Общее строение функциональной схемы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

СОДЕРЖАНИЕ

 

СОДЕРЖАНИЕ................................................................................................... 5

ВВЕДЕНИЕ......................................................................................................... 6

1. синтез функциональной схемы.................................................... 7

1.1 Общее строение функциональной схемы..................................................... 7

1.2 Описание работы функциональной схемы.................................................. 8

2. ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ И РЕАЛИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ БЛОКОВ СХЕМЫ............................................................................................................... 9

2.1   Масштабный усилитель........................................................................ 9

2.2   Устройство выборки-хранения........................................................... 10

2.3   Коммутатор........................................................................................ 11

2.4   Аналого-цифровой преобразователь.................................................. 11

2.5   Цифро-аналоговый преобразователь................................................. 11

2.6   Дешифратор........................................................................................ 12

2.7   Микроконтроллер................................................................................ 12

2.8 Блок светоиндикаторов............................................................................ 12

3. НАЗНАЧЕНИЕ ОСНОВНЫХ СИГНАЛОВ СХЕМЫ................................. 13

4. ОПИСАНИЕ РАБОТЫ ПРИНЦИПИАЛЬНОЙ СХЕМЫ........................... 13

5. Устранение помех в цепях питания........................................ 14

6. Оценка потребляемой мощности.............................................. 14

7. Описание алгоритмов управления и индикации............. 15

8. Описание программы....................................................................... 17

9. расчет временных характеристик устройства.................. 18

ЗАКЛЮЧЕНИЕ................................................................................................. 19

Список использованной литературы.......................................... 20

ПРИЛОЖЕНИЕ 1.............................................................................................. 21

ПРИЛОЖЕНИЕ 2.............................................................................................. 24


ВВЕДЕНИЕ

 

Основанием для выполнения проекта является:

1) учебный план кафедры ИУ6

2) техническое задание на курсовой проект

 

Целью курсового проекта является разработка системы автоматической подстройки частоты (далее САПЧ). Данная система предназначена для сравнения значений о текущей частоте, полученных с датчиков со значениями, заданными с пульта оператора, анализа и обработки отклонения и выдачи соответствующего сигнала управления и информационных сигналов. САПЧ разработана на основе микроконтроллера (МК) КР1816ВЕ51 (аналог 8051AH фирмы Intel), архитектура которого стала стандартом на мировом рынке 8-разрядных микроконтроллеров. В разработанном устройстве обрабатываются 4 канала.

Разработанное устройство может применяться в различных системах, например в генераторах сигналов, радиоприёмной аппаратуре. Разработанная САПЧ является универсальной и может применяться не только для подстройки частоты, но и для регулирования других сигналов (например, температуры, давления), для которых измерители выдают информацию о текущем значении в виде постоянного напряжения.

Управляющий сигнал зависит от входных сигналов системы в соответствии с программой обработки, которую несложно изменить и ввести в микроконтроллер. Это также придаёт системе универсальность.




Синтез функциональной схемы

 

Описание работы функциональной схемы.

 

Сигналы с датчиков и с пульта оператора для каждого канала подаются через масштабный усилитель на аналоговый мультиплексор, который в зависимости от состояния адресных входов выбирает необходимый. Номер сигнала задаётся в МК. Далее сигнал запоминается в УВХ, переводится в двоичный код и заносится в микроконтроллер. После выполнения всех необходимых действий, микроконтроллер выдаёт выходной сигнал в двоичном виде. Этот сигнал преобразуется в аналоговый вид и подаётся на входы четырёх УВХ. На управляющие входы УВХ подаётся сигнал с дешифратора. Дешифратор преобразует адрес, который выдаёт МК и выдаёт активный сигнал на одну из выходных линий, таким образом выбирая одно из УВХ. При отклонении текущей частоты от заданной более чем на 10% выдаётся сигнал на блок светоиндикаторов.



ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ И РЕАЛИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ БЛОКОВ СХЕМЫ.

 

Линии портов ввода-вывода микроконтроллера КР1816ВЕ51 имеют уровни логических единицы и нуля соответствующие ТТЛ уровню. Поэтому для цифровых элементов схемы была выбрана ТТЛ серия КР1533. Маломощные быстродействующие микросхемы этой серии удовлетворяет требованиям по быстродействию и потребляемой мощности.

