Кафедра технології основного органічного синтезу
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Кафедра технології основного органічного синтезу

 

 

З АПИСКА ДО КУРСОВОЇ РОБОТИ

 

по спеціальності:7.091601

«Хімічна технологія органічних речовин»

Тема:

ВУЗОЛ ПІДГОТОВКИ СИРОВИНИ

 

 

Одеса 2010



Зміст

 

Вступ

1. Літературний огляд

1.1 Хімічні реакції

Вплив технологічних параметрів на процес ізомеризації

1.2.1 Температура

1.2.2 Об'ємна швидкість

1.2.3 Тиск

1.2.4 Каталізатор

1.2.5 Каталітичні отрути й небажані вуглеводні

1.2.5.1 Сірчановміщуючи сполуки

1.2.5.2 Вода (оксигенвміщуючи сполуки)

1.2.5.3 Сполуки азоту

1.2.5.4 Сполуки фтору

1.2.6. Небажані вуглеводні

1.2.6.1 Олефини

2. Характеристика сировини, допоміжних матеріалів, продуктів виробництва

3. Опис технологічної схеми установки

3. 1 Вузол підготовки сировини

3.2 Вузол осушки ВСГ

4. Матеріальний баланс

5. Тепловий розрахунок

6. Технологічний розрахунок адсорбера блоку підготовки сировини, установки ізомеризації

7. Конструктивний розрахунок адсорбера блоку підготовки сировини установки ізомеризації

7.1.1 Розрахунок корпуса апарата на міцність

7.2.1.1 Визначення товщини оболонки корпуса

7.2.1.2 Визначення товщини стінки еліптичного днища

7.2.2 Розрахунок зміцнення отворів

7.2.2.1 Найбільший припустимий діаметр

7.2.3 Визначення тиску регенерації, пробного тиску й пускового тиску при мінусовій температури

7.2.4 Розрахунок кришки на штуцері вивантаження адсорбенту

7.2.5 Розрахунок температури зовнішньої стінки адсорберу

Висновоки

Список викорастаних джерел

 


 


Вступ

 

Бензин відіграє важливу роль у всіх галузях, і дивлячись на цей факт потрібно врахувати також те, що вимоги до нього, як до продукту, а також процесу його одержання, із часом, ростуть. Ми знаємо, що в нафті перебувають шкідливі домішки. Від цих домішок потрібно позбавлятися, наприклад, бензол, толуол, ксилоли, сірка. А в минулому октановим числом в основному підвищувалося за рахунок ароматичних вуглеводнів. Тому в цей час підвищення октанового числа бензину виробляється не в результаті збільшення в ньому бензолу, а безпосередньо ізомеризацією нормальних парафінів.

У промисловості установка ізомеризації входить до складу технологічного цеху №2 і призначена для переробки гідроочищеної бензинової фракції НК-850С с змістом сірки до 0,00005% мас. (0,5 ppm) шляхом ізомеризації з метою одержання компонента автобензина з октановим числом по дослідницькому методі 88 пунктів.

Проект установки виконаний ВАТ «ЛУКОЙЛ - Ростовнефтехимпроект», м. Ростову-на-Дону спільно ЗАТ «ПМП» м. Санкт-Петербург на основі процесу «ПЕНЕКС-ДИГ» фірми ЮОП. Установка уведена в експлуатацію в 2004 році.

Схемою передбачена переробка гідроочищеної бензинової фракції НК-850С с подачею її на блок попереднього очищення від сірчистих сполук і осушки від вологи, після чого фракція НК-850С подається на блок ізомеризації. Блок ізомеризації може експлуатуватися на всіх типах каталізаторів ізомеризації відомих у світовій практиці. У цей час блок ізомеризації експлуатується на суміші каталізаторів I-8+ і I-82 виробництва фірми ЮОП.


 


Літературний огляд

 

Процес ізомеризації парафінових вуглеводнів призначений для підвищення октанового числа пентан-гексанових фракцій бензинів википають до 850С. Процес ізомеризації дозволяє підвищити октанове число по дослідницькому методі (ОЧД) легкої бензинової фракції з 70 до 84 і за рахунок залучення бічного погона (метил пентани й n-гексан) колони деізогексанізатора (ДІГ) у сировину блоку ізомеризації вдається підвищити ОЧІ бензинової фракції до 88-89. Реакції ізомеризації протікають у середовищі гідрогенсодержащого газу на біфункциональних каталізаторах фірми UOP I-8 плюс і I-82. Для створення сприятливих умов протікання реакцій ізомеризації процес проводять у двох послідовно розташованих реакторах з відводом тепла на виході з першого реактора.

