Химический состав молока
ВВЕДЕНИЕ
Химия и физика как наука начала свой отсчет в прошлом веке, в тот период она начинала с изучения химического состава молока. В нашей стране этим вопросом занимались Ильенко (1819-1877), затем Калантар (1859-1937). Химия молока (биохимия) как наука была создана в советское время пр. Иниховым и Зайковским, которые работали в Вологодском молочном комбинате, затем в Московском комбинате мясной и молочной промышленности (МГУБТ). Ими в 20-30-ые годы были написаны первые учебники по биохимии молока (Химия молока, Анализ молока: Химия и физика молока молока и молочной продукции. Большой вклад в развитие науки о молоке внесли великие русские ученые — Павлов и Мечников.
Значительный вклад в развитие биохимии молока внес проф. Паращук (1873-1850 г.г.); развитию биохимии способствовали работы Белоусова, Брио, Граникова, Давидова, Диланяна, Дьяченко, Казанского, Климовского, Коваленко, Овчинникова, Чеботарева и др.
В настоящее время ведут исследования коллективы в области химии и физики молока ВНИМИ, НИИ Углич и ученые других высших учебных заведений.
Предмет «Химия и физика молока» базируется на достижениях смежных наук, таких как органическая химия, физическая и коллоидная химия, физиология, биохимия питания. Эта наука изучает химический состав молока, физико-химические свойства молока: плотность, кислотность, теплофизические, оптические и др. А также системы молока, в которых находятся составные части: эта фаза истинного раствора, коллоидная фаза, фаза эмульсии. Особая роль отводится изучению изменений молока и его составных частей в процессе обработки и переработки. Это энергетическое воздействие, механические нагрузки, температурные воздействия, биохимические превращения. Без этих знаний невозможно вести технологические процессы производства молока и молочных продуктов, т. к. любые изменения традиционных способов производства могут так повлиять на составные части молока, что, в свою очередь, отразится на качестве молочных продуктов.
При использовании высокопроизводительного оборудования очень важно сохранить свойства молока и его составные части. Вот почему технологи молочной промышленности должны обладать обширными знаниями о химических, биохимических и физических свойствах составных частей молока.
МОЛОКО — полноценный и полезный продукт питания. Оно содержит все необходимые для жизни питательные вещества, нужные для построения организма. Естественное назначение молока в природе заключается в обеспечении питанием молодого организма после рождения. Состав молока различных млекопитающихся в целом определяется теми условиями окружающей среды, в которых происходит рост молодого организма. Это особенно четко проявляется в содержании белка и жира, чем больше их в молоке матери, тем быстрее растет ее дитя.
Так, грудной ребенок удваивает массу примерно за 180 дней, теленок — за 50 дней, а щенок — уже за 9 дней. Содержание белка в женском молоке, по сравнению с молоком различных животных, самое низкое — 1,6%, в коровьем — 3,4%, а в молоке собаки — 7,3% белка. Молочный жир служит прежде всего для удовлетворения потребности организма в энергии. В районах с холодным климатом потребность организма в энергии выше, чем в зонах с умеренным климатом. Вот почему молоко самки оленя северного отличается более высоким содержанием жира — 19,7%. Молоко пережило многие цивилизации, прежде чем стало продуктом питания и имеет свое назначение:
— в качестве продукта питания для населения,
— средство для вскармливания молодняка и корма в животноводстве,
— сырье для производства пищевых продуктов,
— источник получения отдельных компонентов молока, которые, в свою очередь, служат сырьем для фармакологии и других отраслей промышленности.
Все возрастающее значение молока как полноценного продукта питания и как сырьевого материала привело к увеличению спроса на него. В результате этого производство молока стало одной из важнейших отраслей сельхозпроизводства. В настоящее время молоко составляет значительную долю в сельскохозяйственном валовом продукте нашей страны.
Питательность 1 л молока составляет 685 ккал. Калорийность зависит, главным образом, от содержания жира, белка. Благодаря содержанию в молоке важнейших питательных веществ, главным образом белка, углеводов, витаминов, минеральных веществ, оно является и защитным фактором. В целях охраны здоровья на предприятиях, где существуют вредные условия труда, работники получают молоко.
Молочный белок является важным защитным фактором, т. к. он в силу своей алефотерной природы связывает пары кислот и щелочей, а также нейтрализует ядовитые тяжелые металлы (следы) и др. вредные для здоровья вещества. Благодаря содержанию в молоке кальция, фосфора, витаминов предотвращается развитие авитаминозов. Кроме питания человека молоко идет на кормление сельскохозяйственных животных: телят, свиней, птиц.
С помощью физических и биохимических методов из сырого молока получают молочные продукты, которые представляют собой частично обогащенные продукты питания, благодаря чему эти продукты характеризуются повышенной калорийность на каждые 100 г. Переработка молока ведет к изменению его пищевой ценности и вкусовых качеств, поэтому необходимо учитывать свойства каждого отдельного компонента молока. Сырьем для промышленности служат такие составные части молока как казеин и лактоза. Определение веществу молока можно дать с различных точек зрения, учитывая прежде всего цель применения. Если считать молоко продуктом питания, то на первый план выдвигаются законодательные, гигиенические и экономические требования, так что можно дать определение сырому молоку.
«Сырое молоко — это полученный в результате регулярного, полного выдаивания вымени у одной или более коров от одного или нескольких доений чистый и затем охлажденный продукт, из которого ничто не удалено и к которому ничего не добавлено».
Знания о количестве составных частей молока с течением времени постоянно расширялись. Это можно объяснить целенаправленностью научных исследований и применением современных методов анализа, которые позволяют, не применяя способа обогащения, обнаружить и количественно определить даже те составные части молока, которые присутствуют в нем в виде следов. В настоящее время известно свыше 200 различных компонентов молока.
Составные части молока — это все те компоненты, которые выделяются из вымени при доении.
Химизация сельского хозяйства, лечение заболеваний крупного рогатого скота, а также заболеваний вымени с помощью химиотерапевтических средств привели к увеличению содержания в молоке посторонних веществ, которые попадают в него различными путями.
Химический состав молока
Составные части
Истинные Не истинные
Главные Второстепенные Посторонние
вода соли (в форме катионов антибиотики и анионов) гербициды
белок лимонная кислота инсектициды
лактоза фосфатиды радионуклиды
стерины
ферменты
витамины
газы
Молочный жир, лактоза, казеины, лактоглобулин и -лактоальбумин являются специфическими компонентами молока. Они синтезируются в молочной железе и встречаются только в молоке. Остальные компоненты можно найти и в других биологических соединениях.
С технической и экономической точек зрения молоко можно разделить на воду, сухое вещество и сухой обезжиренный остаток.
Молоко
Вода сухое вещество
жир сух. обезж. остаток
лактоза казеин сыворотка соли
Наибольший удельный вес в молоке занимает вода (более 85%, на остальные компоненты, входящие в состав сухих веществ или сухих остатков, приходится 11-14%). Содержание так называемого сухого обезжиренного остатка молока (СОМО) составляет 8-9%. Его определяют по ГОСТ 3626-73 методом высушивания навески молока при 102 + 2° до постоянной массы. Его можно найти расчетным путем — сложением содержания СОМО и количества жира в молоке. Для этого содержание СОМО определяют по формуле, используя показатели жирности и плотности молока.
Сухой остаток включает все питательные вещества молока. Он определяет выход готовой продукции при производстве молочных продуктов.
Содержание сухого вещества и отдельных его компонентов непостоянно в течение периода лактации. Количество жира подвержено самым большим колебаниям, затем идет белки. Содержание лактозы и солей, наоборот, почти не изменяется в течение всего периода лактации. Диапазон колебаний находится в тесной связи с величиной частиц отдельных составных частей.
Составная часть Диапазон частиц, НМ
Жир 100 — 10.000
Казеин 5 — 100
Альбулин 5 — 15
Молочный сахар %
Ионы 0,5
Эту зависимость сформулировал Вигнер в законе, названном его именем: «Содержание различных составных частей сухого вещества молока колеблется тем меньше, чем в более тонком распределении они присутствуют в молоке».
Естественные изменения содержания основных составных частей — жира и белка представляют экономический технологический интерес. Оплата молока в зависимости от жирности, вследствие колебаний этого показателя, требует постоянного контроля за содержанием жира. Колебания затрудняют соблюдение постоянного соотношения между определенными составными частями в готовом продукте: например, в сгущенном молоке между жиром и сухим обезжиренным остатком. Фальсификацию молока водой можно точно установить лишь по содержанию лактозы и ионов путем определения точки его замерзания.
Жир занимает особое экономическое положение и служит основой оплаты молока, т. к. он подвержен резким колебаниям (до 4% — диапазон), затем идут белки, лактоза изменяется незначительно. Эти колебания зависят от породы скота, стадии лактации, возраста, состояния здоровья животного, рациона кормления, условий доения и содержания, мышечной нагрузки животных.
Изменения в составе молока после доения можно объяснить микробиологическим и технологическим воздействием. Однако различные показатели могут быть получены и при разных методах анализа. Например, при определении содержания жира бутирометрическим методом показатели жирности на 0,05% выше, чем при использовании гравиометрического метода. Из показателя, характеризующего содержание лактозы, зачастую не ясно, какая форма лактозы учитывается при этом — моногидратная или безводная, что ведет к различиям между показателями ее содержания, достигающими 0,24% на каждые 100 г молока.
Поэтому количественные данные о содержании сухого вещества и составных частей молока требуют более точного определения при их использования с целью сравнения.
Вода 87 г
Сухой остаток 13 г
Белки
Липиды
Казеин - 2,6 г
Жир - 3,6 г
Сыв. бел. - 0,65 г
Фосфор - 0,03 г
b -лактоальб. - 0,12 г
стерин - 0,01 г
Альбумин сыв.крови -0,03 г
иммуноглобулин - 0,05 г
протеозо-пейтоны -0,15
Минеральные вещества
Ферменты
Мик., мгк
Дегидрогенады
Нg - 0,3
Ксантиноксидаза
Cd - 1
Пероксидаза
Pb - 5
Каталоза
A s - 4
Литаза
Ni - 2
Фосфаты
Se - 4
Амилаза
- 18
Лизоцим
Sn - 15
Протеины
Br - 15
B-18
Гормоны
Постоянные хим.в-ва
Пигменты
Пролактин
Антибиотики
b -каротин - 0,015 г
Окситоцин
Пестициды
Ксантофил-слезы
Кортикостероиды
Андрогены
Детергенты
Эстрогены
Дезинфектаны
Прогестерон
Афлатоксины и др.
Тироксин и др.
Коллоидная система молока
1). Характеристика дисперсной фазы.
2). Структура мицелл казеина.
3). Коагуляция.
В коллоидно-дисперсном состоянии в молоке находятся сывороточные белки, казеин, большая часть фосфатов кальция. Это самая чувствительная фаза.
Растворы белков относят к истинным растворам, их считают однофазными гомогенными системами. Однако, свертывание макромолекул глобулярных белков в водном растворе в компактные глобулы можно считать частным случаем перехода гомогенного истинного раствора в двухфазный коллоидный раствор. Поэтому частицы белков молока можно рассматривать как коллоидные частицы, а их устойчивые обратимые водные растворы — как гидрофильные коллоидные растворы.
По свойствам и внутренней структуре коллоидные системы делят на необратимые (лиофобные) и обратимые (лиофильные).
Лиофобные (или гидрофобные, если дисперсионной средой является вода) коллоидные системы не обладают агрегативной и термодинамической устойчивостью, их частицы не связывают воду, стабилизируются за счет возникновения двойного электрического слоя на границе раздела фаз. Системы теряют свою устойчивость при добавлении малых количеств электролита.
Лиофильные (или гидрофильные) коллоидные системы обладают агрегативной и термодинамической активностью, их дисперсная фаза связывает значительные количества воды и образует вокруг частиц развитую сольватную (гидратную) оболочку, от нее и заряда на поверхности частиц зависит стабильность системы. Гидрофильные коллоидные системы коагулируют при добавлении большого количества электролита. Размеры коллоидных частиц молока составляют в(нм): b-лактоглобулина 25-50; a- лактоальбумина —15-20; мицелл казеина — 40-300; фосфата кальция — 10-20. Частицы сывороточных белков молока представлены отдельными макромолекулами, а также их димерами и полимерами.
Макромолекулы белков свернуты в компактные глобулы, имеющие отрицательный заряд и очень прочные гидратные оболочки. Они обладают большой устойчивостью в молоке, не коагулируют при достижении изоэлектрической точки, хотя при понижении РН образует ассоциаты из нескольких мономеров. Выделить белки можно путем уменьшения их растворимости — введением в молочную сыворотку большего количества электролита, т. е. высаливанием. Высаливание сульфатом аммония и магния лежит в основе фракционирования сывороточных белков молока.