Для других элементов схемы при выборе элементов использовались такие критерии как возможность согласования с МК, низкая потребляемая мощность, функциональная завершённость микросхем.

Рассмотрим реализацию каждого из блоков.

 

Масштабный усилитель

 

Масштабный усилитель (МУ) построен на основе операционного усилителя К140УД6. Схема его включения показана на рисунке 2.1.

Рис. 2.1. Масштабный усилитель.

 

Используется схема с отрицательной обратной связью с подачей входного напряжения на инвертирующий вход. При этой схеме включения коэффициент усиления равен К=Rос/R1, сопротивление R2=Rос||R1.

Для МУ, преобразующих сигнал, с датчиков частот: К=5/25=0.2.

Roc=5.1 кОм. R1=25,5 кОм, согласно рядам стандартных сопротивлений R1=24 кОм, R2=4,5 кОм, согласно рядам стандартных сопротивлений R2=4,3 кОм.

Для МУ, преобразующих сигнал, с пультов оператора: К=5/15=0.333.

Rос=5.1 кОм. R1=15,3 кОм, согласно рядам стандартных сопротивлений R1=15 кОм, R2=3,8 кОм, согласно рядам стандартных сопротивлений R2=3,9 кОм.

Резистор R3 является подстроечным и используется для регулировки смещения нуля.

В качестве R3 используется резистор СП0-1.

Напряжения питания: Uп= ± 15 в.

 

Устройство выборки-хранения

 

Для устройства выборки и хранения была выбрана микросхема КР1100СК3. Схема включения показана на рис.2.2.

Рис.2.2. Устройство выборки и хранения.

 

Микросхема имеет в своем составе 4-х ключевой коммутатор и парафазный усилитель. При применении в качестве УВХ используется полный набор функциональных элементов.

 Элементы имеют следующие параметры: С1=С2=50 пФ, R1=R2=R3=5 кОм.

Управляющие сигналы подаются на выводы 14 и 2 и должны быть взаимодополняемыми. Режиму выборка соответствует ТТЛ-уровень логической единицы на выводе 2 и нуля на выводе 14. На вывод 14 подаётся напряжение с дешифратора, на вывод 2 подаётся напряжение с дешифратора через инвертор (используемый дешифратор имеет инверсные выходы).

 Входное напряжение подаётся на вход 2-го ключа (вывод 13). Выходное напряжение снимается с выхода операционного усилителя (вывод 9).

Напряжения питания: Uп= ± 15 в.

Время выборки 3,5 мкс.

 

Коммутатор

 

В качестве аналогового коммутатора используется микросхема КР590КН1. Этот коммутатор имеет 8 входов (4 входа – сигналы с датчиков, 4 входа – сигналы с пультов оператора). Предельное коммутируемое напряжение – 5 в. Напряжения питания: Uп1= - 15 в., Uп2= + 5в.

 

Дешифратор

 

В схеме использован дешифратор КР1533ИД4. Это сдвоенный дешифратор 2-4 с отдельными разрешающими входами. Используется один из двух дешифраторов. Разрешающий вход является инверсным. Выходы дешифратора также инверсные. Так как управляющие сигналы для УВХ должны быть взаимодополняющими, к выходам дешифратора подключены инверторы. Для них выбрана микросхема КР1533ЛН1, имеющая в своём составе 6 инверторов. Время задержки распространения сигнала 15 нс.

 

Микроконтроллер

 

В системе микроконтроллер КР1816ВЕ51 (зарубежный аналог 8051АН серии MCS-51 фирмы Intel).

Он имеет ПЗУ емкостью 4Кб, ОЗУ емкостью 128 байт, 4 универсальных порта ввода-вывода, 8-разрядное АЛУ с аппаратной реализацией операций типа умножение, последовательный порт, два 16-разрядных программируемых счётчика таймера.

Каждая линия порта 0 при работе в качестве выходов обеспечивает нагрузочную способность, равную 8 входам маломощной серии LS TTL, каждая линия портов 1-3 – 4 входам.

Синхронизация микроконтроллера осуществляется с использованием внутреннего инвертирующего усилителя, который может быть превращен в синхрогенератор посредством подключения в выводам X1 и X2 внешнего кварцевого резонатора. Схема подключения резонатора и схема сброса при включении электропитания показана на рис.2.3.