Сировиною блоку ізомеризації є гідро очищена бензинова фракція НК-850С. Фракція НК-850С являє собою суміш, що містить наступні групи органічних речовин: парафіни (50-70%мас.), ароматичні (5-15% мас.) і нафтенові вуглеводні (45-15% мас.). Такий кількісний хімічний склад фракції НК-850С спричиняється низькі октановим числом, які не перевищують 70 ОЧМ. У таблиці 9 наведені показники октанового числа вуглеводнів, отримані дослідницьким (д. м.) методом.

Процес ізомеризації, протікає в атмосфері водню, над стаціонарним шаром суміші каталізаторів I-8 плюс і I-82. Реакції протікають при таких робочих умовах, які промотирують реакції ізомеризації й зводять до мінімуму реакції гідрокрекінгу.

Каталізатор I-8 плюс являє собою циліндричні экструдати, а каталізатор I-82 являє собою трилобнєві экструдати, що містять нанесений на носій благородний метал і компонент, що забезпечує кислотність у каталітичному змісті. Така сполука каталізатора містить два види каталітично активних центрів.

- гідруючих центрів на платині;

- ізомеризуючих і кислотних центрів, що розщеплюють, на носії.

При проведенні процесу ізомеризації протікають наступні основні хімічні реакції:

- ізомеризація парафінів;

- розмикання кілець нафтенових вуглеводнів;

- ізомеризація нафтенів;

- насичення бензолу;

- гідрокрекінг

 

Таблиця 1

Октанове число вуглеводнів

Вуглеводень Октанові числа Вуглеводень Октанові числа
н- гексан н- пентан 24,8 61,8 2-метилпентан 3-метилпентан 2-2 деметилбутан 2-3 деметилбутан ізопентан 73,4 74,5 91,8 104,3 93,0

 

Хімічні реакції

 

Ізомеризація пентан-гексанових фракцій відбувається на біфункціональних каталізаторах I-8 плюс і I-82 фірми UOP у середовищі гідрогенвміщуючого газу. Реакції ізомеризації протікають на даних каталізаторах, як на металевих центрах, так і на кислотні. Механізм реакцій, що протікають на каталізаторі, може бути представлений наступною схемою:

Реакції ізомеризації парафінових вуглеводнів, які протікають на установці, показані нижче.

 

Н-ГЕКСАН2 МЕТИЛПЕНТАН

Н-ГЕКСАН3 МЕТИЛПЕНТАН

Н-ГЕКСАН 2-2 ДИМЕТИЛБУТАН

Н-ГЕКСАН2-3 ДИМЕТИЛБУТАН

Н-ПЕНТАН ІЗОПЕНТАН

Температура

Температура на вході в реактор є головним регульованим технологічним параметром.

При збільшенні температури в реакторі з метою збільшення ступеня перетворення сировини в ізомерізат сполука продуктів наближається до рівноважного. При високих температурах концентрація ізопарафінов у продукті буде знижуватися через зсув униз рівноважної кривої, незважаючи на те, що при більше високій температурі реакції протікають із більше високою інтенсивністю.

Використання більше високих температур, чим це необхідно для доцільного ступеня наближення до рівноваги, приводить до збільшення інтенсивності реакцій гідрокрекінгу. Підвищення температур також приводить до збільшення швидкості відкладення коксу на каталізаторі; але схильність каталізатора до утворення коксу низка, так що звичайно до того, як виникають проблеми з утворенням коксу, збільшується гідрокрекінг вуглеводнів. Максимально припустима температура реакції в шарі каталізатора не повинна перевищувати 2040С.

