1). Структурные изменения казеина.
2). Факторы термоустойчивости молока.
3). Механизм и кинетика тепловой коагуляции казеина.
4). Влияние различных температур на технологические свойства молока.
Чисто тепловая денатурация казеина наступает только при температурах порядка 130оС в течение 2-88 мин. Такое тепловое воздействие изменяет состав и структуру ККФК. От него отщепляются засушенные гликомакропептиды, органический Р и Са, на поверхности мицелл казеина осаждаются денатурированный b-лактоглобулин, коллоидный фосфат Са и т. д. Перечисленные изменения вызывают как дезагрегацию, так и агрегацию мицелл казеина. В результате преобладания последнего увеличиваются размер частиц казеина и вязкость молока.
Изменение структуры и размера мицелл казеина влияет на технологические свойства молока, например, на скорость получения сычужного сгустка. После тепловой обработки продолжительность сычужного свертывания молока увеличивается в несколько раз по сравнению с сычужным свертыванием сырого молока. Такое явление объясняется комплексообразованием денатурированного b-лактоглобулина с -казеином в результате чего ухудшается его атакуемость сычужным ферментом. Основным видом связи, который способствует образованию комплексов белков, считают дисульфидные мостики, но отрицается и участие других видов связи гидрофобных и кальцисных мостиков. Образование комплексов происходит в очень узком интервале рН — (6,7-7). Электронно-микроскопические исследования продуктов тепловой ассоциации b-лактоглобулина с -казеином, а также с казеиновыми мицеллами показывают, что первые представляют собой волокнистые, лапшевидные частицы, а на поверхности казеиновых мицелл видны выросты, напоминающие шипы, усики и т. д. Казеиновые мицеллы как бы окружаются своего рода оболочкой из сывороточных белков, которая по мнению ряда авторов может повысить термоустойчивость казеиновых мицелл. Так если нативные казеиновые мицеллы имели температуроустойчивость 58 единиц по этанолу, то мицеллы, покрытые оболочками из денатурированного b-лактоглобулина — 82 единицы, а в случае потери поверхностью мицелл комплексов b-лактоглобулина — -казеин она составляет всего 46 единиц.
Видимо, степень взаимодействия b-лактоглобулина с казеином влияет на развитие казеиновых мицелл. Многими авторами отмечено повышение среднего размера казеиновых мицелл после тепловой обработки молока в результате ассоциации казеина с денатурированным b-лактом, а также отложения на поверхности мицелл коллоидного фосфата кальция.
Пастеризация молока при температуре 72-80оС вызывает незначительное увеличение размера белковых частиц — на 1-4%; УВТ-обработка на 7-25%, а стерилизация с выдержкой в два и более раза. Некоторые авторы показывают, что в процессе тепловой обработки наряду с увеличением размера крупных казеиновых мицелл происходит значительное повышение количества очень мелких частиц, которые свидетельствуют о дезинтеграции мицелл. Мелкие белковые частицы представляют собой свободные субмицеллы, хотя другие исследователи считают, что это денатурированные сывороточные белки, которые не смогли прикрепиться к казеиновым мицеллам. Казеин при нагревании взаимодействует с лактозой, то есть вступает в реакцию Майра, в результате которой образуются астероциклические азотосодержащие соединения коричневого цвета (меланаидины).
Термоустойчивость белков молока (или температуро___). Под ней понимают свойство молока сохранять агрегативную устойчивость белков и других компонентов при тепловом воздействии. Ее обычно выражают количеством времени в минутах, необходимым для коагуляции белков при определенной заданной температуре, например, при 130 или 140оС.
Термоустойчивость молока в первую очередь определяется величиной рН, хотя между нет прямой зависимости. По характеру изменения термоустойчивости молоко делят на два типа — А и Б. Оба типа молока имеют максимум термоустойчивости при рН 6,5-6,7. При повышении рН до 6,7-6,9 молоко типа А становится менее термоустойчивым. У молока типа В это свойство отсутствует. Дальнейшее увеличение рН сопровождается повышением термоустойчивости того и другого типа молока. Снижение рН молока, особенно в результате микроброжения углеводов, отрицательно сказывается на его температуроустойчивости. Образование молочной кислоты вызывает уменьшение отрицательного заряда мицелл казеина и нарушение солевого баланса молока: часть коллоидных солей кальция переходит в ионно-молекулярное состояние, а фосфаты кальция приобретают лучшую растворимость и большую степень диссоциации. например, гидрофосфат кальция может переходить в дегидрофосфат, который по сравнению с первой солью образует повышенное количество ионов кальция.