Рис.2.3.Схема подключения резонатора и сброса.

 

 Резистор R1 имеет сопротивление 8,2 кОм, конденсатор С3 имеет ёмкость 10 мкФ.

Кварцевый генератор имеет частоту 4 МГц.

 

Блок светоиндикаторов

2.9

Для индикации можно использовать четыре светодиода типа АЛ310Д.



Описание программы

 

Система команд МК КР1816ВЕ51 ориентирована на организацию гибкого ввода-вывода данных и первичную обработку информации. Особое внимание уделено операциям с битами и передаче управления по их значению.

В ассемблере 51 используются различные методы адресации, т.е. наборы механизмов доступа к операндам. В настоящей разработке использовались следующие методы адресации:

· регистровая адресация;

· косвенно-регистровая адресация;

· непосредственная адресация.

Для адресации портов, регистров специальных функций используются зарезервированные символические имена (Р0, Р1, Р2, Р3 – порты, А или АСС - аккумулятор).

Текст программы приведён в приложении 2.

В начале программы объявляются константы, выбирается банк регистров общего назначения, номер которого определяется разрядами RS0, RS1 регистра PSW. В данном случае выбирается нулевой банк (SEL RB0).

В регистр R2 заносится число каналов N. Регистр R2 далее используется для хранения номера входа мультиплексора, с которого берётся значение. Регистр R0 используется в качестве указателя на ячейку внутренней памяти данных, хранящей операнд. В начале в R0 заносится значение 20H. По этому адресу будет хранится значение с пульта оператора. По адресу 21Н будет хранится значение текущей частоты. В регистре R5 хранится значение управляющего сигнала. Отклонение заносится в регистр R4.

Большое значение в системе команд уделено операциям с битами. В программе используются следующие команды: SETB bit, CLR bit, которые устанавливают бит соответственно в 1 или в 0. Для адресации бит используются зарезервированные символические имена вида < имя РСФ или порта > . < номер бита >.

Для передачи управления использовались такие команды как АSJMP – короткий переход, JNB – переход, если бит равен 0, JB – переход, если бит равен 1, JZ – переход, если аккумулятор равен 0.

Время выполнения команд равно одному, двум или четырём машинным циклам. Цикл равен 12 периодам внешнего синхросигнала (при внешней частоте 4МГц длительность цикла составляет 3 мкс). Это позволяет не вводить дополнительные задержки при вводе данных между выдачей адреса на мультиплексор, запуском УВХ и запуском АЦП и при выводе данных между выдачей данных в порт 1 и выдачей адреса на дешифратор.

 Система арифметических команд включает в себя операции сложения, вычитания, инкремент, декремент, а также умножение и деление.

 Программа написана в соответствии с алгоритмами, представленными в приложении 1 и описанными в предыдущем разделе. Она включает в себя основную программу, подпрограммы INPUT, OUTPUT, OBRAB, ANALIZ. Вызов подпрограмм осуществляется командой АCALL.

 

ЗАКЛЮЧЕНИЕ

 

В результате курсового проектирования была разработана система автоматической подстройки частоты на основе однокристальной ЭВМ КР1816ВЕ51 со следующими параметрами: потребляемая мощность: 3,1 Вт, число обсуживаемых каналов – 4, частота опроса не менее 0,37 кГц.

Разработка системы была проведена с учетом требований, указанных в техническом задании.

Система обеспечивает индикацию канала, в котором отклонение текущей частоты от заданной превышает определённое значение.

Была разработана принципиальная схема устройства, алгоритм управления и программа на языке ассемблер для микроконтроллеров серии MCS-51.

Разработанная система может применяться регулировки частоты в различных устройствах и приборах.



Список использованной литературы

 

1.  В.Б. Бродин, М.И. Шагурин – Микроконтроллеры. Справочник. /М.; Издательство ЭКОМ, 1999 г. – 400 с.

2.  Е.В. Вениаминов – Микросхемы и их применение. Справ. Пособие. / М.; Радио и связь, 1989г. – 240 с.

3.  В.Г. Гусев, Ю.М. Гусев – Электроника. Учебное пособие / М.; Высшая школа, 1990 г. – 622 с.

4.  Ф.В. Шульгин – Справочник по аналоговым микросхемам / М., 1997 г.