При нагревании молока до высоких температур сывороточные белки денатурируют, затем агрегируют и частично коагулируют.
Казеин в молоке содержится в виде мономеров (так называемый растворимый казеин) и в форме полимеров (субмицеллерный и мицеллерный казеин). Мицеллы казеина обладают свойствами гидрофильного золя, который при определенных условиях может перейти в гель. Только под действием сычужного фермента золь казеина переходит в гель необратимо, т. е. казеин проявляет свойства, присущие гидрофобным коллоидам.
Коллоидный фосфат кальция малорастворим в воде и в молоке образует типичную неустойчивую коллоидную систему с гидрофобной дисперсной фазой. Его растворимость повышается под влиянием казеина, вместе с которым он входит в состав мицелл. Таким образом, мицеллы казеина представляют собой коллоидную фазу смешанного состава, обладающую свойствами гидрофильного и гидрофобного золя. Нахождение казеина и фосфата кальция в молоке в виде сложных мицелл имеет большое значение для новорожденного. Так, под действием химозина в его желудке мицеллерный белок легко образует сгусток, который подвергается дальнейшему воздействию пепсина. Кроме того, в составе растворимых мицелл казеина транспортируются очень важные для молодого организма соли кальция.
Структура мицелл казеина. Известно несколько моделей структур казеина. Сейчас получила свое признание модель пористой структуры мицелл. Мицеллы казеина имеют почти сферическую форму, средний диаметр от 70 до 100 нм с колебаниями от 40 до 300 нм, молекулярная масса 6·108 (с колебаниями от 26·107 до 5·109). Мицеллы казеина состоят из нескольких сотен субмицелл диаметром 10-15 нм и молекулярной массой 250.000-300.000. В состав субмицелл и мицелл не входит -казеин, он находится в свободном состоянии. Субмицеллы представляют собой агрегат из 10-12 субединиц — основных фракций казеина ( ), соединенных между собой гидрофобными, электростатическими и водородными связями и кальциевыми мостиками. Соотношения между фракциями ( ) могут быть различными (3:2:1; 2:2:1), и т. д., но с уменьшением размера субмицелл и мицелл увеличивается относительное содержание в них казеина. Полипентидные цепи фракций казеина свертываются в субмицелле таким образом, что большинство гидрофобных групп составляют основное ядро, а гидрофильные располагаются на поверхности субмицелл. Гидрофильная часть (оболочка) содержит отрицательно заряженные кислотные группы глютаминовой, аспарагиновой и фосфорной кислот. Усиливают гидрофильные свойства субмицелл и мицелл, ориентированные наружу гликомакропептиды -казеина, которые располагаются на поверхности субмицелл. Известно, что пептитдная часть гликомакропептидов содержит большое количество оксиаминокислот (серина и треонина), глютаминовой и аспарагиновой кислот, а углеводная — свободные карбоксильные группы сиаловой кислоты.
Соединения субмицелл в устойчивые мицеллы происходит с помощью коллоидного фосфата кальция, и возможно за счет цитрата кальция и гидрофобных взаимодействий. Схематично это представлено:
Точный состав коллоидного фосфата кальция и механизм его взаимодействия с казеином до конца не изучен, но выяснено, что удаление его из молока вызывает нарушение структуру мицеллы, что сопровождается увеличением в молоке свободных — -казеинов, которые чувствительны к ионам кальция.
Пористая структура мицелл позволяет проникать внутрь их Н2О, ферментам. Мицеллерный казеин, сильно гидратирован — содержит 2-3,7 г и более воды на 1 г белка, и поэтому вода не только окружает мицеллу казеина в виде гидратной оболочки, но и заполняет большую часть ее объема, т. е. иммобилизуется мицеллой.
В свежем молоке мицеллы казеина устойчивы, не коагулируют при механической обработке (очистке, сепарировании, гомогенизации), и нагревании молока до высоких температур. Снижение их устойчивости и коагуляции наблюдается лишь при понижении РН молока, повышении концентрации ионов кальция, внесении сычужного фермента. А устойчивость и коагуляция коллоидных растворов зависит от соотношения молекулярных сил, притяжения и электростатических сил отталкивает между коллоидными частицами. В свежем молоке последние силы превалируют над силами молекул притяжения, и коллоидная система находится в устойчивом состоянии. И для того, чтобы вызвать соединение и коагуляцию мицелл казеина, необходимо снизить отрицательный заряд, т. е. перевести мицеллы в изоэлектрическое состояние, или близкое к нему, и разрушить гидратные оболочки.
В практике коагуляцию казеина осуществляют снижая РН молока и добавляя кислоты (кислотная коагуляция), внося хлорид кальция (термокальциевая коагуляция), сычужный фермент (сычужная коагуляция). Коагуляция — это хлопьеобразование, оно происходит в результате дестабилизации коллоидных частиц в изоэлектрической точке, когда снижается количество поверхностных зарядов и снижается потенциал отталкивания, и гидратная оболочка ослабевает.
Кислотная коагуляция — образуется при осаждении белков молока молочной кислотой или другими органическими и неорганическими кислотами. Кислота снижает отрицательный заряд казеиновых мицелл, т. к. Н-ионы подавляют диссоциацию карбоксильных групп казеина, и гидроксильных групп. Н3РО4 и при этом группы СОО — переходят в СООН, а РО3-2 в РО3Н2, в результате достигается равенство положительных и отрицательных зарядов при РН 4.6-4.7. При кислотной коагуляции помимо снижения отрицательных зарядов казеина нарушает структуру ККФК, от него отщипляются фосфаты кальция и структурообразующий кальций, и их переход в раствор дополнительно стабилизирует казеиновые мицеллы.
[ККФК] + С3О6О3 ® казеино + Са3(РО4)2 + (С3Н5О3)2Са.
Структурообразующий кальций:
R - СН2 - О
казеин
Состав коллоидного фосфата кальция, присутствующий в частицах казеина и характер его связи до сих пор неизвестны. Это могут быть гидрофосфат или фосфат кальция, их смесь, а также кальций фосфатцитратный комплекс и др. Фосфор коллоидного фосфата кальция в отличие от фосфора органического, входящего в состав казеина, называют неорганическим. Фосфат кальция, по-видимому, может взаимодействовать с серинофосфатными группами казеина соединяя его молекулы между собой наподобие кальциевых мостиков:
Добавление кислоты снижает РН, тем самым разрушается коллоидная система — такое явление может носить желательное, также нежелательное явление: при производстве кислотного творога и технического казеина, нежелательное явление — самопроизвольное скисание сырого и питьевого молока.
Сычужная коагуляция — носит необратимый характер и включает две стадии: ферментативную и коагуляционную. На первой стадии под действием основного компонента сычужного фермента —химозина — происходит разрыв пептидной связи фенилаланин (105) и метионин (106) в полипептидных цепях -казеина КФК. В результате протеолиза, молекулы -казеина распадаются на гидрофобный пара -казеин и гидрофильный гликомакропептид. Схематично это выглядит так:
Гликомакролептиды имеют высокий отрицательный заряд и обладают сильными гидрофильными свойствами. При их отщеплении частично разрушается гидратная оболочка, силы электростатического отталкивания между частицами уменьшаются и дисперсная система теряет устойчивость.
На второй стадии дестабилизированные мицеллы казеина (параказеина), собираются в агрегаты и образуется сгусток, т. е. происходит гелеобразование. Сычужная свертываемость — желательное явление, свертывание молока протеидами микробного происхождения — нежелательное явление.
Кальциевая коагуляция связана со снижением отрицательного заряда казеина под влиянием положительно заряженных ионов двухвалентного кальция (вводят СаСl2). Ее применяют в промышленности для осаждения молочных белков из обезжиренного молока. Коагуляцию хлоридом кальция обычно проводят при высокой температуре (до 85оС), поэтому она носит название термокальциевая коагуляция.
Повышенная температура вызывает денатурацию сывороточных белков, которые коагулируют вместе с казеином. Белковый продукт, полученный на основе комплексного осаждения казеина и сывороточных белков, называется молочным белком, или копреципитатом. Его используют для обогащения некоторых пищевых продуктов. Степень использования белков при кальциевой коагуляции при температуре 90-85оС — 96-97%; при сычужной коагуляции — 85,6% (не осаждается казеин и лишь небольшая часть денатурированных сывороточных белков).
Фаза эмульсии
1). Состав и структура оболочки шариков жира.
2). Факторы устойчивости жировой эмульсии молока.
Молоко представляет собой эмульсию жировых шариков в молочной плазме. Плазма — молочная жидкость, свободная от жира, в ней присутствуют все остальные части молока в неизменном виде. Эмульсия представляет собой тонкодисперсную систему из двух нерастворяющихся одна в другой жидкостей, причем одна из жидкостей в тончайшем распределении, находится в другой. Свежевыдоеное молоко — двухфазная эмульсия. При длительном охлаждении часть жира в жировых шариках выкристаллизовывается и образуется трех- и многофазная эмульсия.
Вследствие различной величины жировых шариков в молоке оно образует полидисперсную эмульсию. Средний диаметр жировых шариков равен 2 — 2,5 мкм с колебаниями от 0,1 до 10 мкм и более. Размер их и количество в молоке непостоянны и зависят от всех зоотехнических факторов. Размеры жировых шариков имеют и практическое значение при переходе жира в продукт при производстве сливок, масла, сыра, творога.
Физическая стабильность шариков жира в молоке и молочных продуктах, зависит в основном от состава и свойств их оболочек. Оболочка жирового шарика состоит из двух слоев различного состава — внутреннего тонкого, который плотно прилегает к кристаллическому слою высокоплавких триглицеридов жировой глобулы и внешнего рыхлого (диффузного), который легко десорбирует при технологической обработке молока. Схематично это можно представить так:
Основной компонент внутреннего слоя — лецитин, в незначительном количестве содержатся кефалин, сфингомиелин. Фосфолипиды, вследствие полярного строения молекул является хорошими эмульгаторами. молекула которых состоит из двух частей — липофильной — она обладает химическим сродством с жиром и гидрофильной — которая присоединяет гидратную воду.
Белковые компоненты оболочки по растворимости в воде (разбавленных солевых растворах) делятся на две фракции: одна плохо растворима в воде, содержит 14% азота, содержит меньше лезина, валина, лейцина, глютаминовой и аспарагиновой кислот, больше аргинина по сравнению с молоком. Она включает значительное количество гликопротеидов, содержащих гексозы, гексозамины и сиаловую кислоту. В другую водорастворимую белковую фракцию входят гликопротеид с высоким содержанием углеводов и разнообразные ферменты: ксантиноксидазу, фосфатазу, холинэстеразу, глюкоза-6 фосфотазу и др. Большая их часть идентична ферментам клеточных мембран. В оболочке шариков жира обнаружены, кроме белков и липидов, обнаружены минеральные вещества: Cu, Fe, Mo, n, Ca, Mg, Se, Na, K. С оболочкой связано от 5 до 25% нативной меди молока и 28-29% нативного Fe (содерание Cu в 1 г оболочки составляет 5-25 мкг, Fe — 70-150 мкг.). Fe и Mo являются компонентами ксантиноксидазы, Cu входит в состав специфиического (богатого CU) белка оболочки, а остальные минеральные элементы в виде катионов плазмы молока связываются с отрицательно заряженными группами белков оболочек шариков жира.
Таким образом, внешний слой оболочки жирового шарика состоит из фосфолепидов, оболочечного белка и гидратной воды.
Состав и структура оболочек шариков жира после охлаждения, хранения и обработки молока отличаются от состава и структуры нативных оболочек. Так, в процессе охлаждения и хранения сырого молока на внутренней мембране адсорбируются иммуноглобулины, и липаза, которую называют мембранной, в отличие от плазменной); а при механической и тепловой обработке еще казеин и денатурированный b-лактоглобулин. Коренным образом изменяется состав оболочки в процессе гомогенизации молока и сливок.
2. Факторы устойчивости жировой эмульсии молока — она достаточно устойчива. Все выше перечисленные воздействия незначительно изменяют состав, физико-химические свойства оболочек жировых шариков, не нарушая при этом стабильности жировой эмульсии.