2СаHPO4 + 2C3H6O3 ® Ca (H2PO4)2 + (C3H5O3)2 Ca,
Ca (H2PO4)2 ® Ca2+ + 2H2PO4 —
термоустойчивость казеина зависит от солевого равновесия, размера и химического состава мицелл казеина. Солевой состав молока, то есть соотношение солей кальция и магния, с одной стороны, и фосфатов и нитратов — с другой. Установлено, что ККФ комплекс устойчив к действию высоких температур только при определенном содержании кальция.
При увеличении количества ионов кальция в плазме молока происходит их присоединение к ККФ К. В результате уменьшается отрицательный заряд мицелл казеина, они соединяются в крупные агрегаты, которые коагулируют при нагревании. Чтобы этого избежать, вносят соли — стабилизаторы или предварительная стерилизация или сгущение перед УВТ-обработкой.
От размера мицелл казеина: чем они мельче, тем более термоустойчивость молока и наоборот. Это обусловливается различным содержанием в мицеллах -казеина и коллоидного фосфата кальция. Мелкие мицеллы казеина содержат больше -казеина и меньше коллоидного фосфата кальция, чем крупные. Как известно, -казеин, обладающий высоким (-) зарядом и сильными гидрофильными свойствами, стабилизирует мицеллы казеина. Коллоидный фосфат кальция, наоборот, способствует агрегации частиц казеина.
Термоустойчивость определяется составом казеиновых мицелл — так снижение термоустойчивости молока объясняется выходом из состава казеиновых мицелл комплекса b-лактоглобулина — -казеина и для закрепления -казеина в мицелле можно с помощью b-лактоглобулина (то есть молоко предварительно нагревают до температура ³ 90оС при рН 6,5-6,7; и использование веществ, связывающих белки поперечными связями — альдегиды, сахара. термоустойчивость определяется также содержанием жира в казеине фосфорной и глутаминовой кислот; чем их больше, тем ниже его устойчивость. Снижение термоустойчивости молока способствуют: высокое содержание выше 0,9% термолабильных сывороточных белков некоторых компонентов протеодо-пептонной фр__ термообработки, основными причинами низкой термоустойчивости казеина (молока) являются нарушеннный солевой и белковый состав, а также повышенная кислотность, которые зависят от времени года, стадии лактации, болезней, породы животных и районов кормления. Все перечисленные факторы в совокупности определяют способность казеина сохранять стабильность при температурной обработке.
Механизм и кинетика тепловой коагуляции казеина.
В начале нагревания происходит увеличение размера белковых частиц, это объясняется повышением количества седиментированного казеина (казеина, выделенного из молока с помощью центрифугирования при 1,5 тыс. оборотов в минуту в течение 1 часа) и ростом относительной вязкости обезжиренного молока. При дальнейшем нагревании наблюдается понижением первого и второго показателей, затем вновь их повышение перед наступлением видимой коагуляции. првоначальное увеличение считают осаждение денатурированных сывороточных белков на поверхности казеиновых мицелл после взаимодействия первых с -казеином или соединение между собой мицелл с помощью денатурированного b-лактоглобулина. Однако исследование поведения мицелл, диспергированных в растворе, не содержащем сывороточных белков, показало, что оно почти аналогично поведению мицелл при нагревании обезжиренного молока. таким образом сывороточные белки не могут индуцировать ассоциацию казеиновых мицелл. Считают, что главную роль в агрегировании казеиновых мицелл играет кальций, то есть при нагревании происходит кальций — индуцированное осаждение каззеинов. В процессе нагревания кальций осаждается на поверхности мицелл и затем в форме Са2+ или образующегося коллоидного фосфата кальция агрегируют казеиновые частицы. Дополнительное агрегирующее действие на казеин могут оказывать взаимодействующие с ним денатурированные сывороточные белки (b-лактоглобулина) и продукты реакции Майера. Содержащийся в молоке коллоидный фосфат кальция (КФК) особого значения для агрегирования казеина не имеет.
Уменьшение количества осажденного казеина при нагревании обезжиренного молока при температуре 40оС образуется диссоциацией казеиновых мицелл и их агрегатов с образованием мелких мицелл и растворимого белка. В 1979 году ученые разработали кинетическую модель тепловой коагуляции молока типов Б и А, применив теорию разветвленных, каскадных или цепных реакций. тепловую коагуляцию молока типа Б они рассматривают как простой одностадийный процесс полимеризации активированнх нагреванием казеиновых мицелл.
Коагуляция молока типа А является одностадийным процессом в районе максимума кривой тепловой стабильности, а в районе минимума кривой — двухстадийным. Двухстадийный включает осаждение на первой стадии медленно коагулирующих трехфункциональных маномеров одного типа, а на второй — полимеризация быстро коагулирующих мономеров (молекул) другого типа. таким образом тепловая коагуляция молока типа А в результате минимума предполагает наличие лактационного периода. Медленно коагулирующих молекулами, создающими зоны коагуляции являются крупные казеиновые мицеллы с малым содержанием -казеина.