На блоці ізомеризації працюють два послідовно підключених реактори. У головному реакторі протікає більша частина реакцій ізомеризації. У головному реакторі піддається гідруванню весь бензол, що втримується в сировину, навіть коли каталізатор втрачає свою активність відносно ізомеризації парафінових вуглеводнів. Відбувається також конверсія з розривом кілець деякої кількості циклогексану й метилциклопентану з утворенням гексаном, а також слабко протікають реакції гідрокрекінгу вуглеводнів C7 з утворенням вуглеводнів C3 і C4. Ці три реакції (гідрування бензолу, розрив кілець нафтенових вуглеводнів з утворенням гексанів і гідрокрекінг вуглеводнів C7) экзотермічні, і при переробці сировини вони вносять більший вклад у ріст температури в першому реакторі, чим реакції ізомеризації парафінових вуглеводнів, які також экзотермічні. Сумарний тепловий ефект хімічних реакцій становить приблизно 6-8 кдж/моль і залежить від сполуки сировини.

Головний реактор повинен працювати при температурах, при яких забезпечують максимальне змісту ізопентану й 2,2 диметилбутану у вихідному з реактора потоці. Досяжні концентрації й необхідна температура на виході з реактора будуть залежати від наявної кількості активного каталізатора й від кількості циклічних вуглеводнів C6 і вуглеводнів C7 і більше важких, що втримуються в сировину; чим вище концентрація таких компонентів у сировину, тим більше високі температури потрібні. При використанні такої методики необхідна робоча температура в системі хвостового реактора знижується, і він працює при умовах, які більше сприяють досягненню рівноваги.



Об'ємна швидкість

Об'ємна швидкість це об'ємна витрата подаваного в реактор сировини, поділений на об'єм каталізатора, що перебуває в реакторах. Розрахункова об'ємна швидкість для експлуатації блоку ізомеризації при використанні як сировина вуглеводнів C5 і C6 становить 1,546 ч-1. Подальше збільшення об'ємної швидкості приведе до одержання продукту з меншим змістом вуглеводнів ізобудування. Тому збільшення об'ємної швидкості приводить до зниження октанового числа ізомерізату.

Об ємна швидкість повинна бути не менш 0,5 ч-1 для обох реакторів, тому що подальше її зниження приводить до збільшення швидкостей реакцій гідрокрекінгу.

Тиск

Процес ізомеризації вуглеводнів C5 і C6 протікає при надлишковому тиску на виході з реактора 3.16( МПа). При зниженні тиску метил циклопентан і циклогексан адсорбуються на каталізаторі й знижують швидкість протікання реакцій ізомеризації. Зі збільшенням тиску вплив циклічних сполук С6 знижується. Робота при більше низькому тиску не впливає на термін служби каталізатора, але знижує селективність реакцій ізомеризації.

Каталізатор

Для підтримки активності каталізатора необхідно додавати перхлорэтілен. Блок не повинен працювати довше шести годин без подачі перхлорэтілену. Щораз, коли спостерігається недолік перхлорэтілену, за інших рівних умов зміст вуглеводнів ізобудови в продукті буде знижуватися. При поновленні подачі перхлорэтілену відбувається відновлення активності каталізатора до її попереднього рівня, але можливо, що активність повністю не відновиться, якщо зниження активності каталізатора не є результатом припинення подачі перхлорэтілену. Як джерело активного хлору використається перхлорэтілен (C2Cl4) сорту «ХЧ».

Сірчановміщуючі сполуки

Присутність сірки в сировину в кількості перевищуючому 1ррм приводить до зниження активності каталізатора. Таке зниження активності тимчасове, і активність швидко відновлюється відразу ж після зниження концентрації сірки в сировину нижче 1 ррм. Після видалення сірки із сировини необхідне збільшення температури в реакторах для більше швидкого видалення сірки з каталізатора. При наявності сірки в сировину підвищення температури може допомогти частково компенсувати зниження активності каталізатора. Якщо й після підвищення температури в реакторах робота процесу йде незадовільно, то необхідно буде провести отдувку сірки з поверхні каталізатора за допомогою нагрітого гідрогенвміщуючого газу (ВСГ).

Сполуки азоту

Сполуки азоту реагують із хлоридом у каталізаторі або з HCl з утворенням солей, які необоротно деактивують каталізатор: заблокувавши його активні центри. Це приводить до втрати хлоридів або порушенню розподілу потоку через відкладення солей. Максимальний припустимий зміст сполук азоту становить 0,1 ррм.