При технологической обработке молока в первую очередь изменяется внешний слой оболочки, имея неровную, шероховатую, рыхлую поверхность и довольно большую толщину после перемешивания, встряхивания и хранения. Оболочки шариков жира становятся более гладкими и тонкими. Это объясняется десорбцией липопротеидных мицелл из оболочек в плазму. Одновременно с десорбцией мицелл происходит сорбция белков и др. компонентов плазмы молока на поверхности мембраны шариков жира. Вот эти два явления десорбции — сорбции вызывают изменение состава и поверхностных свойств оболочек, что приводит к снижению прочности и частичному разрыву.
В процессе тепловой обработки молока уже происходит частичная денатурация мембранных белков, что способствует дальнейшему снижению стабильности оболочек шариков жира. Они могут быть разрушены довольно быстро и в результате специального механического воздействия: например, при производстве масла, при действии концентрированных кислот и щелочей, амилового спирта.
Стабильность жировой эмульсии в первую очередь объясняется возникновением на поверхности капелек жира электрического заряда за счет содержания на поверхности оболочки жирового шарика полярных групп — фосфолипидов, СООН, NH2, СООН — группы маловой кислоты белковых и углеводных компонентов. Значит на поверхности создается суммарный отрицательный заряд (изоэлектрического тока — рН 4,5). К отрицательно заряженным группам присоединяется катион кальция, магния и др. В результате образуется второй электрический слой, силы отталкивания которого превышают силы притяжения. И поэтому не происходит расслоения эмульсии, кроме того дополнительно стабилизирует жировую эмульсию гидратная оболочка, которая образуется вокруг полярных групп мембранных компонентов.
Вторым фактором устойчивости жировой эмульсии является создание на границе раздела фаз структурно-механического барьера за счет того, что оболочки жировых шариков обладают повышенной вязкостью, механической прочностью и упругостью, которые препятствуют слиянию шариков. Этот фактор наиболее сильный фактор стабилизации концентрированных эмульсий, например, высокожирные сливки. Следовательно, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этой цели надо сократить до минимума механические воздействия на дисперсную фазу молока при транспортивке, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку, т. к. длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности. А также для стабилизации жировой эмульсии необходимо широко применять дополнительное диспергирование жира путем гомогенизации.
При выработке одних молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и коалесценцию шариков жира, то при получении масла наоборот стоит задача разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.
Коалесценция — это когда слои дисперсионной среды или адсорбционные слои и частицы сливаются в новые более крупные образования, причем это приводит к заметному разделению фаз.
Агрегация диспергированных частиц с образованием более крупных частиц, которые под действием силы тяжести выпадают в осадок, приводит к флокуляции или коагуляции.
Схема строения двойного электрического слоя вокруг коллоидной частицы
1 — коллоидная частица.
2 — двойной электрический слой.
3 — его адсорбционная часть.
4 — диффузная часть.
Химические свойства молока
1). Влияние химического состава молока на его свойства.
2). Кислотность молока.
3). Буферная емкость молока.
3). Окислительно-восстановительный потенциал.
4). Значение рН в молочной промышленности.
Свойства молока. Свежее натуральное молоко, полученное от здоровых животных, характеризуется определенный физико-химическими и органолептическими свойствами, которые могут резко различаться в начале и конце лактационного периода, под влиянием болезней животных, некоторых видов кормов, при хранении молока в неохлажденном виде и при его фальсификации. Поэтому по физико-химическим и органолептическим свойствам молока можно оценить натуральность и качество заготовляемого сырья, т. е. его пригодность к промышленной переработке.
Все компоненты молока по разному влияют на физико-химические свойства его. Например, от массовой доли белка, дисперсности и гидратационных свойств белков в большей степени зависит вязкость и поверхностное натяжение молока, но почти не зависят величины электропроводности и осмотического давления. Почти все компоненты молока влияют на его плотность и кислотность, минеральные вещества молока значительно влияют на его кислотность, электропроводность, осмотическое давление и температуру замерзания, но не влияют на вязкость и т. д.
Кислотность — титруемая (общая) и активная.
Общая (титруемая) кислотность — выражается в градусах Тернера и определяется титрованием 0,1 н раствором щелочи 100 мл молока в присутствии индикатора фенолфталеина до нейтральной реакции. Кислотность является критерием оценки качества заготовляемого молока по ГОСТ 13264-88 «Молоко коровье» требования при закупках.
Кислотность свежевыдоенного молока составляет 16-18оТ. Она обусловливается кислыми солями — дегидрофасфатами и дегидроцитратами (около 9-13оТ), белками — казеином и сывороточными белками (4-6оТ), углекислотой, кислотами (молочной, лимонной, аскорбиновой, свободными жирными и др. компонентами молока (1-3оТ).
При хранении сырого молока титруемая кислотность повышается по мере развития в нем микроорганизмов, которые сбраживают молочный сахар с образованием молочной кислоты. Повышение кислотности вызывает нежелательные изменения свойств молока, например, снижение устойчивости белков к нагреванию. Поэтому молоко с кислотностью 21оТ принимают как несортовое, а молоко с кислотностью выше 22оТ не подлежит сдаче на молочные заводы.
Кислотность молока зависит от породы животных, от кормовых рационов, возраста, физиологического состояния и т. д. Особенно сильно изменяется кислотность в течение лактационного периода и при заболеваниях животных.
В первые дни после отела кислотность повышена за счет большого содержания белков, солей, через 40-60 дней она достигает физиологической нормы. И перед концом лактации коров имеет пониженную кислотность.
Отклонение естественной кислотности молока от физиологической нормы оказывает влияние на технологические свойства молока. Так, молоко с пониженной кислотностью нецелесообразно перерабатывать в сыры, т. к. оно медленно свертывается сычужным ферментом, а образующийся сгусток плохо обрабатывается.
рН (активная кислотность) — это концентрация водородных ионов. Она выражается отрицательными логарифмом концентрации ионов водорода, обозначается рН. Чем выше концентрация ионов Н2, тем ниже значение рН. Для нормального свежего молока рН составляет 6,47—6,67. Такая кислотность благоприятна для устойчивости коллоидной системы молока и развития бактерий. При повышенной активности кислотности развитие микроорганизма замедляется, а при значительность снижении рН прекращается.
Активная кислотность изменяется медленно, чем титруемая, что объясняется буферными свойствами молока. Молоко содержит несколько буферов (белковый, фосфатный, цитратный). Они обеспечивают постоянство рН. Белковый буфер состоит из белков молока (казеина) и натриевой или калиевых солей, которые могут вступать в реакции как с кислотами, так и со щелочами, таким образом нейтрализуя их. В случае добавления или накопления в молоке кислоты ионы Н2 кислоты связываются солью казеина.
При этом образуется свободный белок, обладающий свойствами слабой кислоты.
NH3 NH3
R + HCl R + NCl
COONa COOH
диссоциация СООН — слабая, РН молока изменяется незначительно, а титруемая кислотность повышается. Также ведет себя фосфатный буфер
Na2HPO4+HCl=NaH2PO4+NaCl
Если бы в молоке не было буферных систем, вряд ли мы смогли бы вырабатывать кисломолочные продукты и сыры. Дело в том, что молочнокислые закваски могут лишь развиваться при определенном рН. Низкие величины рН действуют на них губительно. Следовательно молочная кислота, образующаяся при сбраживании молочного сахара должна каким-то образом нейтрализоваться. И здесь на помощь приходят буферные системы. Но они действуют до тех пор, пока не утратят буферных свойств своих. Изменение рН молока при добавлении к нему кислоты или щелочи произойдет в том случае, если будет превышена буферная емкость систем молока. Под буферной емкостью молока понимают количество кислоты или щелочи, которое необходимо добавить к 100 мм молока, чтобы изменить величину рН на единицу.
Вследствие буферных свойств молока рН кефира, выработанного термостатным способом в конце сквашивания при титруемой кислотности 75-80о составляет лишь 4,85-4,75, а рН сгустка в процессе производства творога жирного при кислотности 58-60оТ — %.15-5,05. При таком рН возможны развитие молочнокислых стрептококков и накопление ароматических веществ. Аналогично при выработке твердых сыров рН сырной массы после прессования при высокой титруемой кислотности. Имеем величину, равную 5,2-5,6, что объясняется большим содержанием в ней белков, буферная способность которых при протеолизе увеличивается.
Фракционный состав казеина
1). Характеристика основных фракций.
2). Физико-химические свойства казеина.
В свежевыдоенном молоке казеин присутствует в форме мицелл, построенных из казеиновых комплексов. Казеиновый комплекс состоит агломерата (скопления) основных фракций: a, b, Y, Н -казеинов, которые имеют несколько генетических вариантов.
Согласно последним данным казеин можно разделить по схеме (рис.1), составленной на основе ревизии комитета по номенклатуре и методологии белков ассоциации американских ученых в области молочной промышленности.(ADSA).
Все фракции казеина содержат фосфор, в отличие от сывороточных белков. Группа as-казеинов обладает наибольшей электрофоретической подвижностью из всех казеиновых фракций.
as1-казеин — основная фракция as-казеинов. Молекулы as1-казеина состоят из простой номенклатурной цепи, содержащей 199 аминоклислотных остатков. Подобно b-казеину и в отличие от Н-казеина не содержит цистин. as2-казеин — фракция as-казеинов. Молекулы as2-казеина состоят из простой полептиптидной цепи, содержащей 207 аминокислотных остатков. Имеет свойства, общие как с as1-казеином, так и с Н-казеином. Подобно Н-казеину и в отличие от as1-казеина содержит два остатка цистеина:
as-казеин — фракция as-казеинов. Содержание ее составляет 10% от содержания as1-казеина. Имеет структуру, идентичную структуре as1-казеина, за исключением расположения фосфатной группы.
b-казеин, молекулы его состоят из простой политептидной цепи, содержат 209 аминокислотных остатков. Не имеет в своем составе цистеина и при концентрации ионов кальция, равной концентрации, их в молоке, нерастворим при комнатной температуре. Эта фракция наиболее гидрофобная, благодаря высокому содержанию пролина.
Н-казеин — имеет хорошую растворимость, ионы кальция не осаждают его. При действии сычужного и других протеолитических ферментов Н-казеин — распадается на пары — Н-казеин, осаждающийся вместе с as1, as2 — b- казеинами. Н-казеин является фосфогликопротеидом: содержит — триуглеводгалактозу, галактозамин и N-ацетил —нейралиновую (сиаловую) кислоту.
Группа U-казеинов являются фрагментами b-казеина, образовавшиеся путем протеолиза b-казеина ферментами молока.
Сыворотные белки — являются термолабильными. Начинают свертываться в молоке при температуре 69оС. Это простые белки, они построены практически только из аминокислот. Содержат в значительном количестве серосодержащие аминокслоты. Не коагулируют под действием сычужного фермента.
Лактоальбуминовая фракция — это фракция термолабильных сывороточных белков, которая не осаждается из молочной сыворотки при полунасыщении ее сульфатом аммония. Она — представлена b-лактоглобулином и a-лактоальбумином и альбумином сыворотки крови.
b-лактоглобулин — основной белок сыворотки. Нерастворим в воде, растворяется только в разбавленных растворах солей. Содержит свободные сульфгидрильные группы в виде остатков цистеина, которые участвуют в образовании привкуса кипяченого молока при тепловой обработке последнего. a-лактоальбумин — второй основной белок сыворотки. Выполняет особую роль в синтезе лактозы, является компонентом фермента лактозосинтетазы, который катализирует образование лактозы из уридин-дифосфатгалактозы и глюкозы.
Альбумин сыворотки крови попадает в молоко из крови. Содержание этой фракции в молоке коров, больных маститом, значительно больше, чем в молоке здоровых коров.
Иммуноглобулины — это фракция термолобильных сывороточных белков, осаждаемая из молочной сыворотки при полунасыщении ее сульфатом аммония или насыщении сульфатом магния. Она является гликопротеидами. Объединяет группу высокомолекулярных белков, имеющих общие физико-химические свойства и содержащих антитела. В молозиве количество этих белков очень велико и составляет 50-75% от содержания всего белка молозива.
Иммуноглобулины очень чувствительны к нагреванию. Иммуноглобулин разделяют на три класса: Uг. , Ur M (UM) и Ur А (UА), а класс Ur в свою очередь делится на 2 подкласса: Ur (U1) и Ur 2 (U2).Основной фракцией иммуноглоубинов является Ur 1
Протеозо-пептонная фракция (20%) относится к термостабильным высокомолекулярным пептидам, которые не выпадают в осадок при выдерживании при 95оС в течение 20 мин. и последующем подкислении до рН 4,6, но осаждаются 12%-ной трихлоруксусной кислотой. Протеозо-пептонная фракция представляет собой смесь фрагментов молекул белков молока. Эта фракция является промежуточной между собственно белковыми веществами и полипептидами. Электрофорез в полиакриламидном Геле выявил около 15 электрофоретическки различных зон, основные из которых — компоненты 3,5 и 8 — характеризуются низким содержанием ароматических аминокислот и метионина и сравнительно высоким — глутаминовой и аспаргиновой аминокислот. Содержат углеводы.