Влияние различных температур на технологические свойства молока. Вызванные тепловой обработкой изменения структуры и свойств казеина и сывороточных белков (а также изменения рН молока и солей кальция) влияют на технологические свойства молока, именно на качество и выход сыра, консистенцию кисломолочных продуктов и т. д.).
Первым нежелательным следствием тепловой обработки является увеличение продолжительности свертывания молока под действием сычужного фермента. Так, продолжительность сычужного свертывания молока не меняет при нагревании до 60оС, пастеризация при 70оС после выдержки свыше 30 минут вызывает ее изменение, сильное снижение продолжительности свертывания наблюдается после пастеризации молока при 80 и 90оС.
УВТ-обработка при 125-140оС повышает продолжительность сычужного свертывания молока в 4-5 раз, при этом пароконтактный способ обработки влияет на процесс свертывания в меньшей степени по сравнению с косвенным способом нагрева.
Тепловая обработка молока отрицательно влияет в основном на прохождение первой, или экзиматической, стадии (фазы) процесса сычужного свертывания, и в меньшей степени — на вторую стадию. Главной причиной замедление процессов свертывания является комплексообразование между денатурированными b-лактоглобулином и -казеином мицелл, ингибирующее гиролиз -казеина с освобождением растворимых пептидов на первой фазе.
Продолжительность сычужного свертывания связана также со снижением в пастеризованном молоке концентрации растворимого кальция, который участвует в прохождении второй фазы процесса. На этот процесс могут влиять изменения рН молока, размеров казеиновых мицелл и другие факторы.
Вторым отрицательным следствием тепловой обработки молока является образование менее плотных сычужных и кислотных сгустков, обладающих свойством плохо выделять сыворотку. Причина — включение в казеиновые сгустки сывороточных белков, придающих им определенную «мягкость» и повышающих их влагоудерживающую способность.
Положительное влияние — переход сывороточных белков в сгусток повышает выход и биологическую ценность готового продукта.
Теоретический и практический интерес представляют перспективы применения при производстве сыров УВТ-обработки молока, обеспечивающий значительный бактерицидный эффект. За рубежом УВТ-обработка применения лишь при выработке мягких сыров. В нашей стране проводили исследования по использованию УВТ-обработки молока при производстве сычужных сыров.
УВТ-обработка молока значительно снижает интенсивность формирования сычужного сгустка, понижает его упругость, эластичность и ухудшает синеретические свойства. Поэтому ее применение при производстве сыров требует использования специальных способов подготовки молока — повышения (на 10-12оТ) кислотности молока сочетание созревания молока с холодной ферментацией и др. Эти способы позволяют интенсифицировать процессы образования, упрочения и синерезиса сгустков при выработке литовского сыра, сулугуни. Кроме того, применение УВТ-обработанного при 135оС молока (в смеси с пастеризованным) способствовало повышению выхода и качества продукта.
Образование молока
1). Строение секреторной ткани и клеток молочной железы.
2). Биосинтез белков, липидов, углеводов.
3). Формирование минеральных веществ, витаминов,
антибактериальных и др. веществ в молоке.
Образование молока - это многоэтапный процесс, в котором участвуют все системы лактирующего животного.
Вымя коровы состоит из четырех железистых долей, разделенных соединительной тканью. Железистая ткань включает множество альвеол, находящихся в верхней части каждой доли вымени, которые книзу переходят в разветвленные каверны-цистерны.
Альвеолы имеют вид замкнутого пузырька диаметром 0,1-0,4 мм. Стенка альвеолы выстлана изнутри слоем секреторных (эпителиальных) клеток, свободные концы которых обращены в альвеолярную полость (схема строения альвеолы на стр. 114 - Горбатов).
Своим основанием секреторные клетки покоятся на плотной соединительной оболочке. В зависимости от степени наполнения секретные клетки имеют различную величину и форму (плоскую, кубическую или цилиндрическую). Клетка окружена очень тонкой (6-12 мм) мембраной, состоящей из липидов и белков.
Через базаль мембрану - она лежит в основании клетки, происходит поглощение из крови веществ — предшественников молока, а через верхушечный участок, обращенный в полость альвеол, происходит выход секрета в просвет альвеоле.
Отличительной особенностью секреторных клеток молочной железы является наличие в них сильно развитых структур гранулированного эндоплазматического ретикулезма (ЭР) и аппарата Гольджи. Цистерны или каналы гранулированного (ЭР) несут на поверхности своих мембран большое количество гибосом, где происходит синтез белков. Кроме того, ЭР поставляет мембранный материал аппарату Гольджи, который в виде мембран вакуолей далее включается в состав клеточной мембраны при потери ее фрагментов с шариками жира. Аппарат Гольджи расположен между ядром и верхушкой клетки в непосредственной близости к гладкому ЭР. При накоплении секрета наружные края его мембран образуют мелкие пузырьки, из которых формируются большие вакуоли. В вакуолях аппараты Гольджи происходит накопление, концентрация, упаковка и затем внутриклеточный транспорт продуктов секрета. Накопленное в альвеолах молоко выделяется в цистерны, а из них в сосковый канал, имеющий в конце гладкомышечный , препятствующий свободному вытеканию молока из цистерны. В каждой доле вымени может вырабатываться и выводиться из нее молоко независимо от других долей. (Делать рис. из ).
