МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ

 

 

Екатеринбург 2005


Содержание

 

РАБОТА 1. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ТЕКСТОВ

РАБОТА 2. РЕАЛИЗАЦИЯ СИММЕТРИЧНОГО КРИПТОАЛГОРИТМА

РАБОТА 3. АЛГОРИТМ AES

1. ПОСТАНОВКА ЗАДАЧИ

2. ОПИСАНИЕ АЛГОРИТМА

2.1 ВЫЧИСЛЕНИЕ КЛЮЧА РАУНДА

2.2 S-БЛОК

2.3 ПРЕОБРАЗОВАНИЕ ShiftRow

2.4 ПРЕОБРАЗОВАНИЕ MixColumn

2.5 СЛОЖЕНИЕ С КЛЮЧОМ РАУНДА

2.6 ПОЛНАЯ ПРОЦЕДУРА ЗАШИФРОВАНИЯ БЛОКА

2.7 РАСШИФРОВАНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

РАБОТА 4. КРИПТОСИСТЕМА PGP

1. ХАРАКТЕРИСТИКА PGP

2. КАК PGP РАБОТАЕТ

3. ОСНОВНЫЕ ШАГИ В ИСПОЛЬЗОВАНИИ PGP

4. ИНСТАЛЛЯЦИЯ PGP

5. ГЕНЕРАЦИЯ КЛЮЧЕЙ

6. КАК ПОСЛАТЬ ЗАШИФРОВАННОЕ СООБЩЕНИЕ

7. РАСШИФРОВКА СООБЩЕНИЙ

РАБОТА 5. ВИРУСЫ И АНТИВИРУСНЫЕ ПРОГРАММЫ

РАБОТА 6. ИССЛЕДОВАНИЕ СИСТЕМЫ БЕЗОПАСНОСТИ ОС

РАБОТА 7. ЗАЩИТА ОТ СЕТЕВЫХ АТАК

 




РАБОТА 2. РЕАЛИЗАЦИЯ СИММЕТРИЧНОГО КРИПТОАЛГОРИТМА

 

Реализовать симметричный криптоалгоритм на основе простого гамиирования и с использованием сети Фейстеля. Для реализации последнего применить программу diskreet.

Провести статистический анализ открытых текстов и шифртекстов.

Пакет Norton Utilities содержит программу DISKREET, которая позволяет обеспечить защиту и шифровку файлов и создания виртуальных зашифрованных дисков. Для шифровки и защиты программы (файла) от несанкционированного доступа необходимо запустить программу DISKREET, указать в меню пункт Файл, указать путь шифруемого программного файла (с расширением com или exe), задать новое имя шифруемого файла, несколько отличающееся от старого, ввести пароль (не менее 6 символов), подтвердить его и запустить программу DISKREET, которая зашифрует файл и даст ему новое имя. Старый незашифрованный файл надо удалить. Для запуска зашифрованной программы надо расшифровать полученный новый файл при помощи программы DISKREET, запустив ее и введя пароль. С помощью программы DISKREET можно также зашифровать и текстовый файл (*. txt), который без расшифровки программой DISKREET нельзя будет прочитать при нажатии на клавишу F3. Зашифрованный текстовый файл должен иметь имя, отличающееся от исходного.



РАБОТА 3. АЛГОРИТМ AES

 

ПОСТАНОВКА ЗАДАЧИ

 

Разработать программное обеспечение, реализующее симметричный блочный алгоритм шифрования с переменной длинной блока и ключа Rijndael - улучшенный стандарт шифрования AES.

Использовать среду разработки Visual C++.

Составить описание алгоритма и описание особенностей непосредственной реализации алгоритма.

ОПИСАНИЕ АЛГОРИТМА

 

Rijndael - это симметричный блочный алгоритм шифрования с переменной длиной блока и ключа. Длины блока и ключа могут принимать значения 128, 192 и 256, причем в любой комбинации, варьируемое значение длины ключа составляет одно из достоинств стандарта AES, а вот "официальная" длина блока - только 128 бит.

Каждый блок открытого текста зашифровывается несколько раз в так называемых раундах (round) с помощью повторяющейся последовательности различных функций. Число раундов зависит от длины блока и ключа (см. таблицу 1).

