодинамика – блоковая структура земной коры;
10) экология – экологический паспорт, объекты мониторинга, реперная система и банк контрольных параметров территории;
11) ресурсы – прогнозные карты ресурсов минеральных, углеводородных, строительных, техногенных, лесных, сельскохозяйственных и др.;
12) эталонная коллекция образцов, включающая систематизацию, минералогическое и петрографическое описание, определение петрофизических и технологических свойств и элементного состава, паспорт коллекции.
Таблица 8.
Источники информации для формирования геоинформационных пакетов (ГИП).
№ | Тип информации | Тип носителя | Масштаб |
1 | Космоснимок -разрешение: 10 м -тип съёмки: панхроматика -захват: 60´ 69 км | CD-ROM | 1:50 000 |
2 | Аэроснимок -разрешение: 1 м -тип съёмки: цветные полутона -ортофотоплан: 2 ´2 км | Полноцветная фотопечать и электронный формат | 1:5 000 |
3 | Топокарты -планшет 1:200 000 (40 ´40 км) -планшет 1:25 000 (10 ´10 км) -планшет 1:5 000 (2 ´2 км) | Бумажный | 1:200 000 1:25 000 1:5 000 |
4 | Геологические карты -планшет 1:200 000 (40 ´40 км) -планшет 1:25 000 (10 ´10 км) | Бумажный, Электронный | 1:200 000 1:25 000 |
5 | Гидрогеологическая карта -планшет 1:200 000 (40 ´40 км) | Бумажный, Электронный | 1:200 000 |
6 | Геохимическая съёмка в масштабах -1:100 000 (40 ´40 км) -1:25 000 (10 ´10 км) -1:5 000 (2 ´2 км) | Электронный | 1:100 000 1:25 000 1:5 000 |
7 | Радиометрическая съёмка в масштабах -1:100 000 (40 ´40 км) -1:25 000 (10 ´10 км) -1:5 000 (2 ´2 км) | Электронный | 1:100 000 1:25 000 1:5 000 |
8 | Эманационная съёмка в масштабах -1:100 000 (40 ´40 км) -1:25 000 (10 ´10 км) -1:5 000 (2 ´2 км) | Электронный | 1:100 000 1:25 000 1:5 000 |
9 | Инженерно-геологическая съёмка -1:25 000 (10 ´10 км) -1:5 000 (2 ´2 км) | Электронный | 1:25 000 1:5 000 |
10 | Экологическая съёмка -1:100 000 (40 ´40 км) | Электронный | 1:100 000 |
11 | Гидрогеологическая съёмка -1:25 000 (10 ´10 км) -1:5 000 (2 ´2 км) | Электронный | 1:25 000 1:5 000 |
12 | Опробование сырья, подсчёт запасов | Бумажный, электронный |
Постоянное загрязнение окружающей среды требует оптимальной организации процесса мониторинга. Разработаны многоуровневые системы сбора, обработки, хранения и анализа информации, позволяющие чётко разделить функции различных подразделений, оптимально использовать технические средства и оперативно получать необходимую информацию. Двухуровневая система мониторинга представлена на рис. 5.
Рис. 5. Информационная система экологического мониторинга объектов окружающей среды
Система мониторинга первого уровня предназначена для измерения, регистрации и первичного накопления данных по объекту в автоматическом режиме. Эти функции выполняются рабочими станциями (РС-1), которые представляют собой аппаратурно-программные комплексы на базе персональных компьютеров и измерительной аппаратуры различного назначения:
Ø измерение химических загрязнений (содержание тяжёлых металлов и т.д.);
Ø измерение органических загрязнений (содержание пестицидов, бензапирена и т.д.);
Ø измерение ионизирующих a-, b- и g-излучений.
Второй, более высокий, уровень системы мониторинга – это программные комплексы на центральной ЭВМ, назначение которых:
Ø сбор оперативной информации по мониторингу с РС-1 и передача этих данных в соответствующую БД в автоматическом режиме;
Ø диалоговый режим ввода и ведения баз данных по всем видам загрязнений ОС;
Ø диалоговый режим ввода и редактирования данных по любой БД;
Ø проверка достоверности хранящейся информации;
Ø интеграция всех данных на региональном уровне и их обработка, анализ и обобщение имеющейся информации, визуализация и печать выходных документов в табличной форме, а так же построение 2-х и 3-х мерных графиков.