Схема строения вымени коровы.
В процессе молокообразования большую роль и грает кровоснабжение вымени. Обильный приток крови к железистой ткани способствует образованию молока в альвеолярных клетках.
Процесс молокообразования протекает постоянно. Без значительного повышения давления внутри вымени время заполнения его молоком составляет 8-13 часов. Затем давление возрастает, процесс молокообразования замедляется. В период между доениями около трех четвертей молока концентрируется в альвеолярной части вымени и только одна четверть — в цистернах и сосках. Больше всего молока в вымени коровы образуется на III-V месяцах лактации. Активная молокоотдача наступает при раздражении нервных окончаний сосков вымени. Обмывание вымени теплой водой (40-45°), обтирание его салфеткой, с одновременным массажем способствует возбуждению рефлекса молокоотдачи. В этот момент 85% молока из альвеоляярной части вымени переходит в крупные молочные протоки и цистерны. Набухание и розовение кожи вымени и сосков свидетельствует о начале активного припуска молока. В этот момент надо устанавливать доильные стаканы.
Биосинтез белков, углеводы, лактозы
Для синтеза молока клетки молочной железы используют составные части крови, которые отличаются от составных частей молока. В крови нет казеина, лактозы, а содержание глобулина, альбулина, натрий в ней в несколько раз больше, чем в молоке. В молоке больше жира кальция и калия. Значит, лактоза, казеин и жир образуются в молочной железе путем сложной перестройки химических веществ крови. Переход же минеральных веществ из тока крови в молоко происходит избирательно. Без изменений переходят витамины, гормоны, пигменты, некоторые белки, ферменты. Для образования 1 литра молока должно пройти около 400 литров крови.
Белки — их синтез самый сложный и не совсем изученный. Опыты с мечеными АК показали, что непосредственно из АК крови в клетках молочной железы синтезируются казеин, — лактоглобулин, L — лактальбулин.
Остальные белки - альбулин сыворотки крови, иммуноглобулина и многие ферменты переходят в молоко из крови. Основными источниками АК для синтеза белков молока служат св. АК крови. Фонд АК могут пополнять АК, синтезируемые в клетках молочной железы. Участие плазменных белков в образовании АК незначителен.
Отдельные белковые фракции синтезируются на рибосомах эндоплазматического ретикулама клетки. Казеин мицеллы формируются в вакуолях аппарата Гольджи. Механизм синтеза белков в клетках молочной железы не отличается от известного механизма синтеза белков крови. Продолжение процессов синтеза секреции белков молока составляет 50-60 минут.
Биосинтез липидов. Молочный жир синтезируется в две стадии. На 1-ой образуются жирные кислоты и глицерин. На 2-ой — триглицириды. Глицерин синтезируется в клетках молочной железы из глюкозы или поступает из крови. Основными предшественниками в молочной железе кислот (С18 и выше) являются липиды крови — триглиериды и С. Ж.к. (гл. образом стеариновая), которая в тканях железы превращается в оминовую. Низкомолочные ж.к. (С4 — С14) и некоторая часть высокомолекулярных кислот синтезируются клетками молочной железы из ацетата и оксибутирата, которые интенсивно образуются в рубце жвачного при сбраживании клетчатки корма микроорганизмами. Включение отдельных ж. к. в треглицериды регулируется специальными ферментами. Обычно низкомолекулярная ж. кислота комбинируется с двумя в м. ж. к., таким образом, ограничивается синтез жира с высокой точкой плавления. Синтез молочного жира и формирование из них жировых шариков различного диаметра происходит в эндоплазматической сети секреторных клеток молочной железы. Там же синтезируются и фосфатиды ( кефалин). Во время выхода из клетки жировой шарик окружается плазматической мембраной клетки и вместе с ней поступает в просвет альвеол. Пре , что после выхода жирового шарика из клетки окружающая его трехслойная плазматическая мембрана разрушается и происходит ее перестройка в оболочку шарика.
Биосинтез лактозы — осуществляется в аппарате Гольджи секреторных клеток молочной железы. Выход углеводов из клетки происходит одновременно с выходом белковых мицелл. В молекулу лактозы входит D - глюкоза и D - гаматоза. Глюкоза всегда находится в крови, гаматоза же в крови не содержится. Установлено, что основной предшественник обеих гексоз - глюкоза, поступающая в молочную железу из крови. Механизм превращения глюкозы в галактозу и образование лактозы в процессе секреции молока в настоящее время выяснены. Синтез лактозы катализируется ферментом лактозосинтетезой, которая состоит из двух специфических белков, одним из которых является L - лактальбулин, минеральные вещества, которые приходят вместе с кормами.