Сполуки фтору

Фтористі сполуки є отрутою, що отруює каталізатор гідрогенвміщуючого газу о. Один кілограм фтору буде деактивувати 100 кг каталізатора. Максимальний припустимий зміст фторидів становить 0,5 ррм.

Небажані вуглеводні

Олефіни

Блок ізомеризації може працювати зі змістом олефінів - до 2% мас. у сировину. Шкідливий вплив помітних кількостей олефінів пояснюється тим, що вони фізично обволікають каталізатор після їхньої полімеризації.



Сировина

Пентан -гексанової фракції с УКР і УВПБ

СТП ПР 17-2007

1 Фракційний склад:

– температура початку перегонки, ºС

Не нормується Визначення обов'язково

Сировина установки ізомеризації ПИ-ДИГ/120

– кінець кипіння, ºС, не вище

86/104*

- залишок і втрати, %, не більше

4,0

2 Масова частка сірки, ppm, не більше

0,5

3 Масова частка азоту, ppm, не більше

0,1

4 Масова частка загальних хлоридів, ppm, не більше

0,5

5 Масова частка води, ppm, не більше

10

6 Масова частка металів, ppm, не більше: – меді

– свинець

20

10

7 Бромні число, г Br2 на 100 г бензину, не більше

4

 

 

8 Масова частка вуглеводнів С7,%, не більше

3,1/5,8*

 

9 Масова частка вуглеводнів С1-С4,%, не більше

0,71

* Для отримання компонента бензинів автомобільних не етилованих за ТУ У 23.2-00152282-001-2004

Водень -вмісного газу з установки каталітичного реформінгу ЛГ-35-11/300-95

СТП ПР 18-2007

1. Об'ємна частка водню,%, не менше

77,9

Сировина установки ізомеризації

ПІ-ДІГ/120

2. Об'ємна частка сірководню, ppm, не більше

1

3. Об'ємна частка азоту, ppm, не більше

1

4. Об'ємна частка хлористого водню, ppm, не більше

5

5. Об'ємна частка води, ppm, не більше

25

6. Об'ємна частка оксидів вуглецю (СО СО2), ppm, не більше

10

7. Об'ємна частка СО, ppm, не більше

1

Ізомеризат

СТП ПР 19-2007

1. Фракційний склад:

– температура початку перегонки, º С, не нижче

– кінець кипіння, º С, не вище

– залишок і втрати,%, не більше

30

95

4,0

 

Виготовлена продукція

 

 

2. Октанове число по дослідницькому методу, не менше

86,0

У ТСЦ на компаундування товарних автобензинів

3. Тиск насичених парів, кПа, не вище

86,0

4. Щільність при 20 º С, кг/м3

Не нормується

Визначення обов'язково

5. Вуглеводневий склад,% мас.

Не нормується

Визначення обов'язково

6. Випробування на мідній пластинці

Витримує

Побічна продукція

Вуглеводневий газ

СТП ПР 03-2007

1. Масова частка компонентів,%.

 

На потреби установки ПІ-ДІГ/120 до печі П-301

Водень

не нормується визначення обов'язково

Етан Метан Пропан Ізобутан Нормальний бутан Сума С5, не вище

3,5

 

 

2. Щільність відносна при 20 оС

не нормується визначення обов'язково

 

3. Теплотворна здатність, ккал/м3

не нормується визначення обов'язково

4. Зміст хлористого водню

сліди

5. Вміст сірководню

сліди

Продукти розкладання масла ТВЛ-300

Згідно з проектом

Щільність при робочих умовах, кг/м3, не менше

680

У дренажну ємність Е-302

Реагенти та каталізатори

 

 

Каталізатор 1-8 plus

Паспорт компанії "UOP"

Насипна щільність , кг/м3 зміст платини , % мас.

880 0,24

Каталізатор ізомеризації

Каталізатор I-82

Паспорт компанії "UOP"

Насипна щільність , кг/м3 зміст платини , % мас.

