Построение индикаторной диаграммы
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Построение индикаторной диаграммы двигателя внутреннего сгорания производится с использованием данных расчета рабочего процесса.

При построении диаграммы ее масштабы рекомендуется выбирать с таким расчетом, чтобы получить высоту, равную 1,2 – 1,7 ее основания.

В начале построения на оси абсцисс откладывают отрезок АВ, соответствующий рабочему объему цилиндра, т.е. по величине равной ходу поршня в масштабе Мs, в зависимости от него масштаб принять 1:1, 1,5:1 или 2:1.

Отрезок ОА, мм, соответствующий объему камеры сгорания, определяется из соотношения

 

 

При построении диаграммы рекомендуется выбирать следующий ряд масштабов давлений: Мр=0,02; 0,025; 0,04; 0,05; 0,07 – 0,10 МН/м2 на 1 мм чертежа.

Затем по данным теплового расчета на диаграмме откладывают в выбранном масштабе величины давлений в характерных точках: а, с, z’, z, b, r.

Построение политроп сжатия и расширения можно производить графическим или аналитическим методами.

По наиболее распространенному графическому методу Брауэра политропы сжатия и расширения строят следующим образом.

Из начала координат проводят луч ОС под произвольным углом α к оси абсцисс (для получения достаточного количества точек па политропах рекомендуется α=15°). Далее из начала координат проводят луч OD и OE под определенными углами β1 и β2 к оси ординат. Эти углы определяют из соотношений

 

где n1 и n2 – соответственно показатели политроп.



ДИНАМИЧЕСКИЙ РАСЧЕТ

 

Динамический расчет кривошипно-шатунного механизма (КШМ) заключается в определении суммарных сил и моментов, возникающих от давления газов и от сил инерции.

Во время работы двигателя на детали КШМ действуют:

- силы давления газов в цилиндре;

- силы инерции возвратно-поступательно движущихся масс;

- центробежные силы.

В течение каждого рабочего цикла силы, действующие в КШМ, непрерывно изменяются по величине и направлению. Поэтому для определения характера изменения этих сил по углу поворота коленчатого вала их величины определяют для различных положений кривошипа через 30°. Результата динамического расчета сводятся в таблицы.

За время полного рабочего цикла сила от давления газов, силы инерции и эффективный крутящий момент изменяются по величине и направлению. Центробежная сила от вращающихся масс изменяется только по направлению. В многоцилиндровых двигателях возникают продольные моменты от сил инерции возвратно-поступательно и вращательно движущихся масс (рис.1).


 

Рис.1. Схема сил и моментов, действующих в КШМ.

Р – суммарная сила; N – нормальная сила; S – сила, действующая по шатуну; К – сила, направленная по радиусу кривошипа; Т – тангенциальная сила; ω – угловая скорость; α – угол поворота кривошипа; β – угол наклона шатуна от оси цилиндра.

 

Основные исходные данные для динамического расчета – ход поршня, диаметр цилиндра и индикаторная диаграмма – получают в тепловом расчете. Дополнительно необходимо выбрать и обосновать длину шатуна, массы поршневой и шатунной групп.

Для определения длины шатуна пользуются величиной λ=R/Lш, равной отношению радиуса кривошипа R (половина хода поршня S) к длине шатуна. Для предварительных расчетов принимаются λ=0,25 – 0,30.

Массы поршневой группы mш и неуравновешенных частей кривошипа mk (кг) принимают по заданным удельным конструктивным массам, приходящимся на единицу площади поршня Fn

 

 

где Fn – площадь поршня, м2

D=60 – 100 мм

Удельная масса поршня m’n=100 – 150 кг/м2

Удельная масса шатуна m’ш=120 – 200 кг/м2

Удельная масса m’k=150 – 200 кг/м2

Большие значения m’ соответствуют двигателям с большим диаметром цилиндра. V – образные двигатели с двумя шатунами на шатунной шейке имеют большие значения m’k.

 


Силы давления газов

 

Силы давления газов, действующих на поршень, условно заменяют одной силой, приложенной к оси поршневого пальца и направленной по оси цилиндра. Определяется эта сила для каждого значения угла поворота кривошипа α по индикаторной диаграмме, рассчитанной для нормального режима работы двигателя. Для этого полученную при тепловом расчете диаграмму в координатах P – V перестраивают методом проф. Ф.А. Бриска в развернутую, с координатами Р – α. Для этого, под индикаторной диаграммой строят полуокружность радиусом R=S/2. Далее от центра полуокружности (точка 0) в сторону нижней мертвой точки откладывается поправка Брикса, равная Rλ/2. Полуокружность из центра 0 делят лучами на шесть частей, а из центра 0’ проводят линии, параллельные этим лучам. Точки, полученные на полуокружности, соответствуют определенным углам положения кривошипа. Из этих точек проводят вертикальные линии до пересечения с контуром индикаторной диаграммы.