ПРИЛОЖЕНИЕ 1.

Алгоритмы управления САПЧ.

Рис.1. Главный алгоритм работы системы.

Рис.2. Алгоритмы процедуры ввода INPUT и процедуры вывода OUTPUT.

 



Рис.3. Алгоритм обработки входных сигналов и подготовки результатов.

 




ПРИЛОЖЕНИЕ 2.

 

Программа работы микроконтроллера.

 

N EQU 4

K EQU 31

INIT:    SEL RB0 ;выбор банка регистров

L1: MOV R2,N ;занести номер канала

L2: MOV R0,#20H ;занести в РПД адрес памяти для данных

АCALL INPUT;чтение данных

MOV A,R2 ;

SUBB A,N ;

MOV R2,A ;R2=R2-N

  INC R0         ;увеличить адрес на 1

АCALL INPUT ;чтение данных

АCALL OBRAB    ;обработка данных

АCALL OUTPUT;вывод результата

MOV A,R2;

INC     ;

  ADD A,N ;

  MOV R2,A;R2=R2+1+N

  MOV A,N ;

  MOV B,#2    ;

  MUL AB ;A=2*N

SUBB A,R2;

JZ L1;сравнение A и R2

АJMP L2;переход на L2

RET

 

INPUT: MOV A,R2 ;процедура чтения данных из порта

SETB ACC.5

SETB ACC.4      

OUT P0,A ;вывод в Р0 адреса

SETB PO.3 ;запуск УВХ

CLR P0.3;

CLR P0.4 ;запуск АЦП

L3: IN A,P1;чтение из Р1

     JNB ACC.7 L3;проверка готовности АЦП

     CLR ACC.7;ст. бит аккумулятора равен 0

     SETB PO.4                 

     MOV @R0,A;занести считанные данные в память

     RET         

 

OUTPUT: MOV A,R2;процедура вывода результатов

     SETB ACC.4     

OUT P1,R5;вывод в Р1

     OUT P0,A ;вывод в Р0 адреса

     SETB P0.5

RET       

 

OBRAB: DEC RO;адрес значения пульта оператора

     MOV A,@R0;значение пульта оператора в акк.

     INC R0;адрес значения датчика

     SUBB A,@R0;отклонение между пультом оператора и датчиком

     MOV R4,A    ;отклонение в регистр 4

 АCALL ANALIZ ;процедура обработки и получения сигнала управления

     MOV A,R4    ;значения отклонения в акк.

     MOV B,#100;

     MUL AB;умножить отклонение на 100%

     DEC R0;адрес значения пульта оператора

     MOV B,@R0;значение пульта оператора в В

     DIV AB;разделить отклонение на значение пульта оператора

     JB ACC.7 NEG;переход если погрешность <0

     SUB A,#10    ;вычесть 10% из погрешности

     JNB ACC.7 INDIK1;если погрешность > 10% индикация

     АSJMP INDIK2

NEG: ADD A,#10

JB ACC.7 INDIK1 ;если погрешность > 10% индикация

     АJMP INDIK2

INDIK1: SETB P2.R2

АJMP KON

INDIK2: CRL P2.R2         

KON:    RET      

 

ANALIZ: MOV B,K;в регистр B значение коэффициента пропорциональности     

 MUL AB    ;умножить отклонение на коэффициент

      ADD A,#127;прибавить макс. зн-е результата деленное на 2 =127

      MOV R5,A;занести результат в регистр 5

      RET

 

СОДЕРЖАНИЕ

 

СОДЕРЖАНИЕ................................................................................................... 5

ВВЕДЕНИЕ......................................................................................................... 6

1. синтез функциональной схемы.................................................... 7

1.1 Общее строение функциональной схемы..................................................... 7

1.2 Описание работы функциональной схемы.................................................. 8

2. ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ И РЕАЛИЗАЦИЯ ФУНКЦИОНАЛЬНЫХ БЛОКОВ СХЕМЫ............................................................................................................... 9

2.1   Масштабный усилитель........................................................................ 9

2.2   Устройство выборки-хранения........................................................... 10

2.3   Коммутатор........................................................................................ 11

2.4   Аналого-цифровой преобразователь.................................................. 11

2.5   Цифро-аналоговый преобразователь................................................. 11