863 0,24

Каталізатор ізомеризації

Насадка "Кільця Рашіга", графітові

Паспорт фірми "SULZER

За паспортом фірми "SULZER"

 

Насадка скрубера відхідного газу 13-V-002

Адсорбент PDG-418

Паспорт компанії "UOP"

Насипна щільність 660 кг/м3

 

Адсорбент осушувача ВСГ 13-D-003А/В

Адсорбент ADS-11L

Паспорт компанії

"UOP"

Насипна щільність 929 кг/м3

 

Адсорбент адсорбера сірчистих сполук

13-D-004

Адсорбент HPG-250

Паспорт компанії "UOP"

Насипна щільність 640 кг/м3

 

Адсорбент осушувача сировини

13-D-005А/В

Керамічні кульки Дураніт

Паспорт компанії "UOP"

За паспортом компанії "UOP"

 

Захист та запобігання на винесення каталізаторів і адсорбентів

Перхлоретілен

Паспорт постачальника

За паспортом постачальника

 

Промоція каталізатора

10% розчин лугу з УКР

Згідно з проектом

Концентрація,% мас., не нижче

10

Очищення газу стабілізації від хлористого водню Хлористий водень

Паспорт постачальника

Паспорт постачальника

 

Видалення оксидів заліза

Масло-теплоносій

ароматизований

АМТ-300

ТУ 38.4011092-2002

Щільність при 20 0 С, г/см3, не менше

0,960

До споживачам

Показник заломлення при 20 0С, не менше

1,5400

 

В'язкість кінематична, мм2 / с, не більше

5,9

 

Температура застигання, 0С, не вище

мінус 23

 

Температура спалаху, що визначається в закритому тиглі, 0С, не нижче

175

 

Температура самозаймання, 0С, не нижче

360

 

Кислотне число, мг КОН / г масла, не більше

0,12

 

Масова частка води,%, не більше

сліди

 

Вміст механічних домішок

відсутні

 

Колір на колориметр, од. ЦНТЕІ (без розведення), не більше

6,0

 

 

 

Фракційний склад, С:

 

 

5% переганяється при температурі.не нижче

330

 

95% переганяється при темпе-

ратурі, не вище

475

 

Теплоносій

«ТЛВ-330»

Поліалкілбензол

ТУ 2422-002-

29727929-2001

Щільність при 20 0С, г/см3, не менше

от 0,850 до 0,855

До споживачам

Коефіцієнт рефракції, (П020), в межах

от 1,47 до 1,48

 

Температура замерзання, 0С, не менше

мінус 40

 

Температура спалаху у відкритому тиглі, 0С, не менше

200

 

Температура початку кипіння 0 С, не нижче

330

                   

 


 


Вузол підготовки сировини

 

Сировина - гідроочищена пентан-гексанова фракція, із блоку вторинної ректифікації установки надходить у вузол підготовки сировини блоку ізомеризації із температурою 40 оС і тиском 12,5 МПа. Сировина нагрівається в міжтрубних просторах теплообмінників Т-1 до температури 80 оС, потім Т-2 до температури 121 оС. В теплообміннику Т-1 сировина нагрівається за рахунок рекуперації тепла нагрітої сировини, яка виходить із адсорбера Е-3А/В, а в теплообміннику Т-2 сировина нагрівається високотемпературним органічним теплоносієм - маслом АМТ-300.

Нагріта сировина надходить в апарат Е-3А/В із верху вниз. Адсорбери Е-3 А/В працюють по черзі. Один апарат працює до тих пір, коли вміст сірки у вихідному потоці досягне 0,1 ppm мас. Якщо це настане даний апарат перемкнеться на режим регенерації, а апарат, який знаходився на очікувані стає діючим. У режимі регенерації регенеруючий агент поступає в адсорбер протитечією в порівнянні із сировинним потоком, тобто знизу в верх. Регенеруючим агентом являється пари ізомеризату нагріті до температури 316 оС. У випарнику Т-9 за рахунок тепла водяної пари з тиском 1,2 МПа (12,0 кг/см2) нагріває регенеруючий агент, який випаровується і із температурою 152°С поступає в електричний перегрівач Т-10, в якому він нагріваються до температури 316 оС. Перегріті пари ізомерізату з перегрівача Т-10 з температурою316°С і тиском 0,78 МПа (7,8 кгс/см2) прямують до осушувача Е-5А/В і адсорбера Е-3А/В, що підлягає в даний момент регенерації.

Технологічною схемою передбачено також використання перегрівача Т-10 для підігріву водню при необхідності відпарювання сірки з каталізатора в реакторах ізомеризації.