Физические свойства молока
1). Плотность, вязкость, поверхностное натяжение.
2). Осмотическое давление и температура замерзания.
3). Удельная электропроводность.
Плотность молока или объемная масса р при 20оС колеблется от 1,027 до1,032 г/см2, выражается и в градусах лактоденсиметра. Плотность зависит от температуры (понижается с ее повышением), химического состава (понижается при увеличении содержания жира и повышением при увеличении количества белков, лактозы и солей), а также от давления, действующего на него.
Плотность молока, определенная сразу же после доения ниже плотности, измеренной через несколько часов на 0,8-1,5 кг/м3. Это объясняется улетучиванием части газов и повышением плотности жира и белков. Поэтому плотность заготовляемого молока необходимо измерять не ранее чем через 2 часа после дойки.
Величина плотности зависит от лактационного периода, болезней животных, пород, кормовых рационов. Так. молозиво и молоко полученные от разных коров, имеют высокую плотность за счет повышенного содержания белков, лактозы, солей идругих составных частей.
Определяют плотность различными методами, технометрическими, ареометрическими и гидростатическими весами (плотность мороженого и молока в Германии).
На плотность молока влияют все его составные части — их плотность, которые имеют следующую плотность:
г/см3
вода — 0,9998; белок — 1,4511; жир — 0,931;
лактоза — 1,545; соли — 3,000.
Плотность молока изменяется от содержания сухих веществ и жира. сухие вещества повышают плотность, жир понижают. На плотность оказывают влияние гибратация белков и степень отвердевания жира. Последнее зависит от температуры, способа обработки и частично от механических воздействий. С повышением температуры плотность молока уменьшается. Это объясняется прежде всего изменением плотности воды — главной составной части молока. В диапазоне температур от 5 до 40оС плотность свежего обезжиренного молока в пересчете на плотность воды с повышением температуры снижается сильнее. Такое отклонение не наблюдается в опытах с 5%-ным раствором лактозы.
Поэтому снижение плотности молока можно объяснить изменением гидратации белков. В диапазоне температур от 20 до 35оС можно наблюдать особенно сильное падение плотности сливок. Оно обусловлено фазовым переходом «твердый-жидкий» — в молочном жире.
Коэффициент расширения молочного жира значительно выше, чем воды. По этой причине плотность сырого молока при колебаниях температуры изменяется сильнее, чем плотность обезжиренного молока. Эти изменения тем больше, чем выше содержание жира.
Между плотностью, содержанием жира и сухого обезжиренного остатка существует прямая связь. Так как содержание жира определяют традиционным методом, а плотность измеряют быстро ареометром, то можно быстро и просто рассчитать содержание сухих веществ в молоке без трудоемкого и длительного определения сухих веществ путем сушки при 105оС. Для чего используют формулы пересчета:
С=4,9 × Ж+А + 0,5; СОМО=Ж+А+ 0,76,
где С — массовая доля сухих веществ, %
СОМО — массовая доля сухого обезжиренного молочного остатка, %; Ж — массовая доля жира, %; А — плотность в градусах ареометра, (оА); 4.9, 4, 5; 0.5; 0.76 — постоянные коэффициенты.
Плотность отдельных молочных продуктов как и плотность молока зависит от состава. Плотность обезжиренного молока выше, чем сырого и постоянные коэффициенты.
Плотность отдельных молочных продуктов как и плотность молока зависит от состава. Плотность обезжиренного молока выше, чем сырого и _________. С увеличением жира плотность сливок снижается. Устанавливать плотность твердых и пастообразных молочных продуктов труднее, чем жидких. У сухого молока различают фактическую плотность и насыпной вес. Для контроля фактической плотности используют специальные ---нометры. Плотность сливочного масла, как и сухого молока, зависит не только от количества влаги и сухого обезжиренного остатка, но и от содержания воздуха. Последний определяют флотационным методом. Это позволяет определить содержание воздуха в масле по его плотности. Метод этот приближенный, но на практике этого достаточно.
Плотность молока изменяется при фальсификации — при добавлении Н2О понижается, и повышается при подснятии сливок или разбавлении обезжиренным молоком. Поэтому по величине плотности косвенно судят о натуральности молока при подозрении на фальсификацию. Однако молоко не удовлетворяющее требованиям ГОСТ 13264-88 по плотности, т. е. ниже 1,027 г/см3, но цельность которой подтверждена стойловой пробой, принимается как сортовое.
Вязкость или внутреннее трение, нормального молока при 20оС в среднем составляет 1,8×10-3Па.с. Она зависит главным образом от содержания казеина и жира, дисперсности мицелл казеина и шариков жира, степени их гидратации и агрегирования сывороточные белки и лактоза незначительно влияют на вязкость.
В процессе хранения и обработки молока (перекачивание, гомогенизация, пастеризация и т. д.) вязкость молока повышается. Это объясняется увеличением степени диспергирования жира, укрупнением белковых частиц, адсорбцией белков на поверхности шариков жира и т. д.
Практический интерес представляет вязкость сильноструктурированных молочных продуктов — сметаны, простокваши, кисломолочных напитков и пр.
Поверхностное натяжение — молока ниже поверхностного натяжения Н2О (равно 5×10-3 н/м при t -20оС). Более низкое по сравнению с Н2О значение поверхностного натяжения объясняется наличием в молоке ПАВ — фосфолипидов, белков, жирных кислот и т. д.
Поверхностное натяжение молока зависит от его температуры, химического состава, состояния белков, жира, активности липазы, продолжительности хранения, режимов технической обработки и т. д.
Так, поверхностное натяжение снижается при нагревании молока и особенно сильно при его ___лизе. так как в результате гидролиза жира образуют ПАВ — жирные кислоты, ди- и моноглицериды, понижающие величину поверхностной энергии.
Температура кипения молока несколько выше Н2О вследствие наличия в молоке солей и отчасти сахара. Она равно 100,2оС.
Удельная электропроводность. Молоко — плохой проводник тепла. Ее обуславливают главным образом ионы Cl-, Na+, K+, N. Электрически заряженные казеин, сывороточные белки. Она равна 46×10-2 См. м-1 зависит от лактационного периода, породы животных и др. Молоко, полученное от животных, больных маститом, имеет повышенное электро_______________________
Осмотическое давление и температура замерзания. Осмотическое давление молока близко по величине к осмотическому давлению крови животного и в среднем составляет 0,66 мга. Оно обусловлено высокодисперсными веществами: лактозой и хлоридами. Белковые вещества, коллоидные соли незначительно влияют на осмотическое давление, жир практически не влияет.
Осмотическое давление рассчитывают по температуре замерзания молока, которая равна -0,54оС по формуле согласно законам Рауля и Вант-Гоффа
Росм. = t×2,269/К, где t — понижение температуры замерзания исследуемого раствора; С; 2,269 — осмотическое давление 1 моль вещества в 1 л раствора, мпа; К — криоскопическая постоянная растворителя, для воды равна 1,86.
Следовательно: Р осм. =0,54×2,269/1,86+0,66 мпа.
Осмотическое давление молока, как и других физиологических жидкостей животных поддерживается на постоянном уровне. Поэтому при повышении в молоке содержания хлоридов в результате изменения физиологического состояния животного, особенно перед концом лактации или при заболевании, происходит одновременное снижение количества другого низкомолекулярного компонента молока — лактозы.
Температура замерзания также постоянная физико-химическое свойство молока, т. к. оно обуславливается только истинно расторимыми составными частями молока: лактозой и солями, причем последние содержатся в постоянной концентрации. Температура замерзания колеблется в узких пределах от -0,51 до -0,59оС. Она изменяется в течение лактационного периода при заболевании животного и при фальсификации молока воды или соды. И вследствие отклонения приращения лактозы. В начале лактации температуры замерзания понижается (-0,564оС) в середине — повышается (-0,55оС); в конце снижается (-0,581оС).
Зависимость температуры замерзания от изменения концентрации представлено на схеме.
Температура оС
1. Снижение концентрации в результате добавления Н2О | 0,00 | Температура замерзания воды |
2. Фальсификация молока | -0,48 | Фальсифицированное молоко |
3. Температура замерзания молока, приближаемая к температуре замерзания воды | -0,54 | Температура замерзания нормального молока |
4. Увеличение концентрации в результате добавления нейтрализующих средств — фальсификация молока температура замерзания продолжает снижаться | -0,63 | Молоко содержит посторонние соли, нейтрализующие средства |
Брожение молочного сахара
1). Виды брожения лактозы.
2). Химизм отдельных видов брожения.
3). Механизм образования диацетила, ацетоина, ацетальдегида.
В основе изготовления целого ряда молочных продуктов лежат процессы глубокого распада молочного сахара под действием микроорганизмом, называемые брожением. Вместе с тем процессы брожения сахара могут быть причиной порчи молочных продуктов (излишняя кислотность, вспучивание творога, сметаны, сыра и т. д.). Существует несколько типов брожения лактозы, различающихся составом конечных продуктов.
Начальным этапом всех типов брожения является расщепление молочного сахара на глюкозу и галактозу под действием лактозы. Далее брожению подвергается глюкоза. Галактоза не сбраживается, но при участии некоторых ферментов и после изомеризации в глюкозофосфат включается в схему превращения глюкозы.
Все типы брожения до образования пировиноградной кислоты идут с получением одних и тех же промежуточных продуктов и по одному тому же пути. Далее пировиноградная кислота превращается в конечные продукты брожения - масляную кислоту, пропион, уксусы, масляные, спирт и др. соединения. Это зависит от особенностей микроорганизма и условий среды.
Различают следующие виды брожения:
Молочнокислое брожение - является основным при изготовлении заквасок, сыра и кисломолочных продуктов, а молочнокислые бактерии - важная группа ____________ для молочной промышленности.
Оно выражается следующим суммарным уравнением:
С6H12O6 ® 2Cн3H6O3 + H2O,
кроме молочной кислоты, образующей и побочные продукты брожения. Молочнокислые бактерии по характеру продуктов сбраживания глюкозы относят к гомоферментативным или гетероферментативным. Первые образуют в основном молочную кислоту (более 90%) и незначительное количество побочных продуктов. Гетероферментативные бактерии около 50% глюкозы превращают в молочную кислоту, а остальное количество — в этиловый спирт, CH3СООН и СО2. Это деление условное, т.к. обе группы могут вести себя как одни, так и другие.
Гомоферментативные бактерии. Более характерным признаком при делении молочнокислых бактерий на группы является путь сбраживания глюкозы. Гомоферментативные бактерии: Str. lactis, Str. cremorus, Str. diacetilactis и палочки — болгарская и . Они сбраживают глюкозу по гликолитегаскому пути.
Гетероферментативные: Leuc. citrovorum, dextranicum, brevis — пентозофосфатным путем.
Механизм гомоферментативного молочнокислого брожения: глюкозы ® жировые кислоты ® молочная кислота (из 1 моль глюкозы образуется 2 моль молочной кислоты). Молочная кислота может существовать в двух изомерах L (+) и D (-). Большинство штампов молочнокислых и Lbm. bifidum преимущественно продуцируют (+)— молочную кислоту. Болгарские палочки и лейконосгоки — в основном D(-) форму Lbm. helveticum, Lbm. plantarum и Lbm. acidoplibum — оба изомера в почти одинаковых количествах. Следовательно, соотношение между этими изомерами в кисломолочных продуктах будет зависеть от вида используемых для заквасок молочнокислых бактерий.
Побочные продукты — летучие и нелетучие органические кислоты, глицерин, спирты, ацетон, ацетоин, диацетил, бутиленгликоль и пр.
Гетероферментативное молочнокислое брожение. Бактерии этой группы __________и _____________ не могут сбраживать глюкозу по глюколитическому пути, а по пентозофосфатному, то есть из каждого моль глюкозы образуются моль молочной кислоты, моль этанола и СО2. Бифидобактерии сбраживают глюкозу до уксусной и молочной кислоты (уксусной в 1,5 раза больше, чем молочной).
Спиртовое брожение имеет место при выработке кефира, кумыса, курунги и других кисломолочных продуктов. Возбудителем являются дрожжи, они сбраживают глюкозу с образованием этанола, углекислоты и других веществ: изобутил, глицерин, уксусная, янтарная, пропионовая кислоты, ацетоин и диацетил.
