Функция внешнего дыхания. Биомеханика дыхательных движений
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Функция внешнего дыхания. Биомеханика дыхательных движений.

Внешнее дыхание или вентиляция – это обмен дыхательных газов между атмосферным воздухом и альвеолами;

Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту.

В дыхательных движениях участвуют три анатомо-функциональных образования: 1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне; 2) эластичная и растяжимая легочная ткань; 3) грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы. Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами

Вдох - это активный процесс.

После окончания вдоха дыхательные мышцы расслабляются - начинается выдох. Спокойный выдох - пассивный процесс. При физической нагрузке, патологических состояниях, сопровождающихся одышкой (туберкулез легких, бронхиальная астма и т.д.) возникает форсированное дыхание.

Различают грудной и брюшной тип дыхания. При первом дыхание в основном осуществляется за счет межреберных мышц, при втором - за счет мышц диафрагмы. Грудной или реберный тип дыхания характерен для женщин, брюшной или диафрагмальный – для мужчин. Физиологически более выгоден брюшной тип, так как он осуществляется с меньшей затратой энергии. Кроме того, движения органов брюшной полости при дыхании препятствуют их воспалительным заболеваниям. Иногда встречается смешанный тип дыхания.

Легочные объемы и емкости легких.

Легочные объемы:

1. Дыхательный объем (ДО)-количество воздуха, поступающего в легкие за один спокойный вдох (500 мл).

2. Резервный объем вдоха (РОВД) - максимальное количество воздуха, которое человек может вдохнуть после нормального выдоха (2500 мл).

3. Резервный объем выдоха (РОвыд) - максимальное количество воздуха, которое человек может выдохнуть после спокойного вдоха (1000 мл).

4. После максимально глубокого выдоха в легких остается воздух, который называется остаточным объемом (С; 1000 мл).

5. Объем дыхательных путей («мертвое пространство», МП) составляет в среднем 150 мл.

Емкости:

1) общая емкость легких (ОЕЛ) — объем воздуха, находящегося в легких после максимального вдоха — все четыре объема;

2) жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, резервный объем выдоха. ЖЕЛ — это объем воздуха, выдохнутого из легких после максимального вдоха при максимальном выдохе. ЖЕЛ = ОЕЛ — остаточный объем легких. ЖЕЛ составляет у мужчин 3,5 — 5,0 л, у женщин — 3,0 —4,0 л;

3) емкость вдоха (ЕВД) равна сумме дыхательного объема и резервного объема вдоха, составляет в среднем 2,0 — 2,5 л;

4) функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. В легких при спокойном вдохе и выдохе постоянно содержится примерно 2500 мл воздуха, заполняющего альвеолы и нижние дыхательные пути. Благодаря этому газовый состав альвеолярного воздуха сохраняется на постоянном уровне.

Диффузия газов.

Газообмен — совокупность процессов, обеспечивающих переход кислорода внешней среды в ткани живого организма, а углекислого газа из тканей во внешнюю среду.

Перемещение газов осуществляется под влиянием разности парциальных давлений и напряжений этих газов в каждой из сред организма.

Парциальное давление кислорода в воздухе, заполняющем альвеолы легких, около 100 мм рт. ст., а его напряжение в венозной крови, притекающей к легким, около 40 мм рт. ст. Вследствие разности давлений кислород из альвеол направляется в кровь, где связывается с гемоглобином эритроцитов. Парциальное давление углекислого газа в альвеолярном воздухе составляет 40 мм рт. ст., а его напряжение в притекающей к легким венозной крови — 48 мм рт. ст. Вследствие разности давлений углекислый газ переходит в альвеолы.

В артериальной крови, притекающей к тканям, напряжение кислорода выше, чем в тканях, а напряжение углекислого газа, наоборот, значительно ниже. Вследствие этого кислород переходит из крови в ткани и включается в цикл метаболических процессов, а углекислый газ, в избытке содержащийся в тканях, переходит в кровь и переносится затем в лёгкие. Процесс газообмена происходит непрерывно до тех пор, пока существует разность парциальных давлений и напряжений газов в каждой из сред, участвующих в газообмене решающим фактором, обусловливающим непрерывность газообмена, является постоянство газового состава альвеолярного воздуха.