2.6   Дешифратор........................................................................................ 12

2.7   Микроконтроллер................................................................................ 12

2.8 Блок светоиндикаторов............................................................................ 12

3. НАЗНАЧЕНИЕ ОСНОВНЫХ СИГНАЛОВ СХЕМЫ................................. 13

4. ОПИСАНИЕ РАБОТЫ ПРИНЦИПИАЛЬНОЙ СХЕМЫ........................... 13

5. Устранение помех в цепях питания........................................ 14

6. Оценка потребляемой мощности.............................................. 14

7. Описание алгоритмов управления и индикации............. 15

8. Описание программы....................................................................... 17

9. расчет временных характеристик устройства.................. 18

ЗАКЛЮЧЕНИЕ................................................................................................. 19

Список использованной литературы.......................................... 20

ПРИЛОЖЕНИЕ 1.............................................................................................. 21

ПРИЛОЖЕНИЕ 2.............................................................................................. 24


ВВЕДЕНИЕ

 

Основанием для выполнения проекта является:

1) учебный план кафедры ИУ6

2) техническое задание на курсовой проект

 

Целью курсового проекта является разработка системы автоматической подстройки частоты (далее САПЧ). Данная система предназначена для сравнения значений о текущей частоте, полученных с датчиков со значениями, заданными с пульта оператора, анализа и обработки отклонения и выдачи соответствующего сигнала управления и информационных сигналов. САПЧ разработана на основе микроконтроллера (МК) КР1816ВЕ51 (аналог 8051AH фирмы Intel), архитектура которого стала стандартом на мировом рынке 8-разрядных микроконтроллеров. В разработанном устройстве обрабатываются 4 канала.

Разработанное устройство может применяться в различных системах, например в генераторах сигналов, радиоприёмной аппаратуре. Разработанная САПЧ является универсальной и может применяться не только для подстройки частоты, но и для регулирования других сигналов (например, температуры, давления), для которых измерители выдают информацию о текущем значении в виде постоянного напряжения.

Управляющий сигнал зависит от входных сигналов системы в соответствии с программой обработки, которую несложно изменить и ввести в микроконтроллер. Это также придаёт системе универсальность.




Синтез функциональной схемы

 

Общее строение функциональной схемы.

 

В техническом задании на курсовой проект задано спроектировать систему автоматической подстройки частоты.

 Взаимосвязь САПЧ и объекта управления показана на рис.1.1. Сигнал с датчиков частоты поступает в САПЧ, куда предварительно заносится значение, которое необходимо поддерживать. В зависимости от этих данных вырабатывается управляющий сигнал, который поступает на объект управления и значение частоты изменяется. Также САПЧ выдаёт информационные сигналы, если отклонение текущей частоты от заданной превышает определённое значение (10 %).

Рис. 1.1. Взаимосвязь объекта управления и САПЧ.

 

Функциональная схема разрабатываемого устройства, может быть реализована несколькими способами.

 

Может быть использована схема с параллельной или последовательной обработкой аналоговых сигналов. В схеме с параллельной обработкой используется отдельный аналого-цифровой преобразователь (АЦП) на каждый канал, а также цифровой мультиплексор. В схеме с последовательной обработкой используется аналоговый мультиплексор и один АЦП на его выходе. В разрабатываемом устройстве использован вариант с последовательной обработкой, так как при его использовании упрощается схема.

 

Функциональная схема устройства показана на рис.1.2.

 

Рис.1.2. Функциональная схема устройства.

 

Схема состоит из следующих блоков:

· масштабный усилитель, необходимый для согласования уровней напряжений датчиков, пульта оператора и мультиплексора;

· аналоговый мультиплексор, выбирающий определённый канал и коммутирующий его на свой выход;

· устройство выборки-хранения (УВХ), фиксирующее значение сигнала, на время преобразования в АЦП;

· АЦП, преобразующий аналоговый сигнал в 7-разрядный двоичный код;

· микроконтроллер, выполняющий основные операции управления и вычисления;

· цифро-аналоговый преобразователь (ЦАП), преобразующий значение сигнала в цифровом виде в аналоговый;

· дешифратор;

· четыре УВХ, фиксирующие выходной управляющий сигнал;

· блок светоиндикаторов.

Дата: 2019-05-29, просмотров: 200.