 

Таблица 1 Число раундов в алгоритме Rijndael как функция от длины блока и ключа

Длина ключа в битах

Длина блока (в битах)

128 192 256
128 10 12 14
192 12 12 14
256 14 14 14

 

Rijndael не относится к алгоритмам на сетях Фейстеля, которые характеризуются тем, что блок текста разбивается на левую и правую половины, затем преобразование раунда применяется к одной половине, результат складывается по модулю 2 с другой половиной, после чего эти половины меняются местами. Самым известным блочным алгоритмом из этой серии является DES. Rijndael, напротив, состоит из отдельных уровней, каждый из которых по-своему воздействует на блок в целом. Для зашифрования блока последовательно выполняются следующие преобразования:

Первый раундовый ключ складывается с блоком по модулю 2 (XOR).

Выполняются Lr - 1 обычных раундов.

 

Подстановка (S-блок)

ShiftRow
MixColumn
Сложение с раундовым ключом

Рис.1. Уровни преобразования внутри одного раунда алгоритма Rijndael

 

Выполняется завершающий раунд, в котором, в отличие от обычного, отсутствует преобразование MixColumn.

Каждый обычный раунд на этапе 2 состоит из четырех отдельных шагов.

Подстановка. Каждый байт блока заменяется значением, которое определяется S-блоком.

Перестановка. Байты в блоке переставляются с помощью преобразования ShiftRow.

Перемешивание. Выполняется преобразование MixColumn.

Сложение с раундовым ключом. Текущий раундовый ключ складывается с блоком по модулю 2.

Каждый уровень оказывает на каждый из блоков открытого текста определенное воздействие.

1. Влияние ключа

Сложение текста с ключом до первого раунда и на последнем шаге внутри каждого раунда влияет на каждый бит результата раунда. В процессе зашифрования результат каждого шага в каждом бите зависит от ключа.

2. Нелинейный уровень

Операция подстановки в S-блоке является нелинейной. Строение S-блоков обеспечивает почти идеальную защиту от дифференциального и линейного криптоанализа.

3. Линейный уровень

Преобразования ShiftRow и MixColumn обеспечивают максимальное перемешивание битов в блоке.

Далее в описании внутренних функций алгоритма Rijndael, через Lb будем обозначать длину блока в четырехбайтовых словах, через Lk - длину ключа пользователя в четырехбайтовых словах (то есть Lb, Lk Î {4, 6, 8}) и через Lr - число раундов (см. таблицу 1).

Открытый и зашифрованный тексты представлены в виде полей байтов и являются соответственно входом и выходом алгоритма.

Блок открытого текста, обрабатываемый как поле m0,..., m4Lb-1, представлен в виде двумерной структуры B (см. таблицу 2). в которой байты открытого текста отсортированы в следующем порядке:

 

т.е. , где i = n mod 4 и; j = ën/4û.

 

Таблица 2

b0,0 b0,1 b0,2 b0,3 b0,4 b0,Lb-1
b1,0 b1,1 b1,2 b1,3 b1,4 b1,Lb-1
b2,0 b2,1 b2,2 b2,3 b2,4 b2,Lb-1
b3,0 b3,1 b3,2 b3,3 b3,4 b3,Lb-1

 

Доступ к структуре B в функциях алгоритма Rijndael осуществляется по-разному, в зависимости от операции. S-блок оперирует с битами, ShiftRow - со строками (bi,0, bi,1, bi,2, …, bi,Lb-1) структуры B, а функции AddRoundKey и MixColumn - с четырехбайтовыми словами, обращаясь к столбцам .

 

ВЫЧИСЛЕНИЕ КЛЮЧА РАУНДА

 

И для зашифрования, и для расшифрования требуется сгенерировать Lr раундовых ключей, совокупность которых называется разверткой ключа (key schedule). Развертка строится путем присоединения к секретному ключу пользователя, рекурсивно получаемых: четырехбайтовых слов

 

.

 

Первые Lk слов  развертки ключа - это сам секретный ключ пользователя. Для Lk Î {4, 6} очередное четырехбайтовое слово ki определяется как сумма по модулю 2 предыдущего слова ki-1 со словом ki-Lk. При i º 0 mod Lk перед операцией XOR нужно применить функцию FLk (k, i), которая включает в себя циклический сдвиг k байтов влево (операция r (k)), подстановку S (r (k)) с использованием S-блока алгоритма Rijndael (к этой операции мы еще вернемся) и сложение по модулю 2 с константой c (ëi/Lkû). Итоговое уравнение функции F таково:

 

FLk (k, i) = S (r (k)) Å c (ëi/Lkû).