Минуючи додаткове очищення від сірковмісних сполук рідка сировина віддає своє тепло свіжому сировинному потоку в трубному просторі теплообмінника Т-1, охолоджуючись до температури 83 оС, після чого поєднується з рецикловим потоком - бічним погоном деізогексанізатора (ДІГ). Об'єднаний сировинний потік із температурою 93 оС охолоджується в повітряному холодильнику ХП-4 до температури 40-55оС и надходить в апарати осушки рідкої сировини Е-5А/В. Але, так як адсорбер сірковмісних сполук працює на адсорбенті, який водночас осушує сировину, тому немає потреби в апараті осушки рідкої сировини Е-5А/В. Раніше дані апарати працювали наступним чином.

Вузол осушки ВСГ

 

Апарати осушки працюють послідовно, за винятком тих періодів, протягом яких вони перебувають у режимі регенерації, коли в експлуатації залишається тільки один з них.

Пентан-гексанова фракція надходить в апарат осушки рідкої сировини знизу, проходить у висхідному потоці через адсорбент, що осушує, на основі молекулярних сит і виводиться зверху. Потім через одну з ліній перемикання апаратів осушки потік направляється в інший апарат осушки рідкої сировини й проходить через нього так само висхідним потоком. Осушена сировина надходить у видаткову сировинну ємність Е-6.

Через якийсь час адсорбент у першому по ходу сировини апарату осушки насичується вологою. Необхідність у регенерації адсорбенту в цьому апарату осушки виникає як тільки вміст вологи у вихідному з нього потоці

досягне 1 ppm мас.. Апарат осушки з відпрацьованим адсорбентом виводять із експлуатації, закривши відповідні запірні арматури. Другий підключений послідовно апарат осушки стає тепер єдиним працюючим апаратом осушки рідкої сировини.

 

Таблиця 3.1

Таблиця апаратів технологічної схеми блоку підготовки сировини установки ізомеризації

Позначення Найменування Кіл. Примітка
Т–1, Т–2, Т-11 Теплообмінники 3
Е–3/А, Е–3/В Адсорбери сірковмісних сполук 2
ПХ-4 Повітряний холодильник 1
Е-5/А, Е-5/В Осушувачі сировини 2
Е-6 Сировина ємкість 1
Н-7/А, Н-7/В Сировині насоси 2
Ф-8/А, Ф-8/В Фільтри 2
Т-9 Випарник 1  
Т-10 Перегрівач 1  

 


 


Матеріальний баланс

 

Для розрахунку матеріального балансу установки ізомеризації потрібно позначити вхідні і вихідні потоки даної установки. На рис. 5.1 показані вхідні і вихідні потоки установки ізомеризації (дана принципіальна схема включає тільки ті апарати, в які приходить або з яких виходить потік).

 

Рис. 4.1 Матеріальні потоки установки ізомеризації

 

На рис. 4.1 позначені такі потоки:

Go – сировина,  - сировина очищена від сірковмісних сполук, G1 – об’єднаний потік сировини і рециклового потоку G6, G2 – гази стабілізації, G3 – стабільний ізомеризат, G4 – товарний ізомеризат, G5 – товарний ізомеризат із потоком сірковмісних сполук G7, G8 – боковий погін колони ДІГ.

З рис. 4.1 видно, рівнянням матеріального балансу установки можна представити у даному вигляді:

 

. (4.1)

 

Приведемо дані про склад потоків по концентраціям речовин, які находиться в потоці [12]. По потоку Go:

 


 

Таблиця 5.1

Склад сировини, яка поступає в установку ізомеризації

Речовини

Разом, %мас.

C1-C4

C5

C6

C7

C8

C9-C11

н-парафіни

39,21995

0,67

17,22

21,32

0,00995

0

0

ізопарафіни

36,42

0,04

9,6

24,18

2,6

0

0

ароматика

3,52

0

 

3,52

 

0

0

нафтени

20,84

0

 

20,35

0,49

0

0

олефіни

0

0

0

0

0

0

0

Сірковмісні сполуки

0,00005

Разом, %мас.

100

 

По потоку G1:

 

Таблиця 5.2

Склад сировини і об’єднаного рециклового потоку

Речовини

Разом, %мас.