Первые два уровня решают технические задачи по созданию баз данных по различным видам загрязнений ОС – атмосферы, территории, воды, почвы, строительных материалов и изделий из них и т.д.
На более высоком уровне эти данные служат базой для комплексной оценки состояния ОС, здоровья населения, системного анализа состояния экосистемы, для выработки подходов реабилитации, экспертного анализа экологической ситуации и её прогнозирования.
Система метрологического обеспечения мониторинга должна предусматривать необходимую точность измерений, которая гарантируется различными видами испытаний (внутрилабораторный и межлабораторный контроль, геологический контроль) и периодической поверкой средств измерений.
Практические работы
Работа 1
Рассчитать извлекаемое в концентрат и потерянное в отвалах некондиционных руд и хвостохранилищах количество олова если
1) для горной массы, добытой при селективной её выемке a=0,04%,
g=100%,
2) для кондиционной руды, идущей на обогащение b=0,1%,
g=15%;
3) для концентрата b=50%,
g=0,02%,
где a и b - содержание олова (CSn) в исходной горной массе и обогащённом продукте соответственно;
g - выход продуктов переработки и обогащения руд;
Расчет:
1. Поскольку при селективной выемке горной массы выход её равен 100% (g=100%), очевидно, что извлечение олова из этой горной массы так же будет равно 100% (e=100%).
2. Содержание CSn в отвале ( ) легко определить из следующего очевидного равенства
,
где m – масса горных пород, добытых при селективной выемке. Используя это равенство находим
1. .
3. Выход продуктов переработки в отвалы
.
4. Извлечение олова в кондиционные руды и отвалы соответственно равно
или
5. Содержание олова в хвостохранилище ( ) рассчитывается аналогично расчёту значения
6. Выход продуктов флотации в хвостохранилище
7. Извлечение олова в концентрат и в хвосты флотации равно соответственно
Схема отработки и обогащения оловянных руд с рассчитанными технологическими показателями по отдельным этапам представлена на рисунке, из которого следует, что из всей массы металла, содержащегося в эксплуатационном блоке, в товарный концентрат извлекается всего 25,6%, а 74,4% теряется в отвалах некондиционной руды и хвостохранилище.
Схема отработки и обогащения оловянных руд с технологическими показателями по отдельным этапам.
a, b, q - содержание CSn в исходной горной массе, обогащённом и отвальном продуктах соответственно, %;
g - выход продуктов переработки и обогащения руд, %;
e - извлечение олова в соответствующий продукт, %.
Работа 3
Определить основные технологические показатели обогащения железной руды, содержащей 31% железа (a=31%), при котором получен концентрат с содержанием железа 67,5% (b=67,5%) и хвосты с содержанием железа 9,6% (q=9,6%).
Основными показателями, характеризующими результаты обогащения, являются:
1. Содержание компонента – показатель, который характеризует долю того или иного компонента в единице массы исходной руды или полученных продуктах её переработки. Содержание различных компонент в исходной горной массе, концентрате и в отвале, а так же хвостах обычно обозначаются буквами a, b и Q соответственно и вычисляются в процентах.
2. Выход продукта ( g ) – показатель, характеризующий, какую часть массы исходной руды составляет тот или иной продукт её переработки или обогащения. Выход любого продукта обычно выражают в процентах. Суммарный выход всех продуктов переработки и обогащения должен соответствовать выходу исходной руды, принимаемому за 100%. При разделении исходной руды на два конечных продукта – концентрат с выходом gк и хвосты с выходом gхв – это условие записывается в виде равенства, выражающего баланс выхода продуктов обогащения:
Суммарное количество любого компонента, содержащегося в конечных продуктах обогащения, должно соответствовать количеству этого компонента в исходной руде. Например, если при обогащении руды получены два конечных продукта – концентрат и хвосты, то это условие выражается равенством вида
При наличии n продуктов переработки и обогащения исходной горной массы
Равенства (1), (2) и (2а) называются уравнениями баланса продуктов переработки и обогащения руды. С их помощью, зная содержание полезного компонента в исходной горной массе и в полученных продуктах её переработки и обогащения, можно вычислить выход продуктов переработки и обогащения. Так, например, в случае обогащения руды, при котором образуется концентрат и хвосты, выходы этих продуктов обогащения легко определяются решением системы уравнений (1) и (2)
3. Извлечение ( e ) – показатель, определяющий, какая часть полезного компонента, содержащегося в исходной горной массе, перешла в тот или иной продукт переработки или обогащения. Извлечение обычно выражается в процентах и вычисляется как отношение массы компонента в данном продукте к его массе в исходной горной массе или руде
Если выходы продуктов неизвестны, но имеются данные о составе, например, исходной руды, концентрата и хвостов, то, используя выражения (3) и (5) или (4) и (5), легко получить выражения для расчёта величины извлечения интересующего компонента руды соответственно в концентрат и в хвосты
Суммарное извлечение данного компонента во все полученные продукты переработки и обогащения руды составляет 100%:
.