На первой стадии: глюкозу ® в _______ кислоту, затем она подвергается декарбоксирированию, образуется СО2 и уксусный альдегид, из него образуется этанол.
С6Н12О6 ® 2С2С2Н5ОН + 2СО2 .
Пропионовокислое брожение — возбудителем являются пропионовокислые бактерии, которые превращают глюкозу или молочную кислоту в пропионову и укусусную кислоту, одновременно образуется небольшое количество янтарной кислоты.
Суммарное уравнение:
3С6Н12О6 ® 4СН3СН2СООН + 2СН3СООН + 2СО2 + 2Н2О.
Важную роль играет это брожение в процессе созревания сыров с высоким вторым нагреванием.
Маслянокислое брожение происходит под действием маслянокислых бактерий, сбраживает глюкозу и молочную кислоту. Известно несколько типов этого брожения, которые различаются по образуемым продуктам. При одном типе образуются масляная, укусусная кислоты, углекислота и Н2.
2С6Р12О6 + 2Н2О ® СН3СН2СН2СООН ® 2СН3СООН + 4СО2 + 6Н2
При другом типе — образования бутилового, изопропионового спиртов, этанола и ацетона, которые обладают резким, неприятным запахом, а также образуется большое количество газов.
Это брожение — нежелательный процесс в производстве молочных продуктов, вызывает пороки сыров: вспучивание, неприятный вкус и запах.
Уксуснокислое брожение. Под действием уксуснокислых бактерий этиловый спирт окисляется в уксусную кислоту, уксуснокислые бактерии как типичные аэробы появляются на поверхности молочных продуктов и часто являются спутниками дрожжей.
Уравнение: +Н2О +1/2 О2
СН3СН2ОН ® СН3СНО ® СН3СН(ОН2) ® СН3СООН + Н2О
-2Н
Механизм образования диацетила и ацетоина. Это четырехуглеродные соединения, являются продуктами метаболизма различных микроорганизмов: молочнокислых бактерий, дрожжей и др. Предшественниками их являются пируват, который образуется из цитрата. Цитрат под действием цитритазы в присутствии Мп или Мз расщепляется на уксусную и щавелевоуксусную кислоты, последняя превращается в пируват:
СН2 — СООН СООН
МП2+ Мз2+ СН2 + СН2
Н - С — СООН ———®
СН2 — СООН С =О СООН
лимонная кислота СООН
щавелевоуксусная кислота
СООН
—СО2 СН3
СН2 —®
С = О С = О
СООН СООН
пируват
Утилизация пирувата в ацетоин и диацетил начинается с его декарбоксирирования до активной формы ацетальдегида:
СН2
тиаминпирофосфат Мз2+
С = О —————————® СН3 — СНОН — ТПФ + СО2
СООН ________ацетальгид - ТПФ
При синтезе ацетоина этот комплекс вступает в реакцию с другой молекулой пирувата, образуя a -ацетомолочную кислоту, которая при декарбоксилировании переходит в ацетоин. Ацетоин может обратимо восстанавливаться в бутиленгликоль, который может перейти в бутанон и далее в бутанол:
СН3
СН3 СН3 С = О
— СО2
СНОН + С = О —® ——®
—ТПФ
НО—С — СООН
ТПФ СООН
СН3
-ацетомолочная кислота
CH3 CH3
C = O HA1D × H2 CHOH
CHOH HAD CHOH
CH3 CH3
ацетоин 2-3 бутиленгликоль
Возможен второй путь образования ароматообразующих веществ. Ацетоина — восстановлением диацетила. Дрожжи и бактерии Е. соli продуцируют ацетоин из активного и свободного ацетальдегида без образования промежуточного продукта — a-ацетомолочной кислоты. СН3
СН3 СН3
О + СНОН - ТПФ ® С = О
С СНОН + ТПФ
Н СН3
Для синтеза диацетила ароматообразующим молочнокислым бактериям требуется ацетальдегид, ТПФ и ацетил КоА.
ТПФ и ацетил КоА
О СН3
СН3 - СНОН - ТПФ + СН3 - С ® С = О + ИS - КоА + ТПФ
SКоА С = О
СН3
диацетил
Дрожжи и в меньшей степени молочнокислые бактерии образуют диацетил путем спонтанного окисления ацетоина:
СН3 СН3
С = О — 2Н С = О
СНОН С = О
СН3 СН3
В аэробных условиях при высоком окислительно-восстановительном потенциале диацетил образует молочнокислые бактерии непосредственно из a-ацетомолочной кислоты при ее спонтанном окислительном декарбоксилировании.
СН СН3
+ 1\2 О2
С = О ——® С = О
НО — С — СООН — СО2 С = О
СН3 СН3
Ароматообразующие бактерии продуцируют диацетил в меньших количествах по сравнению с ацетоном. Так, Sts diacetilactis максимально накапливает 12 мг/кг (некоторые штаммы до 50 мг/кг) диацетила и около 500 мг/кг ацетоина; лейконосгоки — соответственно 5 и 85 мг/кг. Это объясняется дефицитом ацетил КоА для синтеза диацетила, а также восстановлением диацетила в ацетон под действием диацетилредуктазы, активность этого фермента зависит от температуры, рН.
Для максимального образования аромата (в заквасках и кисломолочных продуктах) целесообразно подбирать смешанные культуры молочнокислых бактерий с низкой диацетилредуктазной активностью и слабыми редуцирующими свойствами, и поддерживать рН среды ниже 5,5 (оптимальные условия для накопления диацетила рН - 4,5 - 4,7, температура 21-25°С). Образованию диацетила способствуют добавление в молоко 0,2% цитрата и аэрация (перемешивание) закваски. Для сохранения накопившегося диацетила необходимо закваску и готовый продукт быстро охладить до 5-8°С.
Образование молока
1). Строение секреторной ткани и клеток молочной железы.
2). Биосинтез белков, липидов, углеводов.
3). Формирование минеральных веществ, витаминов,
антибактериальных и др. веществ в молоке.
Образование молока - это многоэтапный процесс, в котором участвуют все системы лактирующего животного.
Вымя коровы состоит из четырех железистых долей, разделенных соединительной тканью. Железистая ткань включает множество альвеол, находящихся в верхней части каждой доли вымени, которые книзу переходят в разветвленные каверны-цистерны.
Альвеолы имеют вид замкнутого пузырька диаметром 0,1-0,4 мм. Стенка альвеолы выстлана изнутри слоем секреторных (эпителиальных) клеток, свободные концы которых обращены в альвеолярную полость (схема строения альвеолы на стр. 114 - Горбатов).
Своим основанием секреторные клетки покоятся на плотной соединительной оболочке. В зависимости от степени наполнения секретные клетки имеют различную величину и форму (плоскую, кубическую или цилиндрическую). Клетка окружена очень тонкой (6-12 мм) мембраной, состоящей из липидов и белков.
Через базаль мембрану - она лежит в основании клетки, происходит поглощение из крови веществ — предшественников молока, а через верхушечный участок, обращенный в полость альвеол, происходит выход секрета в просвет альвеоле.
Отличительной особенностью секреторных клеток молочной железы является наличие в них сильно развитых структур гранулированного эндоплазматического ретикулезма (ЭР) и аппарата Гольджи. Цистерны или каналы гранулированного (ЭР) несут на поверхности своих мембран большое количество гибосом, где происходит синтез белков. Кроме того, ЭР поставляет мембранный материал аппарату Гольджи, который в виде мембран вакуолей далее включается в состав клеточной мембраны при потери ее фрагментов с шариками жира. Аппарат Гольджи расположен между ядром и верхушкой клетки в непосредственной близости к гладкому ЭР. При накоплении секрета наружные края его мембран образуют мелкие пузырьки, из которых формируются большие вакуоли. В вакуолях аппараты Гольджи происходит накопление, концентрация, упаковка и затем внутриклеточный транспорт продуктов секрета. Накопленное в альвеолах молоко выделяется в цистерны, а из них в сосковый канал, имеющий в конце гладкомышечный , препятствующий свободному вытеканию молока из цистерны. В каждой доле вымени может вырабатываться и выводиться из нее молоко независимо от других долей. (Делать рис. из ).
Схема строения вымени коровы.
В процессе молокообразования большую роль и грает кровоснабжение вымени. Обильный приток крови к железистой ткани способствует образованию молока в альвеолярных клетках.
Процесс молокообразования протекает постоянно. Без значительного повышения давления внутри вымени время заполнения его молоком составляет 8-13 часов. Затем давление возрастает, процесс молокообразования замедляется. В период между доениями около трех четвертей молока концентрируется в альвеолярной части вымени и только одна четверть — в цистернах и сосках. Больше всего молока в вымени коровы образуется на III-V месяцах лактации. Активная молокоотдача наступает при раздражении нервных окончаний сосков вымени. Обмывание вымени теплой водой (40-45°), обтирание его салфеткой, с одновременным массажем способствует возбуждению рефлекса молокоотдачи. В этот момент 85% молока из альвеоляярной части вымени переходит в крупные молочные протоки и цистерны. Набухание и розовение кожи вымени и сосков свидетельствует о начале активного припуска молока. В этот момент надо устанавливать доильные стаканы.
Биосинтез белков, углеводы, лактозы
Для синтеза молока клетки молочной железы используют составные части крови, которые отличаются от составных частей молока. В крови нет казеина, лактозы, а содержание глобулина, альбулина, натрий в ней в несколько раз больше, чем в молоке. В молоке больше жира кальция и калия. Значит, лактоза, казеин и жир образуются в молочной железе путем сложной перестройки химических веществ крови. Переход же минеральных веществ из тока крови в молоко происходит избирательно. Без изменений переходят витамины, гормоны, пигменты, некоторые белки, ферменты. Для образования 1 литра молока должно пройти около 400 литров крови.
Белки — их синтез самый сложный и не совсем изученный. Опыты с мечеными АК показали, что непосредственно из АК крови в клетках молочной железы синтезируются казеин, — лактоглобулин, L — лактальбулин.
Остальные белки - альбулин сыворотки крови, иммуноглобулина и многие ферменты переходят в молоко из крови. Основными источниками АК для синтеза белков молока служат св. АК крови. Фонд АК могут пополнять АК, синтезируемые в клетках молочной железы. Участие плазменных белков в образовании АК незначителен.
Отдельные белковые фракции синтезируются на рибосомах эндоплазматического ретикулама клетки. Казеин мицеллы формируются в вакуолях аппарата Гольджи. Механизм синтеза белков в клетках молочной железы не отличается от известного механизма синтеза белков крови. Продолжение процессов синтеза секреции белков молока составляет 50-60 минут.
Биосинтез липидов. Молочный жир синтезируется в две стадии. На 1-ой образуются жирные кислоты и глицерин. На 2-ой — триглицириды. Глицерин синтезируется в клетках молочной железы из глюкозы или поступает из крови. Основными предшественниками в молочной железе кислот (С18 и выше) являются липиды крови — триглиериды и С. Ж.к. (гл. образом стеариновая), которая в тканях железы превращается в оминовую. Низкомолочные ж.к. (С4 — С14) и некоторая часть высокомолекулярных кислот синтезируются клетками молочной железы из ацетата и оксибутирата, которые интенсивно образуются в рубце жвачного при сбраживании клетчатки корма микроорганизмами. Включение отдельных ж. к. в треглицериды регулируется специальными ферментами. Обычно низкомолекулярная ж. кислота комбинируется с двумя в м. ж. к., таким образом, ограничивается синтез жира с высокой точкой плавления. Синтез молочного жира и формирование из них жировых шариков различного диаметра происходит в эндоплазматической сети секреторных клеток молочной железы. Там же синтезируются и фосфатиды ( кефалин). Во время выхода из клетки жировой шарик окружается плазматической мембраной клетки и вместе с ней поступает в просвет альвеол. Пре , что после выхода жирового шарика из клетки окружающая его трехслойная плазматическая мембрана разрушается и происходит ее перестройка в оболочку шарика.
Биосинтез лактозы — осуществляется в аппарате Гольджи секреторных клеток молочной железы. Выход углеводов из клетки происходит одновременно с выходом белковых мицелл. В молекулу лактозы входит D - глюкоза и D - гаматоза. Глюкоза всегда находится в крови, гаматоза же в крови не содержится. Установлено, что основной предшественник обеих гексоз - глюкоза, поступающая в молочную железу из крови. Механизм превращения глюкозы в галактозу и образование лактозы в процессе секреции молока в настоящее время выяснены. Синтез лактозы катализируется ферментом лактозосинтетезой, которая состоит из двух специфических белков, одним из которых является L - лактальбулин, минеральные вещества, которые приходят вместе с кормами.