Белки
1). Современная номенклатура белков молока.
2). Аминокислотный состав белков.
3). Структура белков молока.
4). Казеин - основной белок молока.
Общее содержание белков в молоке колеблется от 2,9 до 4%. Белки молока разнообразны по строению, физико-химическим свойствам и биологическим функциям.
Белки — это высокомолекулярные соединения, состоящие и
L — АK, которые связаны между собой характерной для белков пептидной связью. В молоке обнаружена целая система белков, среди которых выделяют две главные группы казеины и сывороточные белки.
Основная часть белков молока (78-85%) представлена казеинами (казеином), который представлен несколькими фракциями - 6 -, это Ls1 - казеин, Ls2 - казеин, b - казеин, Н - казеин, g - казеин.
Компонентами сывороточных белков являются b - лактоглобулин и a- лактальбулин, а также альбумин сыворотки крови, иммуноглобулины, протеоза пептоны и лактоферрин. К белкам молока следует отнести ферменты, некоторые гормоны (пролактин) и др., белки оболочек жировых шариков.
Казеины являются собственно пищевыми белками. Они максимально расщепляются пищеварительными протеиназами в наитивном состоянии, в то время как обычно глобулярные белки приобретают эту способность после денатурации. Казеины обладают свойством свертываться в желудке новорожденного с образованием сгустков высокой степени дисперсности. Кроме того они являются источником Са и Р, а также целого ряда физиологически активных пептидов. Так, при частичном гидролизе Н - казеина под действием химозина в желудке освобождаются гликомакропептиды, регулирующие процесс пищеварения (уровень желудочной секреции). Физиологическая активность, по-видимому, присуща и растворимым фосфопептидам, образующимся при гидролизе Н-казеина.
Биологическими функциями обладают и сывороточные белки. Так, иммуноглобулины выполняют защитную функцию, являясь носителями пассивного иммунитета, лактоферрин и другой белок — лизоцим, относящийся к ферментам молока, обладают антибактериальными свойствами. Лактоферрин и b-лактоглобулин выполняют транспортную роль — переносят в кишечник новорожденного железо, витамины и другие соединения. Сывороточный белок - a - лактоальбулин имеет специфическую функцию - он необходим для процесса синтеза.
Аминокислоты (АК) — состав белков молока. Белки молока содержат почти все аминокислоты, встречающиеся в белках. Аминокислоты белков относятся к А - _____< - формы и имеют общую формулу:
________
R - CH - COOH
I
NH2
В состав белков молока входят как циклические, так и ациклические аминокислоты - нейтральные, кислые и основные, причем преобладают кислые. Количество отдельных групп аминокислот в белках зависит от зоотехнических факторов, что и обуславливает их физико-химический состав. Молоко по содержанию незаменимых аминокислот является полноценным.
Состав незаменимых АК в некоторых белках %
Аминокислоты | Идеальный белок | Казеин | Сывороточные белки молока | Белок яйца | Белок пшеницы | Белок мышц человека |
Валин | 5 | ?.2 | 5,7 | 7,3 | 3 | 6 |
Лейцин | 7 | 9 | 12,3 | 8,8 | - | 9,9 |
Изолейцин | 4 | 6 | 6,2 | 6,6 | 6 | 4,7 |
Метионил | - | 2,8 | 2,3 | - | 2,3 | 2,8 |
Цистил | 3,5 | 0,34 | 3,4 | 5,5 | 2,3 | 1,8 |
Треонин | 4 | 4,9 | 5,2 | 5,1 | 3 | 4,6 |
Лизин | 5,5 | 8,2 | 9,1 | 6,4 | 0,6 | 8,1 |
Фенилаланил | - | 5 | 4,4 | - | 2,5 | 4,7 |
Тирозин | 6 | 6,3 | 3,8 | 10 | 3,1 | 4 |
Триптофен | 1 | 1,7 | 2,2 | 1,5 | 0,9 | 2,2 |
Из таблицы видно, что биологическая ценность казеина несколько ограничивается дефицитом серосодержащих аминокислот - цистина, вместе с тем казеин содержит высокое количество фенилаланина, итрозина и метионина, что вызывает затруднения при их метаболизме в организме грудных детей. В сывороточных белках баланс дефицитных серосодержащих и других незаменимых аминокислот лучше, чем в казеине, и значит биологическая ценность их выше. А в растительных белках недостает триптофана, лизина, которыми богаты молочные белки.