C1-C4

C5

C6

C7

C8

C9-C11

н-парафіни

29,553

0,198

8,722

20,564

0,040

0,029

0,000

ізопарафіни

59,806

0,041

4,133

54,144

1,488

0,000

0,000

ароматика

0,685

0,000

0,000

0,685

0,000

0,000

0,000

нафтени

9,955

0,000

0,000

8,836

0,723

0,396

0,000

олефіни

0,000

0,000

0,000

0,000

0,000

0,000

0,000

Сірковмісні сполуки

0,00001

Разом, %мас.

100

 

По потоку G2:

 

Таблиця 5.3

Склад газу стабілізації

Речовини

Разом, %мас.

C1-C4

C5

C6

C7

C8

C9-C11

н-парафіни

89,31

89,31

0,000

0,000

0,000

0,000

0,000

ізопарафіни

10,69

10,69

0,000

0,000

0,000

0,000

0,000

ароматика

0,000

0,000

0,000

0,000

0,000

0,000

0,000

нафтени

0,000

0,000

0,000

0,000

0,000

0,000

0,000

олефіни

0,000

0,000

0,000

0,000

0,000

0,000

0,000

Разом, %мас.

100

 

По потоку G3:

 

Таблиця 5.4

Склад кубового потоку колони стабілізації ізомеризату

Речовини

Разом, %мас.

C1-C4

C5

C6

C7

C8

C9-C11

н-парафіни

15,439

0,025

3,317

11,871

0,086

0,081

0,058

ізопарафіни

73,321

0,007

7,401

64,023

1,504

0,030

0,356

ароматика

0,089

0,000

0,000

0,084

0,000

0,005

0,000

нафтени

11,151

0,000

0,000

7,179

1,621

2,203

0,149

олефіни

0,000

0,000

0,000

0,000

0,000

0,000

0,000

Разом, %мас.

100

 

По потоку G4:

 

Таблиця 5.5

Склад товарного ізомеризату

Речовини

Разом, %мас.

C1-C4

C5

C6

C7

C8

C9-C11

н-парафіни

13,554

0,114

11,682

1,758

0,000

0,000

0,000

ізопарафіни

86,083

0,034

25,759

60,284

0,006

0,000

0,000

ароматика

0,000

0,000

0,000

0,000

0,000

0,000

0,000

нафтени

0,362

0,000

0,000

0,354

0,000

0,008

0,000

олефіни

0,000

0,000

0,000

0,000

0,000

0,000

0,000

Разом, %мас.

100

 

По потоку G8:

 

Таблиця 5.6

Склад бокового погону ДІГ

Речовини

Разом, %мас.

C1-C4

C5

C6

C7

C8

C9-C11

н-парафіни

3,898

0,000

0,000

0,079

0,626

1,575

1,617

ізопарафіни

13,584

0,000

0,000

0,057

2,194

1,699

9,634

ароматика

2,130

0,000

0,000

1,333

0,156

0,333

0,308

нафтени

80,388

0,000

0,000

0,515

25,453

50,397

4,023

олефіни

0,000

0,000

0,000

0,000

0,000

0,000

0,000

Разом, %мас.

100

 

На установку подається також водневмісний газ, але ми ним знехтуємо.

Для визначення потоків G2, G4, G5, G8, G7 використаємо наступні формули

 

, (4.2)

 

де Gi – один із множин потоків m, який утворився з основного потоку G, кг;

 – концентрація компоненту j із n компонентів в потоці i, долі.

Для розрахунку кількості сірковмісних сполук потрібно лише визначити масу цих сполук, яка адсорбується адсорбентом:

 

 (4.3)

 

де GS – маса сірковмісних сполук, адсорбентом;

 – різниця концентрацій до і після адсорбера сірковмісних сполук.

Оскільки , то знайдемо потік товарного ізомеризату G5 із потоком сірковмісних сполук G7 за формолою:

 

. (4.4)

 

Отже, масовий потік газу стабілізації:


 

 

де – коефіцієнт 0,85 враховує ре циркулюючий потік, який становить 15% основного потоку.