 

Константы c (j) задаются равенством c (j) = (rc (j), 0, 0, 0), где значения rc (j) определяются рекурсивно как элементы поля F28:

 

rc (1) = 1, rc (j) = rc (j-1) х = хj-1.

 

Или в виде численных значений:

 

rc (1) = '01’, rc (j) = rc (j-1) •'02'.

 

Программно значение rc (j) реализуется (j - 1) - кратным рекурсивным вызовом функции xtime, с начальным значением аргумента, равным 1 или более быстро - с использованием таблицы предвычислений (см. таблицу 3).

 

Таблица 3. Константы rc (j) (в шестнадцатеричном виде)

'01’ '02' '04' '08' '10' '20' '40' '80' '1B' '36'
'6C 'D8' 'AB' '4D' '9A' '2F' '5E' 'ВС '63' 'C6'
'97' '35' '6A' 'D4' 'B3' 7O' 'FA' 'EF' 'C5 '91'

 

Для ключей длины 256 бит (то есть при Lk = 8) введена дополнительная операция подстановки: при i º 4 mod Lk перед операцией XOR значение ki-1 заменяется на s (ki-1).

Таким образом, развертка ключей состоит из Lb (Lr + 1) четырехбайтовых слов, включая и секретный ключ пользователя. На каждом раунде i = 0,..., Lr - 1 очередные Lb, четырехбайтовых слова с kLbi по kLb (I+1) выбираются из развертки и используются в качестве ключа раунда. Раундовые ключи рассматриваются, по аналогии с блоками открытого текста, как двумерная структура (см. таблицу 4).

 

Таблица 4. Представление раундовых ключей

k0,0 k 0,1 k 0,2 k 0,3 k 0,4 k 0,Lb-1
k 1,0 k 1,1 k 1,2 k 1,3 k 1,4 k 1,Lb-1
k 2,0 k 2,1 k 2,2 k 2,3 k 2,4 k 2,Lb-1
k 3,0 k 3,1 k 3,2 k 3,3 k 3,4 k 3,Lb-1

 

Для ключей длины 128 бит процесс генерации ключа изображен на рис.2.

 

Рис.2. Диаграмма раундовых ключей для Lk = 4

 

Пока не известны слабые ключи, использование которых неблагоприятно сказалось бы на стойкости алгоритма Rijndael

S-БЛОК

 

Блок подстановки, или S-блок алгоритма Rijndael показывает, каким значением следует заменять каждый байт блока текста на каждом раунде. S-блок представляет собой список из 256 байтов. Сначала каждый ненулевой байт рассматривается как элемент поля F28 и заменяется мультипликативно обратным (нулевые байты остаются неизменными). Затем выполняется следующее аффинное преобразование над полем F2 путем умножения на матрицу и сложения с вектором (11000110):

 

 

Здесь через х0 и у0 обозначены младшие, а через х7 и у7 - старшие биты в байте; вектор (11000110) длины 8 соответствует шестнадцатеричному числу '63'.

S-блок построен так, чтобы свести к минимуму чувствительность алгоритма к дифференциальному и линейному методам криптоанализа, а также к алгебраическим атакам. Последовательно применяя приведенную выше процедуру к числам от 0 до 255, получаем таблицу 5 (значения идут по строкам слева направо).

 

Таблица 5. Значения S-блока

99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118
202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192
183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21
4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117
9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132
83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207
208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168
81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210
205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115
96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219
224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121
231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8
186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138
112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158
225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223
140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22

 

При расшифровании порядок действий меняется на противоположный. Сначала выполняется обратное аффинное преобразование, затем мультипликативное обращение в поле F28. Обратный S-блок приведен в таблице 6.