4. Степень сокращения ( R ) – величина, указывающая, во сколько раз выход полученного концентрата gк меньше количества переработанной руды, т.е. определяющая число тонн руды которое нужно переработать, чтобы получить 1 т концентрата
5. Степень концентрации или степень обогащения (К) – показатель, указывающий, во сколько раз увеличилось содержание компонента в концентрате по сравнению с его содержанием в исходной руде:
Расчёт:
Используя приведенные соотношения, имеем для указанной выше железной руды:
Выход концентрата
Выход хвостов
Проверка: gк+gхв =37+63=100%.
Извлечение железа в концентрат
|
Извлечение железа в хвосты
|
Проверка: eК+eХВ =80,5+19,5=100%.
Степень сокращения
Степень обогащения
Следовательно, в данном случае в результате обогащения руды содержание железа в концентрате увеличилось по сравнению с его содержанием в руде 2,2 раза, а для получения 1т концентрата необходимо переработать 2,7 т руды.
Схема и обогащения железных руд с технологическими показателями.
a, b, Q - содержание CFe в исходной руде, концентрате и в хвостах, %;
g - выход продуктов обогащения руд, %;
e - извлечение железа в соответствующий продукт обогащения, %.
ТЕХНОГЕННЫЕ МЕСТОРОЖДЕНИЯ
(конспект лекций)
ОГЛАВЛЕНИЕ
1. Понятие техногенное месторождение (ТМ), особенности и перспективы разработки
2. Способы образования и классификация ТМ
3. Состав и строение ТМ
3.1. ТМ топливно-энергетического комплекса
3.2. ТМ угольной подотрасли
3.3. ТМ цветных и редких металлов
3.4. ТМ черных металлов
4. Методика и техника геолого-экономической оценки ТМ
4.1. Основные этапы исследования ТМ
4.2. Аппаратурно-методическое обеспечение аналитических исследований ТМ
4.3. Метрологическое обеспечение качества полевых и лабораторных анализов состава отложений ТМ
5. Формирование банка данных (БД) и мониторинг ТМ
5.1. Технология формирования банка данных по техногенным месторождениям (БД ТМ)
5.2. Мониторинг ТМ
6. Геоэкологическое картирование и составление эколого-геологических карт (ЭГК) по техногенным месторождениям
Использованная литература
Перечень вопросов к зачету по всему курсу
Практические работы
Работа 1
Работа 3
Понятие техногенное месторождение (ТМ), особенности и перспективы разработки
Техногенные месторождения представляют собой класс месторождений, сформировавшихся в последние столетия в районах горнорудной промышленности (Северо-запад и Юго-восток европейской части Росси, Урал, Юго-восток и Восток азиатской части, Центр Сибири). Эти месторождения обычно обладают своеобразным минеральным составом и являются потенциальным источником разнообразных полезных ископаемых, в частности цветных, редких и благородных металлов, а также строительных материалов (щебень, песок, гравий и т.д.).
Техногенные месторождения – техногенные образования (отвалы горнодобывающих предприятий, хвостохранилища обогатительных фабрик, шлакозольные отвалы топливно-энергетического комплекса, шлаки и шламы металлургического производства, шламо-, шлако- и т.д. отвалы химической отрасли) на поверхности Земли по количеству и качеству содержащегося в них минерального сырья пригодные для промышленного использования в настоящее время или в будущем по мери развития науки и техники.
Особенностями техногенных месторождений являются:
1) географически расположены только в промышленно развитых районах;
2) находятся на поверхности Земли и горная масса в них преимущественно дезинтегрирована;
3) значительно большее количество минералов (более 30 000), чем в обычных месторождениях (около 3 000).
Последняя особенность определяет сложность переработки техногенных руд, так как из-за многообразия минеральных форм, требуются иные технологии, чем для обычных руд, основанные на последних достижениях науки и техники.