Белки
1). Современная номенклатура белков молока.
2). Аминокислотный состав белков.
3). Структура белков молока.
4). Казеин - основной белок молока.
Общее содержание белков в молоке колеблется от 2,9 до 4%. Белки молока разнообразны по строению, физико-химическим свойствам и биологическим функциям.
Белки — это высокомолекулярные соединения, состоящие и
L — АK, которые связаны между собой характерной для белков пептидной связью. В молоке обнаружена целая система белков, среди которых выделяют две главные группы казеины и сывороточные белки.
Основная часть белков молока (78-85%) представлена казеинами (казеином), который представлен несколькими фракциями - 6 -, это Ls1 - казеин, Ls2 - казеин, b - казеин, Н - казеин, g - казеин.
Компонентами сывороточных белков являются b - лактоглобулин и a- лактальбулин, а также альбумин сыворотки крови, иммуноглобулины, протеоза пептоны и лактоферрин. К белкам молока следует отнести ферменты, некоторые гормоны (пролактин) и др., белки оболочек жировых шариков.
Казеины являются собственно пищевыми белками. Они максимально расщепляются пищеварительными протеиназами в наитивном состоянии, в то время как обычно глобулярные белки приобретают эту способность после денатурации. Казеины обладают свойством свертываться в желудке новорожденного с образованием сгустков высокой степени дисперсности. Кроме того они являются источником Са и Р, а также целого ряда физиологически активных пептидов. Так, при частичном гидролизе Н - казеина под действием химозина в желудке освобождаются гликомакропептиды, регулирующие процесс пищеварения (уровень желудочной секреции). Физиологическая активность, по-видимому, присуща и растворимым фосфопептидам, образующимся при гидролизе Н-казеина.
Биологическими функциями обладают и сывороточные белки. Так, иммуноглобулины выполняют защитную функцию, являясь носителями пассивного иммунитета, лактоферрин и другой белок — лизоцим, относящийся к ферментам молока, обладают антибактериальными свойствами. Лактоферрин и b-лактоглобулин выполняют транспортную роль — переносят в кишечник новорожденного железо, витамины и другие соединения. Сывороточный белок - a - лактоальбулин имеет специфическую функцию - он необходим для процесса синтеза.
Аминокислоты (АК) — состав белков молока. Белки молока содержат почти все аминокислоты, встречающиеся в белках. Аминокислоты белков относятся к А - _____< - формы и имеют общую формулу:
________
R - CH - COOH
I
NH2
В состав белков молока входят как циклические, так и ациклические аминокислоты - нейтральные, кислые и основные, причем преобладают кислые. Количество отдельных групп аминокислот в белках зависит от зоотехнических факторов, что и обуславливает их физико-химический состав. Молоко по содержанию незаменимых аминокислот является полноценным.
Состав незаменимых АК в некоторых белках %
Аминокислоты | Идеальный белок | Казеин | Сывороточные белки молока | Белок яйца | Белок пшеницы | Белок мышц человека |
Валин | 5 | ?.2 | 5,7 | 7,3 | 3 | 6 |
Лейцин | 7 | 9 | 12,3 | 8,8 | - | 9,9 |
Изолейцин | 4 | 6 | 6,2 | 6,6 | 6 | 4,7 |
Метионил | - | 2,8 | 2,3 | - | 2,3 | 2,8 |
Цистил | 3,5 | 0,34 | 3,4 | 5,5 | 2,3 | 1,8 |
Треонин | 4 | 4,9 | 5,2 | 5,1 | 3 | 4,6 |
Лизин | 5,5 | 8,2 | 9,1 | 6,4 | 0,6 | 8,1 |
Фенилаланил | - | 5 | 4,4 | - | 2,5 | 4,7 |
Тирозин | 6 | 6,3 | 3,8 | 10 | 3,1 | 4 |
Триптофен | 1 | 1,7 | 2,2 | 1,5 | 0,9 | 2,2 |
Из таблицы видно, что биологическая ценность казеина несколько ограничивается дефицитом серосодержащих аминокислот - цистина, вместе с тем казеин содержит высокое количество фенилаланина, итрозина и метионина, что вызывает затруднения при их метаболизме в организме грудных детей. В сывороточных белках баланс дефицитных серосодержащих и других незаменимых аминокислот лучше, чем в казеине, и значит биологическая ценность их выше. А в растительных белках недостает триптофана, лизина, которыми богаты молочные белки.
Благодаря тому, что белки молока находятся в растворенном состоянии, они легко атакуются и перевариваются протеолитическими ферментами пищеварительного тракта. Степень усвоения белков молока 96-98%.
Структура белков молока. В свежем молоке белки находятся в нативном состоянии. Структура их идентична структуре белков, полученных путем биосинтеза, т. е. в нативном белке не происходит еще никаких изменений.
Первичная структура определяется числом и расположением a - аминокислот, конфигурацией связей в полипептидных цепях, и если белки состоят из нескольких полипептидных цепей - местоположением и типом поперечных связей. Выявлена первичная структура некоторых важных белков молока, в том числе as1- b-казеин, Н-казеина. Например, b-казеин образуется из полипептидной цепи, в которую входит 209 аминокислот: 4 - аспарагиновая кислота, 5 АСН-аспарагин, 9 - треонина, 11 - серина, 5 - серинфосфорная кислота, 17 - глутаминовая кислота, 22 - глютамин, 35 - пролиновая, 5 - глициновая, 5 - аланин, 19 - валиновая. А - первичная структура as1 - казеин содержит 199 АК, Н - казеин 169, 6 - метионина, 22 - лейцина, 11 - лизина, 5 - гистидина, 4 - изолейцина, 4- тирозина, 1 - трептофана, 5 - аргенина.
АК-пролин определяет структуру и обуславливает складчатое строение полипептидных цепей. АК находятся в цепи в определенной последовательности. Каждая полипептидная цепь имеет концевую NH2 - групп и концевую COOH групп H2N - CH= СН - СООН a R
Эти концевые группы могут реагировать с различными химическими веществами.
Первичная структура белков основана на главных валентных пептидных связях и дисульфидных связей. Они настолько стабильны, что при обработке и переработке молока не разрушаются энергетическими воздействиями. Поэтому первичная структура белков молока разрушается только при ферментативном распаде белка в процессе созревания сыров.
Вторичная структура. Это пространственное взаимное расположение аминокислотных остатков в полипептидной цепи и представляет собой цепь спиралеобразной конфигурации, которая образуется за счет водородного мостика между полипептидными цепями.
Водородная связь, обладая незначительной энергией связи, может расщепляться при обработке и переработке молока, например, при высокотемпературной пастеризации.
Третичная структура - представляет пространственное расположение полипептидной цепи, отдельные участки которой могут соединяться между собой прочными дисульфидными связями, возникающими между остатками цистеина. В образовании третичной структуры участвуют и другие связи - гидрофобные, электростатические, водородные и прочие. В зависимости от пространственного расположения полипептидной цепи форма молекул белков может быть различной. Если полипептидная цепь образует молекулу нитевидной формы, то белок называется фибрилярным, если она уложена в виде клубка - глобулярным (глобулус - шарик). Белки молока относятся к глобулярным белкам. Изучение их вторичной и третичной структур показало, что казеин в отличие от обычных глобулярных белков почти не содержит a-спиралей, a-лактальбулин и a-лактоглобулин содержит большое количество спирализованных участков. Казеин, вероятно, занимает промежуточное положение между компактной структурой глобулы и структурой беспорядочного клубка, который обычно наблюдается при денатурации глобулярных белков. Такая структура обеспечивает хорошую расщепляемость казеина протеолитическими ферментами при переваривании в нативном (природном) состоянии без предварительной денатурации.
Четвертичная структура характеризует способ расположения в пространстве отдельных полипептидных цепей в белковой молекуле, состоящей из нескольких таких цепей или субъединиц. Глобулярные белки, обладающие четвертичной структурой, могут содержать большое количество полипептидных цепей, тесно связанных друг с другом в компактную мицеллу, которая ведет себя в растворе как одна молекула.
Так, казеиновая мицелла среднего размера должна состоять из нескольких тысяч полипептидных цепей фракций казеина, определенным образом связанных друг с другом.
Казеин является основным белком молока, его содержание в молоке колеблется от 2,3 до 2,9%. Элементарный состав казеина, %: С - 53,1, Н - 7,1, азот - 15,6, О - 22,6, S - 0,8; Р - 0,8. Он относится к фосфопротеидам, т. е. содержит остатки Н3 РО4 (органически присоединенные к АК-те серину моноэфирной связью (О - Р).
NН ОН
R ] СН — СН2 — О — Р = О
С ОН
О
Казеин Серинфосфорная кислота
В свежем молоке ККФК содержится в виде амицелл - это агрегаты частиц, состоящих изтак называемых сублицелл.
a = 8 - 15 НМ, молекулярная масса 25.000-30.000, которые легко разрушаются под действием внешних факторов, частично уже при разбавлении.
Казеин в молоке содержится в виде сложного комплекса казеината кальция с коллоидным фосфатом кальция - так называемого казеинат-кальций-фосфатный комплекс (ККФК), в состав которого входит небольшое количество лимонной кислоты, магния, калия и натрия.
Соединение субмицелл в мицеллы происходит с помощью фосфата кальция и кальциевых мостиков. Казеиновые мицеллы сравнительно стабильны в свежевыдоенном молоке. Они сохраняют свою устойчивость при нагревании молока до относительно высоких температур и при его механической обработке. Стабильность мицелл зависит от содержания в молоке растворимых солей кальция, химического состава казеина, РН молока и других факторов.
Фаза истинного раствора
1). Молоко и молочная сыворотка как истинный раствор.
2). Ионо-дисперсное состояние минеральных солей.
3). Молекулярно-дисперсное состояние лактозы.
4). Равновесные отношения.
Истинный раствор — это гомогенные смеси, состоящие из растворенных веществ и растворителя. В истинных растворах растворенные вещества находятся либо в молекулярно-дисперсном, либо в ионо-дисперсном состоянии. Именно молочная сыворотка представляет собой истинный раствор. В ней лактоза и водорастворимые витамины присутствуют в молекулярно распределении, а соли электро-
чески диссоциированы и образуют гидратированные ионы. Вот такое распределение можно представить в виде схем:
Истинный раствор
Растворимые вещества Растворитель
вода
молекулярно- ионно-
дисперсные дисперсные
лактоза, водорастворимые соли в форме
витамины катионов и анионов,
лимонная кислота, дву-
окись углерода ионы водорода
Истинно растворимые составные части придают молочной сыворотке определенные свойства, которые зависят от концентрации составных частей и характерны также и для полидисперсной системы молока, причем эти свойства частично ослабляются или усиливаются в зависимости от коллоидно-дисперсного или эмульгированного состояния присутствующих составных частей. Истинно растворимые частицы обуславливают, в частности, осмотическое давление, осмотические явления снижения температуры замерзания и повышения температуры кипения, а также электропроводность молока. Они оказывают сильное влияние на рефракцию, т. е. способность к преломлению света.
Изменения этих физико-химических свойств можно объяснить колебаниями концентрации истинно растворимых составных частей. Так, в соответствии с законом Вигнера содержание истинно растворимых составных частей в течение периода лактации претерпевает самые незначительные колебания. Указанные изменения служат для распознавания фальсификации молока.
Ионно-дисперсные составные части связаны между собой за счет солевого равновесия молока. И любое изменение нормального первоначального равновесия влияет на растворимость отдельных солей и дестабилизацию белков молока. Это приводит к коагуляции при концентрировании и стерилизации.
Если ионы кальция, например, обуславливают стабильность казеина, то по существующей концентрации их можно было бы предсказать возможные дестабилизирующие воздействия их на казеин, что особенно важно для определения необходимого количества солей-стабилизаторов в производстве сгущенного молока. Однако до сих пор это невозможно, и приходится пользоваться элепсерическими величинами, т.к. не все присутствующие ионы кальция активны, а только некоторые из них, но они мало влияют на другие истинно растворимые составные части.
Молочная сыворотка — это реальный раствор, в противоположность идеальному раствору, которые практически реализуется только при бесконечном разбавлении и в котором растворенные частицы не оказывают взаимного влияния друг на друга, концентрация ионов в молочной сыворотке достигает такой величины, что они взаимно влияют друг на друга благодаря электростатическим силам.
Ионно-дисперсное состояние минеральных солей.