 

Таблица 6. Значения обратного S-блока

82 9 106 213 48 54 165 56 191 64 163 158 129 243 215 251
124 227 57 130 155 47 255 135 52 142 67 68 196 222 233 203
84 123 148 50 166 194 35 61 238 76 149 11 66 250 195 78
8 46 161 102 40 217 36 178 118 91 162 73 109 139 209 37
114 248 246 100 134 104 152 22 212 164 92 204 93 101 182 146
108 112 72 80 253 237 185 218 94 21 70 87 167 141 157 132
144 216 171 0 140 188 211 10 247 228 88 5 184 179 69 6
208 44 30 143 202 63 15 2 193 175 189 3 1 19 138 107
58 145 17 65 79 103 220 234 151 242 207 206 240 180 230 115
150 172 116 34 231 173 53 133 226 249 55 232 28 117 223 110
71 241 26 113 29 41 197 137 111 183 98 14 170 24 190 27
252 86 62 75 198 210 121 32 154 219 192 254 120 205 90 244
31 221 168 51 136 7 199 49 177 18 16 89 39 128 236 95
96 81 127 169 25 181 74 13 45 229 122 159 147 201 156 239
160 224 59 77 174 42 245 176 200 235 187 60 131 83 153 97
23 43 4 126 186 119 214 38 225 105 20 99 85 33 12 125


ПРЕОБРАЗОВАНИЕ ShiftRow

 

Следующий шаг раунда - перестановка байтов в блоке. Порядок байтов меняется в строке (bi,0, bi,1, bi,2,..., bi,Lb-1) структуры В в соответствии с таблицами 7-9.

Операция ShiftRow для блоков длины 128 бит (Lb = 4)

 

До операции ShiftRow
0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

 

После операции ShiftRow
0 4 8 12
5 9 13 1
10 14 2 6
15 3 7 11

 

 

Операция ShiftRow для блоков длины 192 бит (Lb = 6)

 

До операции ShiftRow
0 4 8 12 16 20
1 5 9 13 17 21
2 6 10 14 18 22
3 7 11 15 19 23

 

После операции ShiftRow
0 4 8 12 16 20
5 9 13 17 21 1
10 14 18 22 2 6
15 19 23 3 7 11

 

 

Операция ShiftRow для блоков длины 256 бит (Lb = 8)

 

До операции ShiftRow
0 4 8 12 16 20 24 28
1 5 9 13 17 21 25 29
2 6 10 14 18 22 26 30
3 7 11 15 19 23 27 31

 

После операции ShiftRow
0 4 8 12 16 20 24 28
5 9 13 17 21 25 29 1
14 18 22 26 30 2 6 10
19 23 27 31 3 7 11 15

 

 

Все нулевые строки остаются без изменений. В строках i = 1,2,3 байты циклически сдвигаются влево на cLb, i позиций: с позиции с номером j на позицию с номером j - cLb, i mod Lb, где значение cLb, i определяется по таблице 10.

Таблица 10. Размер сдвига строк в операции ShiftRow

Lb cLb,1 cLb,2 cLb,3
4 1 2 3
6 1 2 3
8 1 3 4

 

При обратном преобразовании позиция с номером j в строках i = 1,2,3 сдвигается на позицию с номером j + cLb, i mod Lb.

 

ПРЕОБРАЗОВАНИЕ MixColumn

 

После того как выполнена последняя построчная перестановка, на следующем шаге каждый столбец (bi,j) блока текста, где i = 0,...,3, j = 0,...,Lb, представляется в виде полинома над полем F28 и умножается на фиксированный полином a (x) = а3x3 + а2x2 + а1x + a0 с коэффициентами a0 (x) =x, a1 (x) = 1, a2 (x) = 1, a3 (x) = х + 1. Затем вычисляется остаток от деления полученного произведения на модуль М (х) = х4 + 1. Таким образом, каждый байт столбца взаимодействует со всеми остальными байтами столбца. При построковом преобразовании ShiftRow на каждом раунде байты взаимодействуют друг с другом в других комбинациях. То есть эти две операции дают сильное перемешивание.

Этот шаг можно свести к умножению на матрицу:

 

 

Умножение на '02' (соответственно на х) мы уже реализовали в виде функции xtime (см. таблицу 3). Умножение на '03' (соответственно на х + 1) тоже сделано по аналогии.