Отвалы горнодобывающих и металлургических предприятий как перспективные источники сырья для различных областей индустрии издавна привлекали внимание. Так ещё в 30-е годы прошлого столетия проводились исследования по оценке медьсодержащих отходов на большинстве медных предприятий Урала. С 50-х годов отходы медного производства оценивались не только на основные, но и на полезные попутные компоненты. Исследованиями последних лет установлено, что в России к настоящему времени накоплено свыше 50 миллиардов тонн техногенных отходов, содержание металлов в которых нередко превышает их содержание в рудах, извлекаемых из недр и поступающих на обогащение. Особенно это относится к старым отвалам и хвостохранилищам, которые формировались в 40-50-е годы прошлого столетия, когда не уделялось должного внимания комплексному изучению минерального сырья, а кондиции добычи и переработки были значительно выше современных.
Известны примеры успешного вовлечения техногенных месторождений в эксплуатацию. Так ещё в 70-80-е годы прошлого столетия Хрустальненский Солнечный, Алмалыкский и Зыряновский комбинаты приступили к ревизии отвалов прошлых лет, добыче и использованию некондиционных руд для получения дополнительной продукции (олова, свинца, цинка и др.). Однако, до настоящего времени техногенные месторождения используются в незначительных масштабах. Основной причиной этого является то, что для широкого вовлечения их в переработку требуется строительство практически новых производств, реализующих новые технологические принципы и решения, которые разработаны, как правило, на уровне научных открытий, лабораторных или полупромышленных исследований и редко доведены до промышленного производства. Отсюда высокая капиталоёмкость нового строительства и реконструкции с последовательной заменой действующих технологических линий на новые производства.
Несмотря на указанные трудности, перспективность использования техногенных месторождений очевидна, так как их использование позволяет одновременно решать целый ряд экономических, социальных и экологических проблем.
Экономические проблемы:
1. Постоянное удорожание сырья, извлекаемого из недр, в связи с разработкой месторождений на всё более значительных глубинах, часто с закономерным понижением содержания ценных компонент. В последние 30 лет стоимость сырья неуклонно растёт на 5-10% в год, несмотря на внедрение новой техники и даже автоматизацию некоторых производств.
2. Истощение запасов полезных ископаемых в недрах Земли. Например, при современном уровне добычи и обогащения, запасов цинка осталось на 25-30 лет, а свинца на 50-60 лет.
3. Снижение производительности труда и уменьшение темпов добычи полезных ископаемых в связи с постоянным ухудшением горно-геологических условий добычи (большие глубины, бедные руды).
Социальные проблемы:
1. Осложнение ситуации с использованием рабочей силы во многих рудных районах вследствие уменьшения объёма работ, вызванного истощением запасов полезных ископаемых.
2. Ухудшение условий труда при эксплуатации глубокозалегающих месторождений.
Экологические проблемы:
1. Исключение из хозяйственного оборота больших площадей земель, занятых отходами производства. Так, например, площадь золоотвалов топливно-энергетического комплекса Урала составляет около 3 000 га, а площадь нарушенных земель в медной подотрасли превышает 60 000 га.
2. Уничтожение или снижение качества земель из-за пылевых заносов с отвалов и хвостохранилищ. Например, с 1 га отвалов КМА ежегодно сносится до 500 тонн пыли.
3. Загрязнение окружающей среды (почв, поверхностных и подземных вод, атмосферного воздуха) тяжёлыми металлам и солями в концентрациях, нередко превышающих допустимые нормы. Так ориентировочный суммарный объём сброса загрязнённой оборотной воды с золоотвалов АО «Свердловэнерго» составляет не менее 7,6 млн.м3/год. Содержание в сбрасываемой воде таких элементов как F, V и Mn превышает ПДК в десятки и сотни раз. С отвалов Садонских месторождений ежегодно выносится в р. Терек до 3 000 тонн цинка.
Вовлечение в переработку техногенного сырья обеспечивает:
1. Сокращение расходов на поиски новых и разведку эксплуатируемых месторождений.
2. Сохранение истощающихся минеральных ресурсов в недрах, так как запасов полезных компонент, накопившихся в отходах ГОК’ов, достаточно чтобы удовлетворить потребности на многие десятилетия вперёд.
3. Повышение производительности труда за счёт рентабельной переработки уже добытого сырья, являющегося, по существу, готовым полупродуктом и находящегося вблизи действующих предприятий, что особенно важно для тех из них, для которых вследствие истощения сырьевой базы оказываются незагруженными производственные мощности, и высвобождается рабочая сила.