Благодаря тому, что белки молока находятся в растворенном состоянии, они легко атакуются и перевариваются протеолитическими ферментами пищеварительного тракта. Степень усвоения белков молока 96-98%.
Структура белков молока. В свежем молоке белки находятся в нативном состоянии. Структура их идентична структуре белков, полученных путем биосинтеза, т. е. в нативном белке не происходит еще никаких изменений.
Первичная структура определяется числом и расположением a - аминокислот, конфигурацией связей в полипептидных цепях, и если белки состоят из нескольких полипептидных цепей - местоположением и типом поперечных связей. Выявлена первичная структура некоторых важных белков молока, в том числе as1- b-казеин, Н-казеина. Например, b-казеин образуется из полипептидной цепи, в которую входит 209 аминокислот: 4 - аспарагиновая кислота, 5 АСН-аспарагин, 9 - треонина, 11 - серина, 5 - серинфосфорная кислота, 17 - глутаминовая кислота, 22 - глютамин, 35 - пролиновая, 5 - глициновая, 5 - аланин, 19 - валиновая. А - первичная структура as1 - казеин содержит 199 АК, Н - казеин 169, 6 - метионина, 22 - лейцина, 11 - лизина, 5 - гистидина, 4 - изолейцина, 4- тирозина, 1 - трептофана, 5 - аргенина.
АК-пролин определяет структуру и обуславливает складчатое строение полипептидных цепей. АК находятся в цепи в определенной последовательности. Каждая полипептидная цепь имеет концевую NH2 - групп и концевую COOH групп H2N - CH= СН - СООН a R
Эти концевые группы могут реагировать с различными химическими веществами.
Первичная структура белков основана на главных валентных пептидных связях и дисульфидных связей. Они настолько стабильны, что при обработке и переработке молока не разрушаются энергетическими воздействиями. Поэтому первичная структура белков молока разрушается только при ферментативном распаде белка в процессе созревания сыров.
Вторичная структура. Это пространственное взаимное расположение аминокислотных остатков в полипептидной цепи и представляет собой цепь спиралеобразной конфигурации, которая образуется за счет водородного мостика между полипептидными цепями.
Водородная связь, обладая незначительной энергией связи, может расщепляться при обработке и переработке молока, например, при высокотемпературной пастеризации.
Третичная структура - представляет пространственное расположение полипептидной цепи, отдельные участки которой могут соединяться между собой прочными дисульфидными связями, возникающими между остатками цистеина. В образовании третичной структуры участвуют и другие связи - гидрофобные, электростатические, водородные и прочие. В зависимости от пространственного расположения полипептидной цепи форма молекул белков может быть различной. Если полипептидная цепь образует молекулу нитевидной формы, то белок называется фибрилярным, если она уложена в виде клубка - глобулярным (глобулус - шарик). Белки молока относятся к глобулярным белкам. Изучение их вторичной и третичной структур показало, что казеин в отличие от обычных глобулярных белков почти не содержит a-спиралей, a-лактальбулин и a-лактоглобулин содержит большое количество спирализованных участков. Казеин, вероятно, занимает промежуточное положение между компактной структурой глобулы и структурой беспорядочного клубка, который обычно наблюдается при денатурации глобулярных белков. Такая структура обеспечивает хорошую расщепляемость казеина протеолитическими ферментами при переваривании в нативном (природном) состоянии без предварительной денатурации.
Четвертичная структура характеризует способ расположения в пространстве отдельных полипептидных цепей в белковой молекуле, состоящей из нескольких таких цепей или субъединиц. Глобулярные белки, обладающие четвертичной структурой, могут содержать большое количество полипептидных цепей, тесно связанных друг с другом в компактную мицеллу, которая ведет себя в растворе как одна молекула.
Так, казеиновая мицелла среднего размера должна состоять из нескольких тысяч полипептидных цепей фракций казеина, определенным образом связанных друг с другом.
Казеин является основным белком молока, его содержание в молоке колеблется от 2,3 до 2,9%. Элементарный состав казеина, %: С - 53,1, Н - 7,1, азот - 15,6, О - 22,6, S - 0,8; Р - 0,8. Он относится к фосфопротеидам, т. е. содержит остатки Н3 РО4 (органически присоединенные к АК-те серину моноэфирной связью (О - Р).
NН ОН
R ] СН — СН2 — О — Р = О
С ОН
О
Казеин Серинфосфорная кислота
В свежем молоке ККФК содержится в виде амицелл - это агрегаты частиц, состоящих изтак называемых сублицелл.
a = 8 - 15 НМ, молекулярная масса 25.000-30.000, которые легко разрушаются под действием внешних факторов, частично уже при разбавлении.
Казеин в молоке содержится в виде сложного комплекса казеината кальция с коллоидным фосфатом кальция - так называемого казеинат-кальций-фосфатный комплекс (ККФК), в состав которого входит небольшое количество лимонной кислоты, магния, калия и натрия.