Для обращения преобразования MixColumn умножаем каждый столбец (bi,j) блока текста на полином г (х) = r3х3 + r2х2 + r1х + r0 с коэффициентами r0 (х) =х3 + х2 + х, r1 (х) = х3 + 1, r2 (х) = х3 + х2 + 1, r3 (х) = х3 + х + 1 и приводим результат по модулю М (х) = х4 + 1. Соответствующая матрица имеет вид:

 

 

СЛОЖЕНИЕ С КЛЮЧОМ РАУНДА

 

На последнем шаге цикла раундовый ключ складывается по модулю 2 с блоком текста:

 

 

РАСШИФРОВАНИЕ

 

При расшифровании алгоритмом Rijndael процесс зашифрования выполняется в обратном порядке с обратными преобразованиями. Вот эти обратные функции:

InvFinalRound (word State, word RoundKey)

{

AddRoundKey (State, RoundKey);

InvShiftRow (State);

InvByteSub (State);

}

InvRound (word State, word RoundKey)

{

AddRoundKey (State, RoundKey);

InvMixColumn (State);

InvShiftRow (State);

InvByteSub (State);

}

Полная процедура расшифрования выглядит следующим образом:

InvRijndael (byte State, byte CipherKey)

{

KeyExpansion (CipherKey, ExpandedKey);

InvFinalRound (State, ExpandedKey + Nb*Nr);

for (i = Nr - 1; i > 0; i--)

InvRound (State, ExpandedKey + Nb*i);

AddRoundKey (State, ExpandedKey);

}

Алгебраическая структура алгоритма Rijndael позволяет упорядочить преобразования зашифрования так, что и для них можно будет использовать таблицы. Заметим, что подстановка S и преобразование ShiftRow коммутируют, поэтому внутри одного раунда их можно поменять местами. Благодаря свойству гомоморфизма  линейных преобразований, операции InvMixColumn и сложение с раундовым ключом можно тоже поменять местами. В пределах одного раунда это выглядит так:

InvFinalRound (word State, word RoundKey)

{

AddRoundKey (State, RoundKey);

InvByteSub (State);

InvShiftRow (State);

}

InvRound (word State, word RoundKey)

{

InvMixColumn (State);

AddRoundKey (State, InvMixColumn (RoundKey));

InvByteSub (State);

InvShiftRow (State);

}

Если порядок функций не менять, то их можно переопределить:

AddRoundKey (State, RoundKey);

InvRound (word State, word RoundKey)

{

InvByteSub (State);

InvShiftRow (State);

InvMixColumn (State);

AddRoundKey (State, InvMixColumn (RoundKey));

}

InvFinalRound (word State, word RoundKey)

{

InvByteSub (State);

InvShiftRow (State);

AddRoundKey (State, RoundKey);

}

Отсюда получаем структуру, аналогичную зашифрованию. Из соображений эффективности в процедуре lnvRound () отложим применение функции InvMixColumn к раундовому ключу до вычисления развертки, в которой первый и последний раундовые ключи из InvMixColumn оставим без изменений. "Обратные" раундовые ключи генерируются процедурой

InvKeyExpansion (byte CipherKey, word InvEpandedKey)

{

KeyExpansion (CipherKey, InvExpandedKey);

for (i = 1; i < Nr; i++)

InvMixColumn (InvExpandedKey + Nb*i);

}

Теперь полная процедура расшифрования выглядит так:

InvRijndael (byte State, byte CipherKey)

{

InvKeyExpansion (CipherKey, InvExpandedKey);

AddRoundKey (State, InvExpandedKey + Nb*Nr);

for (i = Nr-1; i>0; i--)

InvRound (State, InvExpandedKey + Nb*i);

InvFinalRound (State, InvExpandedKey);

}

По аналогии с зашифрованием можно и для расшифрования составить таблицы предвычислений. С помощью следующих преобразований:

 

 

(где w = 0,...,255; S-1 (w) - обратный S-блок подстановки) получаем результат обратного раундового преобразования блока  j = 0,..., Lb - 1:

 

,

 

где  и  - j-й столбец "обратного" раундового ключа.

Здесь на последнем раунде тоже не выполняется преобразование MixColumn, и результатом последнего раунда будет

 

,

 

где j = 0,…,Lb -1.

Для экономии памяти для расшифрования также можно составить таблицу всего из 256 четырехбайтовых слов, в которой

 

,

 

где r (а,b,c,d) = (d,a,b, с) - циклический сдвиг вправо на один байт.



БИБЛИОГРАФИЧЕСКИЙ СПИСОК

 

1. М. Вельшенбах. Криптография на Си и С++ в действии. М.: ТРИУМФ, 2004.

2. М. Яхтсмен. Теория и практика информационной безопасности. Под редакцией Зегжды П.Д. 1996.

