Интеграция OLAP и Data Mining
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Оперативная аналитическая обработка (OLAP) и интеллектуальный анализ данных (Data Mining) - две составные части процесса поддержки принятия решений. Однако сегодня большинство систем OLAP заостряет внимание только на обеспечении доступа к многомерным данным, а большинство средств Data Mining, работающих в сфере закономерностей, имеют дело с одномерными перспективами данных. Для увеличения эффективности обработки данных для систем поддержки принятия решений эти два вида анализа должны быть объединены [2].

В настоящее время появляется составной термин "OLAP Data Mining" (многомерный интеллектуальный анализ) для обозначения такого объединения. Существует три основных способа формирования "OLAP Data Mining":

1. "Cubing then mining". Возможность выполнения интеллектуального анализа должна обеспечиваться над любым результатом запроса к многомерному концептуальному представлению, то есть над любым фрагментом любой проекции гиперкуба показателей.

2. "Mining then cubing". Подобно данным, извлечённым из хранилища, результаты интеллектуального анализа должны представляться в гиперкубической форме для последующего многомерного анализа.

3. "Cubing while mining". Этот гибкий способ интеграции позволяет автоматически активизировать однотипные механизмы интеллектуальной обработки над результатом каждого шага многомерного анализа (перехода между уровнями обобщения, извлечения нового фрагмента гиперкуба и т.д.).



Заключение

 

В данной курсовой работе была предоставлена заявленная во введении ознакомительная информация о корпоративных базах данных. Для раскрытия темы были введены понятия данных, базы данных, системы управления базами данных, корпоративные информационные системы. Кратко о выше перечисленном:

Базы данных представляют собой синтез структур данных и файловых структур.

Система управления базами данных (СУБД) - комплекс программ, которые обеспечивают взаимодействие пользователя с базой данных.

Корпоративная информационная система (КИС) - это масштабируемая система, предназначенная для комплексной автоматизации всех видов хозяйственной деятельности больших и средних предприятий, в том числе корпораций, состоящих из группы компаний, требующих единого управления.

Далее были рассмотрены корпоративные базы данных: OLTP-системы, главной задачей которых является выполнение большого количества коротких транзакций; хранилище данных - предметно-ориентированный, интегрированный, неизменчивый, поддерживающий хронологию набор данных, организованный для целей поддержки управления; витрина данных (Data Mart) - облегченный вариант хранилища данных, содержащий только тематически объединенные данные; OLAP - многомерное концептуальное представление данных, включая полную поддержку для иерархий и множественных иерархий; интеллектуальный анализ данных (Data Mining). Были рассмотрены их особенности, положительные и отрицательные черты, а так же возможности интегрирования данных систем.

Использование подобного рода вспомогательных средств века компьютерных технологий важно для получения максимальных результатов при минимальных затратах в анализе, сборе и хранении информации. Как было сказано "Кто владеет информацией, тот владеет миром", а кто умеет грамотно воспользоваться информацией - владеет Вселенной возможностей.

С точки зрения экономики использование корпоративных баз данных для ведения бизнеса - необходимость в наше время. Неоспорима ценность скорости и качества обработки данных при использовании этих систем.



Дата: 2019-05-29, просмотров: 231.