Соединение субмицелл в мицеллы происходит с помощью фосфата кальция и кальциевых мостиков. Казеиновые мицеллы сравнительно стабильны в свежевыдоенном молоке. Они сохраняют свою устойчивость при нагревании молока до относительно высоких температур и при его механической обработке. Стабильность мицелл зависит от содержания в молоке растворимых солей кальция, химического состава казеина, РН молока и других факторов.
Фаза истинного раствора
1). Молоко и молочная сыворотка как истинный раствор.
2). Ионо-дисперсное состояние минеральных солей.
3). Молекулярно-дисперсное состояние лактозы.
4). Равновесные отношения.
Истинный раствор — это гомогенные смеси, состоящие из растворенных веществ и растворителя. В истинных растворах растворенные вещества находятся либо в молекулярно-дисперсном, либо в ионо-дисперсном состоянии. Именно молочная сыворотка представляет собой истинный раствор. В ней лактоза и водорастворимые витамины присутствуют в молекулярно распределении, а соли электро-
чески диссоциированы и образуют гидратированные ионы. Вот такое распределение можно представить в виде схем:
Истинный раствор
Растворимые вещества Растворитель
вода
молекулярно- ионно-
дисперсные дисперсные
лактоза, водорастворимые соли в форме
витамины катионов и анионов,
лимонная кислота, дву-
окись углерода ионы водорода
Истинно растворимые составные части придают молочной сыворотке определенные свойства, которые зависят от концентрации составных частей и характерны также и для полидисперсной системы молока, причем эти свойства частично ослабляются или усиливаются в зависимости от коллоидно-дисперсного или эмульгированного состояния присутствующих составных частей. Истинно растворимые частицы обуславливают, в частности, осмотическое давление, осмотические явления снижения температуры замерзания и повышения температуры кипения, а также электропроводность молока. Они оказывают сильное влияние на рефракцию, т. е. способность к преломлению света.
Изменения этих физико-химических свойств можно объяснить колебаниями концентрации истинно растворимых составных частей. Так, в соответствии с законом Вигнера содержание истинно растворимых составных частей в течение периода лактации претерпевает самые незначительные колебания. Указанные изменения служат для распознавания фальсификации молока.
Ионно-дисперсные составные части связаны между собой за счет солевого равновесия молока. И любое изменение нормального первоначального равновесия влияет на растворимость отдельных солей и дестабилизацию белков молока. Это приводит к коагуляции при концентрировании и стерилизации.
Если ионы кальция, например, обуславливают стабильность казеина, то по существующей концентрации их можно было бы предсказать возможные дестабилизирующие воздействия их на казеин, что особенно важно для определения необходимого количества солей-стабилизаторов в производстве сгущенного молока. Однако до сих пор это невозможно, и приходится пользоваться элепсерическими величинами, т.к. не все присутствующие ионы кальция активны, а только некоторые из них, но они мало влияют на другие истинно растворимые составные части.
Молочная сыворотка — это реальный раствор, в противоположность идеальному раствору, которые практически реализуется только при бесконечном разбавлении и в котором растворенные частицы не оказывают взаимного влияния друг на друга, концентрация ионов в молочной сыворотке достигает такой величины, что они взаимно влияют друг на друга благодаря электростатическим силам.
Ионно-дисперсное состояние минеральных солей.
Все соли натрия и калия (хлориды, гидро-, дигидрофосфаты, и цитраты) диссоциированы практически нацело и содержатся в молоке в ионном состоянии, например соли натрия:
NaCl ® Na + + Cl — ; Na2HPO4 ® 2 Na + HPO4 2—
Na H2PO4 ® Na + H3 PO4 — ; C6 H5 O7 Na3 ® 3 Na + + C6 H5 O7 3 —
В ионно-молекулярном состоянии в молоке содержится часть цитратов и фосфатов кальция и магния:
CaHPO4 ® Ca 2 + HPO4 2—
Ca(H2PO4)2 ® Ca2 + 2 H2PO4 —
Ca3(PO)2 ® 3 Ca2 + + 2 PO4 3—
(C6H5O7)2 Ca3 ® 3 Ca2 + + 2 C6H5O7 3—
Фосфаты кальция обладают малой растворимостью и незначительной степенью диссоциации, лишь небольшая часть их содержится в виде истинного раствора, а большая — в виде коллоидного раствора. Между ними устанавливается равновесие, например:
n CaHPO4 ® (CaHPO4
истинный раствор коллоидный раствор
n Ca3 (PO4)2 ® [Ca3(PO4)2 ]n
Сдвиг равновесия в ту или другую сторону зависит от рН молока, температуры и других факторов. Соотношение этих форм фосфатов Са играет важную роль в стабилизации белковых частиц молока. Так, фосфаты Са в форме истинного раствора являются источниками образования ионов кальция, от количества (активности) которых зависит размер и устойчивость мицелл казеина при тепловой обработке, а также скорость сычужной коагуляции.