3. Методы и средства защиты компьютерной информации. Методические указания к лабораторным работам для студентов специальности 220100 - Вычислительные машины, комплексы, системы и сети и направления 552800 - Информатика и вычислительная техника Сост.С. С. Соколов.

4. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005.33 с.



РАБОТА 4. КРИПТОСИСТЕМА PGP

 

Задание: провести шифрование и расшифрование текстов с помощью криптосистемы PGP.

ХАРАКТЕРИСТИКА PGP

 

PGP (Pretty Good Privacy) - это криптографическая (шифровальная) программа с высокой степенью надежности, которая позволяет пользователям обмениваться информацией в электронном виде в режиме полной конфиденциальности.

Главное преимущество этой программы состоит в том, что для обмена зашифрованными сообщениями пользователям нет необходимости передавать друг другу тайные ключи, т.к эта программа построена на новом принципе работы - публичной криптографии или обмене открытыми (публичными) ключами, где пользователи могут открыто посылать друг другу свои публичные ключи с помощью сети "Интернет" и при этом не беспокоиться о возможности несанкционированного доступа каких-либо третьих лиц к их конфиденциальным сообщениям.

В PGP применяется принцип использования двух взаимосвязанных ключей: открытого и закрытого. К закрытому ключу имеете доступ только вы, а свой открытый ключ вы распространяете среди своих корреспондентов.

Еще одно преимущество этой программы состоит также в том, что она бесплатная и любой пользователь, имеющий доступ к Интернету, может ее закачать на свой компьютер в течение получаса. PGP шифрует сообщение таким образом, что никто кроме получателя сообщения, не может ее расшифровать. Создатель PGP Филипп Циммерман открыто опубликовал код программы, который неоднократно был исследован специалистами крипто-аналитиками высочайшего класса и ни один из них не нашел в программе каких-либо слабых мест.

Филипп Циммерман следующим образом объясняет причину создания программы: "Людям необходима конфиденциальность. PGP распространяется как огонь в прериях, раздуваемый людьми, которые беспокоятся о своей конфиденциальности в этот информационный век. Сегодня организации по охране прав человека используют программу PGP для защиты своих людей за рубежом. Организация Amnesty International также использует ее". Пользователям сети Интернет рекомендуется использовать эту программу именно по той же причине, почему люди предпочитают посылать друг другу письма в конвертах, а не на открытках, которые могут быть легко прочитаны почтовыми служащими. Дело в том, что электронные сообщения, в том виде и формате, который существует на сегодняшний день, легко могут быть прочитаны и архивированы любым человеком, имеющим доступ к серверу Интернет провайдера (поставщика услуг сети Интернет). В настоящий момент спецслужбам проще и дешевле подключиться к электронным адресам большого количества лиц, нежели к телефонным разговорам. Здесь вообще ничего делать не надо. Все сделает компьютер. Агенту спецслужбы или другому заинтересованному человеку остается только сесть за компьютер и просмотреть все ваши сообщения. Научно-технический прогресс облегчил задачу таким людям, однако, этот же самый прогресс предоставил возможность пользователям сети Интернет скрыть свои сообщения от третьих лиц таким образом, что даже суперкомпьютер стоимостью несколько десятков миллионов долларов не способен их расшифровать.

 



КАК PGP РАБОТАЕТ

 

Когда пользователь шифрует сообщение с помощью PGP, то программа сначала сжимает текст, что сокращает время на отправку сообщения через модем и увеличивает надежность шифрования. Большинство приемов криптоанализа (взлома зашифрованных сообщений) основаны на исследовании рисунков, присущих текстовым файлам, что помогает взломать ключ. Сжатие ликвидирует эти рисунки и таким образом повышает надежность зашифрованного сообщения. Затем PGP генерирует сессионный ключ, который представляет собой случайное число, созданное за счет движений вашей мышки и нажатий на клавиши клавиатуры.

Как только данные будут зашифрованы, сессионный ключ зашифровывается с помощью публичного ключа получателя сообщения, который отправляется к получателю вместе с зашифрованным текстом.

Расшифровка происходит в обратной последовательности. Программа PGP получателя сообщения использует закрытый ключ получателя для извлечения временного сессионного ключа, с помощью которого программа затем дешифрует зашифрованный текст.

Ключи.