Величина газообмена является показателем интенсивности окислительных процессов, протекающих в тканях. Об уровне газообмена можно судить и по величине минутной вентиляции легких. При спокойном дыхании через легкие проходит около 8000 мл воздуха в 1 мин. При физических и эмоциональных напряжениях, различных заболеваниях, сопровождающихся усилением окислительных процессов в тканях, легочная вентиляция возрастает.

Вентиляционно-перфузионные отношения в разных отделах легкого.

Кровоток в капиллярах легких и легочная вентиляция неодинаковы в различных отделах и зависят от положения тела.

Основное влияние на распределение перфузии в легких оказывает гравитация, что обусловлено низким АД в системе малого круга кровообращения (15-20 мм рт. ст.). Поэтому при любом положении тела в пространстве нижние отделы легких по сравнению с верхними будут иметь больший кровоток.

Зависимость перфузии от сил гравитации более выражена, чем у вентиляции, что определяет и характер изменения вентиляционно-перфузионных отношений по направлению от верхушек к основанию легких. Нормальная альвеолярная вентиляция (VA) у взрослых составляет ~ 4 л/мин, а общая легочная перфузия (Q) ~ 5 л/мин. Следовательно, отношение величин вентиляции и перфузии будет равно 4/5, или 0,8. Изменение отношения YA /Q будет отражать степень гипервентиляции (гипоперфузии) или гиперперфузии (гиповентиляции) в целом легком или в его отдельных зонах.

Распределение вентиляции зависит от нескольких факторов. Основным является растяжимость легочной ткани, которая неодинакова в различных легочных зонах.

Транспорт кислорода.

Транспорт О2 осуществляется в физически растворенном и хи­мически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2.

Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентраци­онного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Давление газов в воде или в тканях организма обозначают тер­мином «напряжение газов» и обозначают символами Ро2, Рсo2.

Транспорт О2 начинается в капиллярах легких после его хими­ческого связывания с гемоглобином. Гемоглобин (Нb) способен избирательно связывать О2 и образо­вывать оксигемоглобин (НbО2) в зоне высокой концентрации О2 в легких и освобождать молекулярный О2 в области пониженного содержания О2 в тканях. При этом свойства гемоглобина не изме­няются и он может выполнять свою функцию на протяжении дли­тельного времени.

Гемоглобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемоглобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемоглобином, до окисленной (Нb + О2 à НbО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном Рог в альвеолярном воздухе; 2) способности отдавать О2 в тканях (НbО2 à Нb + О2) в зависимости от метаболических потребностей клеток организма.

Зависимость степени оксигенации гемоглобина от парциального давления Ог в альвеолярном воздухе графически представляется в виде кривой диссоциации оксигемоглобина, или сатурационной кри­вой. Плато кривой диссоциации характерно для насы­щенной О2 (сатурированной) артериальной крови, а крутая нисхо­дящая часть кривой — венозной, или десатурированной, крови в тканях.

На сродство кислорода к гемоглобину влияют различные мета­болические факторы, что выражается в виде смещения кривой дис­социации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2 pH, температурой и внутриклеточной концентрацией 2,3-дифосфоглицерата. Величина рН и содержание СО2 в любой части организма закономерно изменяют сродство гемоглобина к О2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к О2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к О2). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного со­держания СО2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».

Рост температуры уменьшает сродство гемоглобина к О2. В ра­ботающих мышцах увеличение температуры способствует освобож­дению О2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации окси­гемоглобина.

Метаболические факторы являются основными регуляторами связывания О2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СО2 в крови повышает сродство гемоглобина к О2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к О2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате О2 по концентрацион­ному градиенту поступает из крови тканевых капилляров в ткани организма.

Оксид углерода (II) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с О2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у О2) блокируют один или более атомов железа в молекуле гема, изменяя сродство Нb к О2.

Под кислородной емкостью крови понимают количество Ог, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль*л-1 кислородная емкость крови составляет 0,19 мл О2 в 1 мл крови (температура 0oC и барометрическое давление 760 мм рт.ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемо­глобина, 1 г которого связывает 1,36—1,34 мл О2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л О2. Физически растворенного в 1 мл плазмы крови О2 очень мало (около 0,003 мл), что не может обеспечить кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л-1*кПа-1.

Обмен О2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт.ст., или 13,3 кПа) и тканями (около 40 мм рт.ст., или 5,3 кПа) равен в среднем 60 мм рт.ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации О2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода называется количе­ство О2, отданного при прохождении крови через тканевые капил­ляры, отнесенное к кислородной емкости крови.