4. Улучшение условий труда, так как техногенные месторождения расположены на поверхности Земли в отличие от всё более глубокозалегающих обычных месторождений полезных ископаемых.
5. Производство дешёвых стройматериалов (песок, щебень, гравий, цемент, абразивы, материал для отсыпки дорожного полотна, строительства плотин, дамб, и т.д.), а из шлаков - шлаковаты, шлакового литья (брусчатка, тюбинги, плитки, бордюрный камень и т.д.), литого шлакового щебня, стеклокерамических изделий, вяжущих добавок в цемент, минеральных добавок для улучшения почв, удобрений для сельского хозяйства и др.
6. Освобождение занимаемых им земель и их рекультивацию и ликвидацию источников загрязнения окружающей среды (ОС), улучшая тем самым экологическую обстановку вокруг действующих предприятий. Это относится к тем ТМ, освоение которых сопровождается производством стройматериалов. Если же осуществляется только добыча металлов (цветных, редких и благородных), то из-за низкого их содержания количество техногенных отходов практически не уменьшается.
Таким образом, всё вышеизложенное указывает на актуальность и народно-хозяйственную важность проблемы переработки и полной утилизации отходов горнорудной, металлургической, топливно-энергетической и химической отраслей промышленности. Уже существующие и перспективные технологические разработки позволяют оптимистически оценивать прибыльность переработки ТМ и возможность перехода к безотходным технологиям для их полной ликвидации.
Большинство развитых зарубежных стран осуществляют политику сбережения своих ресурсов, интенсивно вовлекая в переработку ТМ, утилизируя отходы производства, разрабатывая технологии переработки этих отходов. Например, в США ещё в 1993 году доля вторичного сырья в производстве цветных металлов составляла:
по меди – 55%, вольфраму – 28%, никелю – 25%.
Подобная тенденция использования вторичных ресурсов наблюдается в Канаде, Великобритании, ЮАР Испании и других странах. Вот несколько примеров:
· В Канаде из отходов меднорудных предприятий, содержащих 0,45% Cu достигается извлечение 40% меди благодаря новым способам обогащения (кучного кислотного выщелачивания, кучного пиритного и бактериального выщелачивания).
· В штате Монтана (США) из отвалов рудника Мандиски получают ежегодно 2т Au и 4т Ag при содержании в отвалах золота – 0,84г/т и серебра – 2,8г/т.
· В штате Мичиган (США) из хвостов обогащения, содержащих 0,3% Cu, достигнуто извлечение 60% меди.
· В Болгарии из отходов, содержащих 0,1-0,15%Cu, получают медный концентрат, себестоимость которого в 3 раза ниже, чем при получении его из природного сырья.
· В ЮАР из отвалов золотоизвлекательных фабрик при содержании золота – 0,53г/т и урана – 40г/т получают 3,5т золота и 696т урана в год при производительности 50000т/сутки.
Однако, необходимость существенного объёма технологической перестройки производства и разработки целого ряда методических и технологических вопросов изучения ТМ не позволяет рассчитывать на скорый повсеместный переход к безотходным технологиям.
2. Способы образования и классификация ТМ
Множественность показателей, характеризующих ТМ, к которым относятся
· условия образования,
· объёмы,
· вещественный состав,
· характер процессов, преобразующих первичное вещество,
· неоднородность влияния отдельных показателей на принятие технологических решений и экономических оценок и некоторые другие
предопределяют сложность их классификации и типизации.
По морфологическим признакам ТМ можно разделить на 2 типа:
1.Месторождения насыпные, представляющие собой холмы и терриконы. К этому типу относятся:
· терриконы угольных шахт и разрезов;
· отвалы рудников и карьеров руд цветных, чёрных и редких металлов, сложенные дезинтегрированными вскрышными и вмещающими породами, а так же убогими забалансовыми рудами;
· техногенные россыпи, образующиеся при разработке россыпных месторождений и из отходов золоторудных фабрик;
· шлакоотвалы цветной и чёрной металлургии.
2. Месторождения наливные, образующиеся при заполнении впадин земной поверхности. Представителями этого типа ТМ являются:
· отходы обогащения руд (шламо- и хвостохранилища горнообогатительных фабрик);
· шламоотвалы цветной и чёрной металлургии;
· золо- и шлакоотвалы энергетического комплекса, возникающие при гидравлическом удалении золы и шлаков с теплоэлектростанций;
· шламоотвалы химических производств.