В то время как открытый и закрытый ключи взаимосвязаны, чрезвычайно сложно получить закрытый ключ исходя из наличия только открытого ключа, однако это возможно при наличии большой компьютерной мощности. Поэтому крайне важно выбирать ключи подходящего размера: достаточно большого для обеспечения безопасности и достаточно малого для обеспечения быстрого режима работы. Кроме этого, необходимо учитывать личность того, кто намеревается прочитать ваши зашифрованные сообщения, насколько он заинтересован в их расшифровке, каким временем он обладает, и какие у него имеются ресурсы.

Более большие ключи будут более надежными в течение более длительного срока времени. Поэтому если вам необходимо зашифровать информацию с тем, чтобы она хранилась в течение нескольких лет, то необходимо использовать более крупный ключ.

Ключи хранятся на жестком диске вашего компьютера в зашифрованном состоянии в виде двух файлов: одного для открытых ключей, а другого - для закрытых. Эти файлы называются "кольцами" (keyrings). В течение работы с программой PGP вы, как правило, будете вносить открытые ключи ваших корреспондентов в открытые "кольца". Ваши закрытые ключи хранятся в вашем закрытом "кольце". При потере вашего закрытого "кольца" вы не сможете расшифровать любую информацию, зашифрованную с помощью ключей, находящихся в этом "кольце".

Цифровая подпись.

Огромным преимуществом публичной криптографии также является возможность использования цифровой подписи, которая позволяют получателю сообщения удостовериться в личности отправителя сообщения, а также в целостности (верности) полученного сообщения. Цифровая подпись исполняет ту же самую функцию, что и ручная подпись. Однако ручную подпись легко подделать. Цифровую же подпись почти невозможно подделать.

Хэш-функция.

Еще одно важное преимущество использования PGP состоит в том, что PGP применяет так называемую "хэш-функцию", которая действует таким образом, что в том случае какого-либо изменения информации, пусть даже на один бит, результат "хэш-функции" будет совершенно иным. С помощью "хэш-функции" и закрытого ключа создается "подпись", передаваемая программой вместе с текстом. При получении сообщения получатель использует PGP для восстановления исходных данных и проверки подписи.

При условии использования надежной формулы "хэш-функции" невозможно вытащить подпись из одного документа и вложить в другой, либо каким-то образом изменить содержание сообщения. Любое изменение подписанного документа сразу же будет обнаружено при проверке подлинности подписи.

Парольная фраза.

Большинство людей, как правило, знакомы с парольной системой защиты компьютерных систем от третьих лиц. Парольная фраза - это сочетание нескольких слов, которое теоретически более надежно, чем парольное слово. В виду того, что парольная фраза состоит из нескольких слов, она практически неуязвима против так называемых "словарных атак", где атакующий пытается разгадать ваш пароль с помощью компьютерной программы, подключенной к словарю. Самые надежные парольные фразы должны быть достаточно длинными и сложными и должны содержать комбинацию букв из верхних и нижних регистров, цифровые обозначения и знаки пунктуации.

Парольная фраза должна быть такой, чтобы ее потом не забыть и чтобы третьи лица не могли ее разгадать. Если вы забудете свою парольную фразу, то уже никогда не сможете восстановить свою зашифрованную информацию. Ваш закрытый ключ абсолютно бесполезен без знания парольной фразы и с этим ничего не поделаешь.

 

ИНСТАЛЛЯЦИЯ PGP

 

Ниже приводятся заголовки сообщений, появляющиеся при инсталляции программы и команды, которые необходимо исполнять при инсталляции:

PGP Installation program:

Нажмите Next

Software License agreement:

Согласны ли вы с лицензионным соглашением? Если согласны, то тогда нажмите Yes

User information:

Информация о пользователе. Заполните необходимые поля и нажмите Next

Setup: choose installation directory:

Выберите каталог, куда будет проинсталлирована PGP. Если никаких особых пожеланий по этому поводу нет, то нажмите Next

Select components:

Программа инсталляции предлагает выбрать компоненты, которые будут установлены. Обязательны для инсталляции Program Files. Далее вы можете отметить птичкой плагин для той почтовой программы, которой вы пользуетесь. Если ее в списке нет, то ничего помечать не нужно. Можете также пометить файлы документации (User's manual) и программу PGP Disk for Windows (рекомендуется).

Нажмите Next.

Check setup information Пронрамма инсталляции что-то там проверит... Смело жмите Next и начнется копирование файлов на жесткий диск.