масовий потік товарного ізомеризату із потоком сірковмісних сполук:

 

 

масовий потік бокового погону колони ДІГ:

 

 

Кількості сірковмісних сполук що адсорбується

Масовий потік товарного ізомеризату G5 із потоком сірковмісних сполук G7 за формолою:

Зробимо перевірочний розрахунок по матеріальному балансу, який включає тому, щоб вхідні масові потоки були рівні вихідним масовим потокам. Отже, перевірочний розрахунок проводимо за допомогою формули 4.1:

 

 

Отже, як ми бачимо існує різниця в  = .

Це пояснюється тим, що ми прийняли деякі припущення і знехтували водневмісним газом, який є невід’ємною частиною процесу.

Зведемо матеріальний баланс установки в таблицю 4.7.

 

Таблиця 4.7

Матеріальний баланс установки ізомеризації

Речовини

Вхід, кг/рік

Вихід, кг/рік

н-парафіни

50985935

4391320,593

Ізопарафіни

4734600

111771283,7

Ароматичні вуглеводні

457600

2899,305882

Нафтени

14321800

13771485

Олефіни

0

0

Сірковмісні сполуки

65

65

Втрати

0

0

Разом

70500000

70500000





Тепловий розрахунок

 

При розрахунку теплового балансу реактора визначають кількість тепла,що надходить і йде з реакційною сумішшю, витрати тепла на реакцію й тепловтрати через стінку. За даними теплового балансу визначають температуру потоку, що йде, що необхідно для розрахунку наступних апаратур. Почнемо з оцінки тепловтрат , тому що вони мають самостійне значення.

 

ВИСНОВКИ

 

Бензин відіграє важливу роль у всіх галузях, і дивлячись на цей факт потрібно врахувати також те, що вимоги до нього, як до продукту, а також процесу його одержання, із часом, ростуть. Ми знаємо, що в нафті перебувають шкідливі домішки. Від цих домішок потрібно позбавлятися, наприклад, бензол, толуол, ксилоли, сірка. А в минулому октановим числом в основному підвищувалося за рахунок ароматичних вуглеводнів. Тому в цей час підвищення октанового числа бензину виробляється не в результаті збільшення в ньому бензолу, а безпосередньо ізомеризацією нормальних парафінів.

В результаті виконання даного курсового проекту було вивчено технологію очищення нафтових фракцій від сіркових сполук і осушення від вологи, апаратурне оформлення цього процесу, ознайомлення з характеристиками сировини, матеріалів, з теоретичними основами процесу.

Сутність вивчення проекту полягала в очищенні бензинової фракції НК-85 від сірковмісних сполук і осушення від вологи. Відповідно в проекті розроблена технологічна схема блоку підготовки сировини установки ізомеризації, приведені розрахунки обладнання.



СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

1. Ю.И. Дытнерский. Процессы и аппараты химической технологии: Учебник для вузов. Изд. 2-е. В 2-х кн. Часть 2. Массообменные процессы и аппараты. М.: Химия, 1995. – 368 с.

2. Запрягалов Ю.Б., Рабинович Г.Л., Жарков Б.Б.. Осушка и очистка от сероводорода газов на адсорбенте АКГ-981. Журнал «Газовая промышленность», 2003.

3. И.Л. Кнунянц. Химическая энциклопедия. /В пяти томах/ Том 1. АБЛ-ДАР. «Советская энциклопедия», Москва: 1988.

4. А.Л. Добровинский. Технологический регламент установки каталитического риформинга ЛГ-35-11/300-95. Блок изомеризации ПИ-ДИГ/120. ЗАО “ПМП”, 2004.

5. А.Н. Плановский, В.М. Рамм, С.З. Каган. Процессы и аппараты химической и нефтехимической технологии. Изд. 2-е «Химия», М., 1962. 845 с.

6. С.В. Адельсон. Процессы и аппараты нефтепереработки и нефтехимии. М., 1963. 310 с.

Кафедра технології основного органічного синтезу

 

 

З АПИСКА ДО КУРСОВОЇ РОБОТИ

 

по спеціальності:7.091601

«Хімічна технологія органічних речовин»

Тема:

ВУЗОЛ ПІДГОТОВКИ СИРОВИНИ

 

 

Одеса 2010



Зміст

 

Вступ

1. Літературний огляд

1.1 Хімічні реакції

Дата: 2019-05-29, просмотров: 216.