ВАРИАНТ 2
ЧАСТЬ 1
1. Решите уравнение
. В ответе напишите наименьший положительный корень.
2. Материальная точка движется прямолинейно по закону
(где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). Найдите ее скорость в (м/с) в момент времени
с.
3. На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
4. На рисунке изображен график функции f(x), определенной на интервале (−5; 5). Найдите количество точек, в которых производная функции f(x) равна 0.

5. В прямоугольном параллелепипеде
известно, что
Найдите длину ребра
.
6.
В правильной четырехугольной пирамиде
точка
– центр основания,
– вершина,
,
. Найдите боковое ребро
.
7. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

8. Найдите
, если
и
.
9. Найдите значение выражения 
10. Небольшой мячик бросают под острым углом
к плоской горизонтальной поверхности земли. Максимальная высота полeта мячика, выраженная в метрах, определяется формулой
, где
м/с – начальная скорость мячика, а
– ускорение свободного падения (считайте
м/с
). При каком наименьшем значении угла
(в градусах) мячик пролетит над стеной высотой 4 м на расстоянии 1 м?
11. Найдите наименьшее значение функции
на отрезке 
12. Найдите точку максимума функции
, принадлежащую промежутку 
ЧАСТЬ 2
С1 а) Решите уравнение 
б) Найдите все корни этого уравнения, принадлежащие промежутку 
С2 Сторона основания правильной треугольной призмы
равна
, а диагональ боковой грани равна
Найдите угол между плоскостью
и плоскостью основания призмы.
Решение.
Задача сводится к решению неравенства
на интервале
при заданных значениях начальной скорости
и ускорения свободного падения
:

.
Ответ: 30.
Ответ: 30
Решение.
в правильной пирамиде вершина проецируется в центр основания, следовательно
является высотой пирамиды. тогда по теореме Пифагора

Ответ: 17.
Ответ: 17
ПЕРЕВОДНОЙ ЭКЗАМЕН ПО МАТЕМАТИКЕ 10 класс
ВАРИАНТ 3
ЧАСТЬ 1
1. Решите уравнение
. В ответе напишите наибольший отрицательный корень.
2. Материальная точка движется прямолинейно по закону
(где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения). В какой момент времени (в секундах) ее скорость была равна 2 м/с?
3. На рисунке изображён график функции y=f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Решение.
Значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс. Построим треугольник с вершинами в точках A (1; 2), B (1; −4), C(−2; −4). Угол наклона касательной к оси абсцисс будет равен углу ACB:

Ответ: 2.
Ответ: 2
4. На рисунке изображен график производной функции
. Найдите абсциссу точки, в которой касательная к графику
параллельна оси абсцисс или совпадает с ней. 
Решение.
Значение производной в точке касания равно угловому коэффициенту касательной. Поскольку касательная параллельна оси абсцисс или совпадает с ней, она имеет вид
, и её угловой коэффициент равен 0. Следовательно, мы ищем точку, в которой угловой коэффициент, равен нулю, а значит, и производная равна нулю. Производная равна нулю в той точке, в которой её график пересекает ось абсцисс. Поэтому искомая точка
.
Ответ: -3.
Ответ: -3
5. В прямоугольном параллелепипеде
известно, что
Найдите длину ребра
.
6.
В правильной четырехугольной пирамиде
точка
— центр основания,
— вершина,
,
. Найдите длину отрезка
.
Решение.
В правильной пирамиде вершина проецируется в центр основания, следовательно, SO является высотой пирамиды. Тогда по теореме Пифагора

Ответ: 16.
Ответ: 16
7. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

8. Найдите
, если
и
.
9. Найдите значение выражения
.
10. Небольшой мячик бросают под острым углом
к плоской горизонтальной поверхности земли. Расстояние, которое пролетает мячик, вычисляется по формуле
(м), где
м/с – начальная скорость мячика, а
– ускорение свободного падения (считайте
м/с
). При каком наименьшем значении угла (в градусах) мячик перелетит реку шириной 20 м?
11. Найдите наименьшее значение функции
на отрезке
.
12. Найдите точку максимума функции
ЧАСТЬ 2
С1 а) Решите уравнение 
б) Найдите все корни этого уравнения, принадлежащие промежутку 
С2 В прямоугольном параллелепипеде
известны ребра:
Найдите угол между плоскостями
и
Дата: 2019-05-29, просмотров: 362.