Все соли натрия и калия (хлориды, гидро-, дигидрофосфаты, и цитраты) диссоциированы практически нацело и содержатся в молоке в ионном состоянии, например соли натрия:
NaCl ® Na + + Cl — ; Na2HPO4 ® 2 Na + HPO4 2—
Na H2PO4 ® Na + H3 PO4 — ; C6 H5 O7 Na3 ® 3 Na + + C6 H5 O7 3 —
В ионно-молекулярном состоянии в молоке содержится часть цитратов и фосфатов кальция и магния:
CaHPO4 ® Ca 2 + HPO4 2—
Ca(H2PO4)2 ® Ca2 + 2 H2PO4 —
Ca3(PO)2 ® 3 Ca2 + + 2 PO4 3—
(C6H5O7)2 Ca3 ® 3 Ca2 + + 2 C6H5O7 3—
Фосфаты кальция обладают малой растворимостью и незначительной степенью диссоциации, лишь небольшая часть их содержится в виде истинного раствора, а большая — в виде коллоидного раствора. Между ними устанавливается равновесие, например:
n CaHPO4 ® (CaHPO4
истинный раствор коллоидный раствор
n Ca3 (PO4)2 ® [Ca3(PO4)2 ]n
Сдвиг равновесия в ту или другую сторону зависит от рН молока, температуры и других факторов. Соотношение этих форм фосфатов Са играет важную роль в стабилизации белковых частиц молока. Так, фосфаты Са в форме истинного раствора являются источниками образования ионов кальция, от количества (активности) которых зависит размер и устойчивость мицелл казеина при тепловой обработке, а также скорость сычужной коагуляции.
По концентрации отдельных ионов в молоке нельзя судить об их активности, что объясняется действием ионов друг на друга, а также их взаимодействием с дисперсионной средой (водой) и дисперсными фазами других дисперсных систем молока.
В растворе электролитов между ионами действуют силы притяжения и отталкивания. В концентрированных растворах сильные межионные взаимодействия приводят к взаимному связыванию ионов, что влияет на величину осмотического давления, температуру замерзания и электропроводность раствора. Для оценки состояния ионов в растворе электролитов пользуются величинами активности ионов и ионной силы раствора.
Под активностью иона понимают ту условную концентрацию его, в которой он участвует в химических реакциях. Ее можно определить с помощью чувствительных к данному иону электродов или рассчитать по формуле а = fC, где f — коэффициент активности иона; С — концентрация иона. В молоке активность иона определить нельзя, т. к. в нем находится большое количество растворенных веществ и поэтому их рассчитывают по величине ионной силы молока.
Ионную силу раствора вычисляют по формуле, понимая под ней полусумму произведений концентрации всех ионов (катионов и анионов) в растворе Сi на квадрат из заряда.
= 1/2 å Сi 2 ei
Рассчитать точно ионную силу молока трудно, так как неизвестен состав фосфатов и цитратов кальция, а также степень их диссоциации. Ее рассчитывают условно, принимая, что все анионы фосфатов и цитратов находятся в форме одновалентных ионов Н2РО4— и С6Н7О7—. Ионная сила молока составляет: 0,079-0,089. Сгущение (концентрирование), вызывает снижение активности ионов. При повышенных концентрациях ионов энергия межионного взаимодействия сравнима с тепловой энергией, затем наступают обратные реакции. На основании того, что активность, а не концентрация истинно растворимых составных частей молока оказывает основное влияние на его свойства и что коэффициент активности для молока еще не установлены, можно сделать следующие выводы:
· осмотичное давление или снижение температуры замерзания, зная концентрацию истинно растворимых составных частей, можно рассчитать лишь приблизительно;
· константы диссоциации солей молока также зависят от активности, поэтому в такой смеси, как молоко, они имеют лишь условную силу;
· результаты, полученные при расчетах с учетом констант, как, например, распределение фосфата, на отдельные виды ионов, представляют собой приближенные величины;
· предположения относительно свойств молока по отношению к определенным технологическим воздействиям все еще остаются элитерическими и не могут служить основой тонких математических расчетов;
· от взаимодействия истинно растворимых составных частей молока во многом зависят свойства молочной сыворотки и тем самым они влияют на стабильность других фаз системы.
Молочный сахар, растворяясь в плазме молока, образует молекулярный раствор. Он содержится в виде гидратных и b-форм, находящихся в равновесии: -лактоза ® b-лактоза. Равновесие между ними зависит от температуры и сдвинуто обычно в сторону b-формы, т. к. последняя более растворима в молоке (Н2О), чем
-форма. Так, при 20°С содержание b-формы в молоке составляет около 60%, а -формы — около 40%. Константа равновесия между ними b-формы
К = 11,8/ 7,4 = 1,59
11,8 - растворимость b-формы в г/100 мл воды, ;
7,4 - растворимость - формы.
Насыщение раствора лактозой и выпадение ее в кристаллической форме наблюдается при сгущении молока и последующем охлаждении сгущенного молока с сахаром, а также при сгущении молочной сыворотки в процессе получения молочного сахара.
Таким образом, в молоке содержится несколько взаимно влияющих друг на друга дисперсных систем с различными физико-химическими видами равновесий, которые обуславливают сложную структуру молока и его чувствительность к физическим, химическим и биологическим воздействиям. Наиболее ясно выражены равновесные отношения между коллоидной системой и истинным раствором, например, равновесие между:
— устойчивостью коллоидных белков ® ионной силой молочной сыворотки;
— коллоидно-растворимым фосфатом Са ® ионизируемым Са
[ Са3(РО4)2] ® Са3(РО4)2 ® 3Са++ + 2НРО43 —
Между другими фазами тоже существует определенная зависимость.
Поэтому перед инженером-технологом стоит задача: выбрать такой щадящий режим отработки молока, чтобы влияние на равновесные отношения в нем было по возможности незначительным.
В то же время нужно с помощью физических методов проводить разделение полидисперсной системы молока на ее главные составные части, не оказывая при этом существенного влияния на свойства компонентов молока. Чем лучше удается разделение на отдельные фазы, тем выше выход готового продукта.
Значительную роль при этом играют свойства отдельных дисперсных систем в молоке.
При тепловой обработке
1). Изменение составных частей и свойств молока при пастеризации, УВТ обработке и стерилизации.
2). Понятие о денатурации белков.
Тепловую обработку (пастеризацию и стерилизацию) применяют для предохранения молочных продуктов от порчи и повышения стойкости при хранении. При нагревании содержание энергии в молоке повышается. Тепловое движение частиц и колебание атомов в молекулах усиливаются. При определенной температуре поглощённая энергия достигает величины энергии активации для развития и образования связей. Вследствие этого при нагревании все составные части молока с незначительной энергией связи претерпевают изменения. Белки с высоким содержанием водородных связей и легко расщепляемых ковалентных связей особенно подвержены изменениям при нагревании. Тепловые воздействия происходят незаметно для глаза. Однако по мере увеличения времени выдержки при температуре нагревания они усиливаются. Данные, приведенные в таблице, показывают изменения в молоке при нагревании.
ИЗМЕНЕНИЯ
Как видно из таблицы, сильные изменения претерпевают при нагревании сывороточные белки, ферменты и витамины.
Казеин обладает высокой термоустойчивостью, он термостабилен и при пастеризации, стерилизации, УВТ-обработке молока не происходит его коагуляции, даже в течение 60 мин. при температуре 140°С. Сывороточные белки термолабильны, и многие из них полностью денатурируются в процессе нагревания молока при температуре 30°С в течение 10-30 мин.
Однако появление денатурированных сывороточных белков на поверхностях нагрева, как правило, невелико вследствие их прикрепления к стабильным казеиновым мицеллам.
При длительном воздействии высоких температур изменяются составные части молока, его физико-химические свойства, органолептические и технологические свойства, что видно из таблицы.
Понятия о денатурации белков.
Под выражением «денатурация белков» понимают изменение нативной пространственной структуры макромолекулы, приводящее к утрате природных свойств белка, т.е. происходит конформационные изменения молекул с нарушением четвертичной, третичной и вторичной структур. Глубина нарушения нативной структуры белка зависит от природы денатурирующего агента, типа белка, окружающей среды и т.д.
В результате денатурации изменяются многие физико-химические свойства белка: растворимость, константа седиментации, вязкость, оптические, электрохимические свойства и др. Денатурацию белков вызывают некоторые химические соединения и физические факторы. К последним относится и нагревание. В процессе тепловой денатурации компонента свернутая молекула белка превращается в беспорядочный клубок.
Как правило, глобулярновые белки могут находиться только в двух состояниях — нативном и полностью денатурированном (развернутом). Некоторые из них ( -лактальбумин) при тепловой денатурации переходят в промежуточное компактное состояние, которое сочетает в себе характеристики нативного и полностью денатурированного (развернутого) состояния. Промежуточное состояние белка характеризуется близкими к нативным размерам молекулы и содержанием вторичной структуры при отсутствии нативной пространственной (третичной структуры).
Следовательно, денатурация белков глобулярных — это сложный ступенчатый процесс, который включает образование одного или нескольких промежуточных состояний. Переход из промежуточного состояния в развернутое, т.е. истинного разворачивания белковой молекулы, может происходить лишь при больших концентрациях сильных денатурантов.
Многие белки в процессе биосинтеза переходят из развернутого в промежуточное состояние имеющего, вторичную структуру, более или менее близкую к нативной, но отличающееся от нее третичной структурой. Затем после завершения формирования третичной структуры, белок приобретает свои уникальные свойства и биологическую активность.
Денатурация зависит от РН растворов белка, усиливают ее хлорид натрия, некоторые другие соли, анионы, катионы: ингибируют процесс некоторые сахара, аминокислоты, натриевые соли жирных кислот, неорганические соли, ионы кальция, марганца и пр.
Так как денатурация белка сопровождается в той или иной степени развертыванием структуры белковых молекул, то следует ожидать, что будет изменяться (увеличиваться) энергия межмолекулярных взаимодействий. Так, при разупорядочивании белковых молекул наблюдается повышение реактивности сульфидрильных групп цистина, финольных — тирозина; гуанидиновых — аргинина; S-аминогрупп — лизина и др. А это сопровождается усилением склонности белковых молекул к агрегации (ассоциации или полимеризации). Основную роль в агрегации денатурированных белковых молекул играют гидрофобные взаимодействия и реакции окисления — восстановления тиольных групп в дисульфидные связи (S—S—связи).
При достаточно высоких концентрациях белка агрегация приводит к коагуляции и гелеобразованию. Оба процесса возможны лишь при определенном балансе сил межмолекулярного притяжения и электростатического отталкивания между молекулами. Силы отталкивания минимальны вблизи изоэлектрической точки. Следовательно, межмолекулярные взаимодействия зависят значительно и от рН раствора белка.
Полная денатурация (развертывание) белковой молекулы в большинстве случаев необратима. Однако, если белок претерпевает мягкую денатурацию, то при удалении денатурирующего агента может наблюдаться более или менее полное восстановление нативных свойство белка, т.е. ренатурация. По-видимому, в данном случае надо говорить об относительной обратимости денатурации, т.к. ренатурированный белок не полностью идентичен нативному; совпадая с ним по одним сво йствам, он может отличаться по другим. Степень обратимости тепловой денатурации белков зависит от природы белка, интенсивности и длительности нагрева, а также от условий ренатурации и присутствия некоторых веществ, стабилизирующих нативное состояние белковой молекулы. Кроме того, ренатурации белков в большей степени препятствует агрегация денатурированных молекул.
Таким образом, тепловая денатурация глобулярных белков является двухстадийным процессом: на первой стадии происходит обратимое или необратимое развертывание глобул белка, на второй — агрегация необратимо денатурированных (развернутых) белковых молекул.
Однако развертывание и агрегация белковых молекул представляют собой два различных процесса, активность некоторых может по-разному меняться при изменении рН, концентрации белков, солей и т.д.
Химический состав молока
ВВЕДЕНИЕ
Химия и физика как наука начала свой отсчет в прошлом веке, в тот период она начинала с изучения химического состава молока. В нашей стране этим вопросом занимались Ильенко (1819-1877), затем Калантар (1859-1937). Химия молока (биохимия) как наука была создана в советское время пр. Иниховым и Зайковским, которые работали в Вологодском молочном комбинате, затем в Московском комбинате мясной и молочной промышленности (МГУБТ). Ими в 20-30-ые годы были написаны первые учебники по биохимии молока (Химия молока, Анализ молока: Химия и физика молока молока и молочной продукции. Большой вклад в развитие науки о молоке внесли великие русские ученые — Павлов и Мечников.