По составу техногенные месторождения подразделяются на 4 типа:
1. Породные ТМ, состоящие из природных горных пород и представленные глыбово-щебенистым материалом и шламо- и хвостохранилищами обогатительных фабрик.
2. ТМ пирометаллургических процессов цветной и чёрной металлургии, сложенные шламами и шлаками.
3. ТМ теплоэлектростанций, сложенные золой и шлаками ТЭС.
4. ТМ химического производства (шламы).
По возможным областям использования ТМ подразделяются на 3 типа:
1. ТМ строительного сырья.
2. ТМ (по извлекаемому металлу) – медные, цинковые и т.д.
3. ТМ смешанного типа, т.е. пригодные для получения стройматериалов и металла.
Разработка месторождений первого типа обеспечивает освобождение площадей земли от техногенных отходов с последующей их рекультивацией, второго типа - позволяет осуществить доизвлечение металла, но не решает проблемы освобождения территории отвалов от отходов, так как вторичная переработка отвалов, учитывая низкое содержание в них полезных компонент, практически даёт то же самое количество отходов.
Третий тип техногенных месторождений позволяет осуществлять и рекультивацию земель и доизвлечение металла.
По экологическому воздействию среди техногенных месторождений выделяют:
1. Неопасные, представленные горными породами и глыбовощебенистыми и щебенистыми шлаками цветной и чёрной металлургии, слабо разрушающимися в течение хранения.
2. Поражающие атмосферу и гидросферу, если они сложены окисляющимися или глинизирующимися породами, окисляющимися шлаками и шламами, пылящими шламами и высохшей пульпой хвостохранилищ.
В настоящее время терминология, классификация ТМ, критерии принадлежности их к тому или иному типу меняются и дополняются по мере углубления исследований и практических работ в области разработки техногенных месторождений.
Наиболее удобной представляется классификация ТМ, в основу которой положены условия их формирования, так как они определяют обычно и морфологию, и вещественный состав, и возможные области использования, и экологическое воздействие на ОС (рис.1).
Пользуясь классификацией, представленной на рис.1, можно оценить основные характеристики любого типа месторождений. Например, ТМ горнодобывающих предприятий, возникающие при обогащении руд и представляющие собой хвостохранилища, относятся к месторождениям
· наливного типа (морфологический признак);
· по составу – породные;
· по возможным областям использования – смешанного типа, т.е. пригодные для доизвлечения металла и получения стройматериалов;
· по экологическому воздействию на окружающую среду – поражающие атмосферу (пыль) и гидросферу (фильтрация вод хвостохранилищ через защитные дамбы).
Рис. 1 Классификация техногенных месторождений.
Состав и строение ТМ
Состав и строение ТМ определяются целым рядом факторов, важнейшими среди которых являются:
1) условия образования (добыча и обогащение руд и угля, переработка концентратов руд, сжигание угля и т.д.);
2) состав исходного сырья (месторождения цветных и редких металлов, полиметаллические, железорудные и другие типы коренных месторождений);
3) физико-химические и механические процессы климатического воздействия и выветривания отвалов. Они интенсивно окисляются, выщелачиваются и разрушаются, что приводит к изменению минералогического и вещественного состава техногенных отложений, выносу элементов и образованию ореолов рассеяния вокруг отвалов. Особенно это проявляется для отходов добычи и обогащения сульфидных руд, так как они при окислении и выветривании быстро разрушаются и переходят в окисленные минеральные формы, требующие при утилизации особых технологий извлечения полезных компонент
В приповерхностной зоне техногенных отложений под воздействием кислорода, воды, фильтрационных электрических полей и других факторов происходят интенсивное растворение и миграция металлов и их соединений. При этом могут образовываться обеднённые и обогащённые металлом участки с восстановленными и окисленными формами его нахождения. Например, в участках хвостохранилищ с восстановленными сульфидами нередко наблюдаются повышенные содержания золота, а в зонах окисления возможно накопление серебра.
В настоящее время опыт разведки техногенных месторождений невелик. Наиболее тщательно такие исследования выполнены на Урале, поэтому ниже приводятся особенности состава и строения ТМ в основном Урала, используя в некоторых случаях так же обобщённые данные по месторождениям бывшего СССР.
Дата: 2019-07-24, просмотров: 283.