Справа от индикаторной диаграммы наносят координаты Р – α. При этом ост абсцисс располагают на уровне линии атмосферного давления Р0, так как давление на диаграмме Р – α изображается избыточное давление над поршнем. Ось абсцисс на диаграмме Р – α делят вертикальными линиями на отрезки, через 30° угла поворота кривошипа и обозначают точки соответствующими значениями угла.

Развертку индикаторной диаграммы начинается от верхней мертвой точки процесса впуска. Для чего величины давлений, полученные пресечением вертикальных линий с контуром диаграммы Р – V, переносят на соответствующие линии диаграмма Р – α. Следует учесть, что давление процесса впуска на диаграмме Р – α должны быть отрицательными. Точку Zg действительного давления конца сгорания, отмечают на развернутой диаграмме отдельно, так как ее положение соответствует 370° угла поворота кривошипа. Полученные точки соединяют плавной кривой с помощью лекала.

Численное значение величины силы давления газов на поршень (кН) определяют по формуле:

 

 

где Рг и Р0 – давления газа на поршень и атмосферное давление в МН/м2, принятые по диаграмме Р – V, Fn – площадь поршня, м2.

Поскольку площадь поршня есть величина постоянная, то кривая сил Рr в диаграмме Р – α будет иметь тот же характер, что и кривая давления газов Рг.

Для определения величины сил давления газов по развернутой диаграмме пересчитывают ее масштаб (кН/мм)

 

 

где Мg – масштаб давления, Fn – площадь поршня, м2.

Шкалу сил наносят на оси ординат развернутой диаграммы. Составляют сводную таблицу величин, определяемых динамическом расчете. В графу 1 записывают значения угла поворота кривошипа от 0° до 720° через принятый интервал 30°. Отдельно помещают угол 370°, которому соответствует максимальное давление газа. По развернутой диаграмме для каждого угла поворота кривошипа определяют значения силы давления газа Рr и заносят в графу 2 с соответствующим знаком. Силы считаются положительными, если они направлены к оси коленчатого вала.

 

Силы инерции

 

Силы инерции, действующие на КШМ, разделяются на две группы. К первой группе относятся силы инерции Рj (кН) масс, совершающих возвратно-поступательное движение. Это массы поршневой группы mn и верхней части шатуна mшп, которое условно приведены к оси поршневого пальца.

 

где mj – масса деталей, совершающих возвратно-поступательное движение, mj=mn+0,275mш, j – ускорение поршня.

 

За знак минус в уравнении Рj показывает, что сила инерции напрвалена в строну, противоположную ускорению.

mшп=0,275mш – часть массы шатуна, приведенная к оси поршневого пальца; mш – полная масса шатуна; R – радиус кривошипа, м;

 

 

ω=πn/30 – угловая скорость вращения кривошипа, 1 м/сек; n – число оборотов коленвала.

 

 

Значения тригонометрической функции

 

 

в зависимости от α и λпринимают из таблицы приложения и заносят в таблицу.

Силы инерции Рj действуют по оси цилиндра и считаются положительными, если ни направлены к оси вращения кривошипа.

Полученные значения Рj заносят в таблицу и по ним строят графики изменения этой силы в зависимости от угла поворота на развернутой индикаторной диаграмме в том же масштабе.

Ко второй группе относятся силы инерции КR (кН) масс, совершающих вращательное движение. Это массы кривошипа и нижней головки шатуна.

 

Сила KR не изменяется по величине при постоянной угловой скорости, действует по радиусу кривошипа и направлена от оси коленчатого вала.

Центробежная сила КR является результирующей двух сил:

КRш – силы инерции вращающихся масс шатуна

 

где mшк – масса шатуна, приведенная к оси кривошипа mшк=0,275mш;

 

 

КRш – силы инерции вращающихся масс кривошипа

 

здесь mк – масса кривошипа.

Тогда суммарная сила инерции вращающихся масс

 

 

 



Дата: 2019-05-29, просмотров: 209.