Для того чтобы программа автоматически запустила операцию создания ключей после перезагрузки компьютера нажать на кнопку "Yes I want to run PGP keys"

Нажмите Finish и на предложение программы инсталляции о перезапуске компьютеры ответьте положительно.

Компьютер перезапустится и на этом программа установки завершится.

Теперь необходимо сгенерировать два ключа:

public key - открытый ключ private key - закрытый ключ

ГЕНЕРАЦИЯ КЛЮЧЕЙ

 

После перезагрузки компьютера в правом нижнем углу панели задач (возле часов) появится значок PGP. Кликните по нему и выберите Launch PGP Keys

В меню Keys выберите пункт New Key. Нажмите Next и заполните необходимые формы (имя и E-Mail). Нажмите Next

Выберите размер ключа (2048 рекомендуется) и нажмите Next. Поставьте птичку напротив фразы "Key pair never expires" и нажмите Next.

Два раза введите парольную фразу и нажмите Next.

В процессе генерации ключей двигайте случайным образом мышью, можете нажать несколько клавиш на клавиатуре. Это необходимо программе для генерации ключей.

Когда программа выдаст сообщение о том, что процесс генерации закончен, нажмите Next и затем "Done".

На этом процесс создания пары ключей закончился и можно начинать пользоваться программой.

Теперь, после установки программы, необходимо обменяться со своими корреспондентами открытыми ключами. Для этого снова запустите PGP Keys, правой кнопкой мыши кликните файл со своим ключом и выберите пункт Export. Программа предложит вам выбрать путь и имя файла. Этот файл вы должны послать своему корреспонденту, в обмен на его открытый ключ. Когда вы получите необходимый ключт от своего корреспондента, двойным кликом мыши по нему начните процесс импорта (Import). Теперь можно пересылать друг другу зашифрованные сообщения, которые шифруются открытым ключом получателя сообщения.

 

РАСШИФРОВКА СООБЩЕНИЙ

Расшифровка вложений.

Сохраните вложение где-нибудь на жестком диске. Кликните по этому файлу правой кнопкой мыши и выберите пункт "PGP-Decrypt". Программа предложит ввести вашу парольную фразу и, если она была введена корректно, файл будет дешифрован.

 



МЕТОДЫ И СРЕДСТВА ЗАЩИТЫ КОМПЬЮТЕРНОЙ ИНФОРМАЦИИ

 

 

Екатеринбург 2005


Содержание

 

РАБОТА 1. ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ТЕКСТОВ

РАБОТА 2. РЕАЛИЗАЦИЯ СИММЕТРИЧНОГО КРИПТОАЛГОРИТМА

РАБОТА 3. АЛГОРИТМ AES

1. ПОСТАНОВКА ЗАДАЧИ

2. ОПИСАНИЕ АЛГОРИТМА

2.1 ВЫЧИСЛЕНИЕ КЛЮЧА РАУНДА

2.2 S-БЛОК

2.3 ПРЕОБРАЗОВАНИЕ ShiftRow

2.4 ПРЕОБРАЗОВАНИЕ MixColumn

2.5 СЛОЖЕНИЕ С КЛЮЧОМ РАУНДА

2.6 ПОЛНАЯ ПРОЦЕДУРА ЗАШИФРОВАНИЯ БЛОКА

2.7 РАСШИФРОВАНИЕ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

РАБОТА 4. КРИПТОСИСТЕМА PGP

1. ХАРАКТЕРИСТИКА PGP

2. КАК PGP РАБОТАЕТ

3. ОСНОВНЫЕ ШАГИ В ИСПОЛЬЗОВАНИИ PGP

4. ИНСТАЛЛЯЦИЯ PGP

5. ГЕНЕРАЦИЯ КЛЮЧЕЙ

6. КАК ПОСЛАТЬ ЗАШИФРОВАННОЕ СООБЩЕНИЕ

7. РАСШИФРОВКА СООБЩЕНИЙ

РАБОТА 5. ВИРУСЫ И АНТИВИРУСНЫЕ ПРОГРАММЫ

РАБОТА 6. ИССЛЕДОВАНИЕ СИСТЕМЫ БЕЗОПАСНОСТИ ОС

РАБОТА 7. ЗАЩИТА ОТ СЕТЕВЫХ АТАК

 




Дата: 2019-05-29, просмотров: 215.