По концентрации отдельных ионов в молоке нельзя судить об их активности, что объясняется действием ионов друг на друга, а также их взаимодействием с дисперсионной средой (водой) и дисперсными фазами других дисперсных систем молока.
В растворе электролитов между ионами действуют силы притяжения и отталкивания. В концентрированных растворах сильные межионные взаимодействия приводят к взаимному связыванию ионов, что влияет на величину осмотического давления, температуру замерзания и электропроводность раствора. Для оценки состояния ионов в растворе электролитов пользуются величинами активности ионов и ионной силы раствора.
Под активностью иона понимают ту условную концентрацию его, в которой он участвует в химических реакциях. Ее можно определить с помощью чувствительных к данному иону электродов или рассчитать по формуле а = fC, где f — коэффициент активности иона; С — концентрация иона. В молоке активность иона определить нельзя, т. к. в нем находится большое количество растворенных веществ и поэтому их рассчитывают по величине ионной силы молока.
Ионную силу раствора вычисляют по формуле, понимая под ней полусумму произведений концентрации всех ионов (катионов и анионов) в растворе Сi на квадрат из заряда.
= 1/2 å Сi 2 ei
Рассчитать точно ионную силу молока трудно, так как неизвестен состав фосфатов и цитратов кальция, а также степень их диссоциации. Ее рассчитывают условно, принимая, что все анионы фосфатов и цитратов находятся в форме одновалентных ионов Н2РО4— и С6Н7О7—. Ионная сила молока составляет: 0,079-0,089. Сгущение (концентрирование), вызывает снижение активности ионов. При повышенных концентрациях ионов энергия межионного взаимодействия сравнима с тепловой энергией, затем наступают обратные реакции. На основании того, что активность, а не концентрация истинно растворимых составных частей молока оказывает основное влияние на его свойства и что коэффициент активности для молока еще не установлены, можно сделать следующие выводы:
· осмотичное давление или снижение температуры замерзания, зная концентрацию истинно растворимых составных частей, можно рассчитать лишь приблизительно;
· константы диссоциации солей молока также зависят от активности, поэтому в такой смеси, как молоко, они имеют лишь условную силу;
· результаты, полученные при расчетах с учетом констант, как, например, распределение фосфата, на отдельные виды ионов, представляют собой приближенные величины;
· предположения относительно свойств молока по отношению к определенным технологическим воздействиям все еще остаются элитерическими и не могут служить основой тонких математических расчетов;
· от взаимодействия истинно растворимых составных частей молока во многом зависят свойства молочной сыворотки и тем самым они влияют на стабильность других фаз системы.
Молочный сахар, растворяясь в плазме молока, образует молекулярный раствор. Он содержится в виде гидратных и b-форм, находящихся в равновесии: -лактоза ® b-лактоза. Равновесие между ними зависит от температуры и сдвинуто обычно в сторону b-формы, т. к. последняя более растворима в молоке (Н2О), чем
-форма. Так, при 20°С содержание b-формы в молоке составляет около 60%, а -формы — около 40%. Константа равновесия между ними b-формы
К = 11,8/ 7,4 = 1,59
11,8 - растворимость b-формы в г/100 мл воды, ;
7,4 - растворимость - формы.
Насыщение раствора лактозой и выпадение ее в кристаллической форме наблюдается при сгущении молока и последующем охлаждении сгущенного молока с сахаром, а также при сгущении молочной сыворотки в процессе получения молочного сахара.
Таким образом, в молоке содержится несколько взаимно влияющих друг на друга дисперсных систем с различными физико-химическими видами равновесий, которые обуславливают сложную структуру молока и его чувствительность к физическим, химическим и биологическим воздействиям. Наиболее ясно выражены равновесные отношения между коллоидной системой и истинным раствором, например, равновесие между:
— устойчивостью коллоидных белков ® ионной силой молочной сыворотки;
— коллоидно-растворимым фосфатом Са ® ионизируемым Са
[ Са3(РО4)2] ® Са3(РО4)2 ® 3Са++ + 2НРО43 —
Между другими фазами тоже существует определенная зависимость.
Поэтому перед инженером-технологом стоит задача: выбрать такой щадящий режим отработки молока, чтобы влияние на равновесные отношения в нем было по возможности незначительным.
В то же время нужно с помощью физических методов проводить разделение полидисперсной системы молока на ее главные составные части, не оказывая при этом существенного влияния на свойства компонентов молока. Чем лучше удается разделение на отдельные фазы, тем выше выход готового продукта.
Значительную роль при этом играют свойства отдельных дисперсных систем в молоке.
Дата: 2019-05-29, просмотров: 246.