С другой стороны, известно, что при напряжении О2 в артери­альной крови капилляров, равном 100 мм рт.ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт.ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт.ст. (0,06 кПа).

Транспорт углекислого газа.

Углекислый газ является конечным продуктом клеточного метаболизма. Он образуется в тканях, диффундирует в кровь и переносится кровью к легким в 3 формах: растворенной в плазме, в составе бикарбонатов и в виде карбаминовых соединений эритроцитов.

В венозной крови, притекающей к капиллярам легких, напряжение СО2 составляет в среднем 46 мм рт.ст., а в альвеолярном воздухе парциальное давление СО2 равно в среднем 40 мм рт.ст., что обеспечивает диффузию СО2 из плазмы крови в альвеолы легких по концентрационному градиенту.

От парциального напряжения физически растворенного углекислого газа зависит процесс связывания С02 кровью. Углекислота поступает в эритроцит, где имеется фермент карбоангидраза, который может в 10 000 раз увеличить скорость образования угольной кислоты. Пройдя через эритроцит, угольная кислота превращается в бикарбонат и переносится к легким.

Эритроциты переносят в 3 раза больше С02, чем плазма. Белки плазмы составляют 8 г на 100 см3 крови, гемоглобина же содержится в крови 15 г на 100 см3. Большая часть С02 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена С02.

Кроме физически растворенного в плазме крови молекулярного С02 из крови в альвеолы легких диффундирует С02, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью содержащегося в эритроцитах фермента карбоангидразы. Этот фермент в плазме отсутствует. Бикарбонаты плазмы для освобождения С02 должны сначала проникнуть в эритроциты, чтобы подвергнуться действию карбоангидразы.

III. Решать ситуационные задачи:

Методом спирометрии обследованы 2 практически здоровых мужчины в возрасте 25 лет с одинаковыми антропометрическими данными. У одного из них величина жизненной емкости легких (ЖЕЛ) составила 4,0 л, у другого – 5,5 л.

При комплексном обследовании пациента 30 лет было установлено, что общая ёмкость легких у него составила 5000 мл, жизненная емкость легких – 3500 мл, резервный объем вдоха – 2000 мл, дыхательный объем – 500 мл.

При отравлении человека угарным газом происходит снижение кислородной емкости крови. В этих случаях используют метод лечения чистым кислородом под повышенным давлением (гипербарическая оксигенация), для чего пациента помещают в барокамеру, в которой он дышит при давлении кислорода в 3-4 атмосферы.

Что такое кислородная емкость крови и чему она равна в норме? Почему при отравлении угарным газом происходит ее снижение? С какой целью следует проводить гипербарическую оксигенацию при отравлении угарным газом?

Кислородная емкость крови КЕК – максимальное содержание кислорода в 100 мл крови = 20, 1 мл. Когда угарный газ связывается с гемоглобином, снижается сродство гемоглобина с кислородом, и он не переносит кислород к тканям.

Гипербарическая оксигенация – метод насыщения организма кислородом под повышенным давлением.

Функция внешнего дыхания. Биомеханика дыхательных движений.

Внешнее дыхание или вентиляция – это обмен дыхательных газов между атмосферным воздухом и альвеолами;

Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха (inspiratio) и выдоха (exspiratio), между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту.

В дыхательных движениях участвуют три анатомо-функциональных образования: 1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне; 2) эластичная и растяжимая легочная ткань; 3) грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы. Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами

Вдох - это активный процесс.

После окончания вдоха дыхательные мышцы расслабляются - начинается выдох. Спокойный выдох - пассивный процесс. При физической нагрузке, патологических состояниях, сопровождающихся одышкой (туберкулез легких, бронхиальная астма и т.д.) возникает форсированное дыхание.

Различают грудной и брюшной тип дыхания. При первом дыхание в основном осуществляется за счет межреберных мышц, при втором - за счет мышц диафрагмы. Грудной или реберный тип дыхания характерен для женщин, брюшной или диафрагмальный – для мужчин. Физиологически более выгоден брюшной тип, так как он осуществляется с меньшей затратой энергии. Кроме того, движения органов брюшной полости при дыхании препятствуют их воспалительным заболеваниям. Иногда встречается смешанный тип дыхания.

Дата: 2019-04-23, просмотров: 212.