Значительный вклад в развитие биохимии молока внес проф. Паращук (1873-1850 г.г.); развитию биохимии способствовали работы Белоусова, Брио, Граникова, Давидова, Диланяна, Дьяченко, Казанского, Климовского, Коваленко, Овчинникова, Чеботарева и др.
В настоящее время ведут исследования коллективы в области химии и физики молока ВНИМИ, НИИ Углич и ученые других высших учебных заведений.
Предмет «Химия и физика молока» базируется на достижениях смежных наук, таких как органическая химия, физическая и коллоидная химия, физиология, биохимия питания. Эта наука изучает химический состав молока, физико-химические свойства молока: плотность, кислотность, теплофизические, оптические и др. А также системы молока, в которых находятся составные части: эта фаза истинного раствора, коллоидная фаза, фаза эмульсии. Особая роль отводится изучению изменений молока и его составных частей в процессе обработки и переработки. Это энергетическое воздействие, механические нагрузки, температурные воздействия, биохимические превращения. Без этих знаний невозможно вести технологические процессы производства молока и молочных продуктов, т. к. любые изменения традиционных способов производства могут так повлиять на составные части молока, что, в свою очередь, отразится на качестве молочных продуктов.
При использовании высокопроизводительного оборудования очень важно сохранить свойства молока и его составные части. Вот почему технологи молочной промышленности должны обладать обширными знаниями о химических, биохимических и физических свойствах составных частей молока.
МОЛОКО — полноценный и полезный продукт питания. Оно содержит все необходимые для жизни питательные вещества, нужные для построения организма. Естественное назначение молока в природе заключается в обеспечении питанием молодого организма после рождения. Состав молока различных млекопитающихся в целом определяется теми условиями окружающей среды, в которых происходит рост молодого организма. Это особенно четко проявляется в содержании белка и жира, чем больше их в молоке матери, тем быстрее растет ее дитя.
Так, грудной ребенок удваивает массу примерно за 180 дней, теленок — за 50 дней, а щенок — уже за 9 дней. Содержание белка в женском молоке, по сравнению с молоком различных животных, самое низкое — 1,6%, в коровьем — 3,4%, а в молоке собаки — 7,3% белка. Молочный жир служит прежде всего для удовлетворения потребности организма в энергии. В районах с холодным климатом потребность организма в энергии выше, чем в зонах с умеренным климатом. Вот почему молоко самки оленя северного отличается более высоким содержанием жира — 19,7%. Молоко пережило многие цивилизации, прежде чем стало продуктом питания и имеет свое назначение:
— в качестве продукта питания для населения,
— средство для вскармливания молодняка и корма в животноводстве,
— сырье для производства пищевых продуктов,
— источник получения отдельных компонентов молока, которые, в свою очередь, служат сырьем для фармакологии и других отраслей промышленности.
Все возрастающее значение молока как полноценного продукта питания и как сырьевого материала привело к увеличению спроса на него. В результате этого производство молока стало одной из важнейших отраслей сельхозпроизводства. В настоящее время молоко составляет значительную долю в сельскохозяйственном валовом продукте нашей страны.
Питательность 1 л молока составляет 685 ккал. Калорийность зависит, главным образом, от содержания жира, белка. Благодаря содержанию в молоке важнейших питательных веществ, главным образом белка, углеводов, витаминов, минеральных веществ, оно является и защитным фактором. В целях охраны здоровья на предприятиях, где существуют вредные условия труда, работники получают молоко.
Молочный белок является важным защитным фактором, т. к. он в силу своей алефотерной природы связывает пары кислот и щелочей, а также нейтрализует ядовитые тяжелые металлы (следы) и др. вредные для здоровья вещества. Благодаря содержанию в молоке кальция, фосфора, витаминов предотвращается развитие авитаминозов. Кроме питания человека молоко идет на кормление сельскохозяйственных животных: телят, свиней, птиц.
С помощью физических и биохимических методов из сырого молока получают молочные продукты, которые представляют собой частично обогащенные продукты питания, благодаря чему эти продукты характеризуются повышенной калорийность на каждые 100 г. Переработка молока ведет к изменению его пищевой ценности и вкусовых качеств, поэтому необходимо учитывать свойства каждого отдельного компонента молока. Сырьем для промышленности служат такие составные части молока как казеин и лактоза. Определение веществу молока можно дать с различных точек зрения, учитывая прежде всего цель применения. Если считать молоко продуктом питания, то на первый план выдвигаются законодательные, гигиенические и экономические требования, так что можно дать определение сырому молоку.
«Сырое молоко — это полученный в результате регулярного, полного выдаивания вымени у одной или более коров от одного или нескольких доений чистый и затем охлажденный продукт, из которого ничто не удалено и к которому ничего не добавлено».
Знания о количестве составных частей молока с течением времени постоянно расширялись. Это можно объяснить целенаправленностью научных исследований и применением современных методов анализа, которые позволяют, не применяя способа обогащения, обнаружить и количественно определить даже те составные части молока, которые присутствуют в нем в виде следов. В настоящее время известно свыше 200 различных компонентов молока.
Составные части молока — это все те компоненты, которые выделяются из вымени при доении.
Химизация сельского хозяйства, лечение заболеваний крупного рогатого скота, а также заболеваний вымени с помощью химиотерапевтических средств привели к увеличению содержания в молоке посторонних веществ, которые попадают в него различными путями.
Химический состав молока
Составные части
Истинные Не истинные
Главные Второстепенные Посторонние
вода соли (в форме катионов антибиотики и анионов) гербициды
белок лимонная кислота инсектициды
лактоза фосфатиды радионуклиды
стерины
ферменты
витамины
газы
Молочный жир, лактоза, казеины, лактоглобулин и -лактоальбумин являются специфическими компонентами молока. Они синтезируются в молочной железе и встречаются только в молоке. Остальные компоненты можно найти и в других биологических соединениях.
С технической и экономической точек зрения молоко можно разделить на воду, сухое вещество и сухой обезжиренный остаток.
Молоко
Вода сухое вещество
жир сух. обезж. остаток
лактоза казеин сыворотка соли
Наибольший удельный вес в молоке занимает вода (более 85%, на остальные компоненты, входящие в состав сухих веществ или сухих остатков, приходится 11-14%). Содержание так называемого сухого обезжиренного остатка молока (СОМО) составляет 8-9%. Его определяют по ГОСТ 3626-73 методом высушивания навески молока при 102 + 2° до постоянной массы. Его можно найти расчетным путем — сложением содержания СОМО и количества жира в молоке. Для этого содержание СОМО определяют по формуле, используя показатели жирности и плотности молока.
Сухой остаток включает все питательные вещества молока. Он определяет выход готовой продукции при производстве молочных продуктов.
Содержание сухого вещества и отдельных его компонентов непостоянно в течение периода лактации. Количество жира подвержено самым большим колебаниям, затем идет белки. Содержание лактозы и солей, наоборот, почти не изменяется в течение всего периода лактации. Диапазон колебаний находится в тесной связи с величиной частиц отдельных составных частей.
Составная часть Диапазон частиц, НМ
Жир 100 — 10.000
Казеин 5 — 100
Альбулин 5 — 15
Молочный сахар %
Ионы 0,5
Эту зависимость сформулировал Вигнер в законе, названном его именем: «Содержание различных составных частей сухого вещества молока колеблется тем меньше, чем в более тонком распределении они присутствуют в молоке».
Естественные изменения содержания основных составных частей — жира и белка представляют экономический технологический интерес. Оплата молока в зависимости от жирности, вследствие колебаний этого показателя, требует постоянного контроля за содержанием жира. Колебания затрудняют соблюдение постоянного соотношения между определенными составными частями в готовом продукте: например, в сгущенном молоке между жиром и сухим обезжиренным остатком. Фальсификацию молока водой можно точно установить лишь по содержанию лактозы и ионов путем определения точки его замерзания.
Жир занимает особое экономическое положение и служит основой оплаты молока, т. к. он подвержен резким колебаниям (до 4% — диапазон), затем идут белки, лактоза изменяется незначительно. Эти колебания зависят от породы скота, стадии лактации, возраста, состояния здоровья животного, рациона кормления, условий доения и содержания, мышечной нагрузки животных.
Изменения в составе молока после доения можно объяснить микробиологическим и технологическим воздействием. Однако различные показатели могут быть получены и при разных методах анализа. Например, при определении содержания жира бутирометрическим методом показатели жирности на 0,05% выше, чем при использовании гравиометрического метода. Из показателя, характеризующего содержание лактозы, зачастую не ясно, какая форма лактозы учитывается при этом — моногидратная или безводная, что ведет к различиям между показателями ее содержания, достигающими 0,24% на каждые 100 г молока.
Поэтому количественные данные о содержании сухого вещества и составных частей молока требуют более точного определения при их использования с целью сравнения.
Вода 87 г
Сухой остаток 13 г
Белки
Липиды
Казеин - 2,6 г
Жир - 3,6 г
Сыв. бел. - 0,65 г
Фосфор - 0,03 г
b -лактоальб. - 0,12 г
стерин - 0,01 г
Альбумин сыв.крови -0,03 г
иммуноглобулин - 0,05 г
протеозо-пейтоны -0,15
Минеральные вещества
Ферменты
Мик., мгк
Дегидрогенады
Нg - 0,3
Ксантиноксидаза
Cd - 1
Пероксидаза
Pb - 5
Каталоза
A s - 4
Литаза
Ni - 2
Фосфаты
Se - 4
Амилаза
- 18
Лизоцим
Sn - 15
Протеины
Br - 15
B-18
Гормоны
Постоянные хим.в-ва
Пигменты
Пролактин
Антибиотики
b -каротин - 0,015 г
Окситоцин
Пестициды
Ксантофил-слезы
Кортикостероиды
Андрогены
Детергенты
Эстрогены
Дезинфектаны
Прогестерон
Афлатоксины и др.
Тироксин и др.
Факторы, влияющие на состав и свойства молока
1. Порода коров
2. Стадия лактации
3. Здоровье коров
4. Режим кормления
5. Другие факторы.
Выход и качество молочных продуктов, определяемые составом молока, структурой и свойствами его компонентов, находятся в большой зависимости от зоотехнических факторов. В некоторых случаях изменение состава и свойств сырого молока под влиянием физиологического состояния животных кормов и др. факторов настолько значительны, что оно становится не пригодным к переработке на молочные продукты.
Порода и возраст животных. Отдельные породы крупного рогатого скота оцениваются по надоям молока и его составу. Это результат многолетней практики разведения крупного рогатого скота, что позволило вывести породы коров с наибольшей молочной продуктивностью. От породы и возраста животного зависит молочная продуктивность, состав, физико-химические и технические свойства молока. Основные породы в нашей стране: черно-пестрая, красная горбатовская, холмогорская и др. (разд. табл. № 26 Горбатов, стр. 137).
(Самостоятельно провести анализ).
Колебания в составе молока коров одной и той же породы объясняются наследственными факторами, а также различными условиями содержания. Так как по наследству передается только способность к образованию определенного количества молока с примерно постоянным составом (молочная продуктивность), то условия содержания коров имеют большое значение для ее реализации.
Стадия лактации. Процесс образования и выделения молока из молочной железы, называемой лактацией, у коров в среднем составляет 305 дней, т. е. около 10 мес. В нем различают три периода (стадии): молозивный (продолжительностью 5-10 дней после отела), период выделения нормального молока (285-217 дней) и период отделения стародойного молока (7-15 дней перед окончанием лактации). Молозиво и стародойное молоко в результате резкого изменения физиологического состояния животных сопровождается образованием секрета, состав и свойства которого значительно отличаются от нормального молока.
Так, молозиво в 3-5 раз больше содержит белков, чем молокао; в 1,5 раза больше жира и минеральных веществ, фосфолипидов — в 3-5 раз, каротина — в 3,5-4 раза, больше витаминов, макро- и микроэлементов, ферментов (особенно каталазы, пероксидазы), гормонов, лизоцима, лактоферрина, лейкоцитов и пр. Лактозы меньше. Кислотность 40°Т, плотность 1.037—1,055 г/м3, вязкость 25×10-3 Па×с. Оно имеет интенсивный желтый цвет, солоноватый вкус, специфический запах, густую, вязкую консистенцию.
Стародойное молоко характеризуется повышенным количеством лейкоцитов, жира, белков, ферментов (липазы), минеральных веществ и уменьшенным содержанием лактозы. Кислот. 14-16°Т, а иногда 9-12°Т, вкус горьковато-солоноватый из-за повышенного количества свободных жирных кислот, образующихся при гидролизе жира и хлоридов.
Молозиво и стародойное молоко не пригодно для промышленной переработки, т. к. оно имеет измененный состав; медленно свертывается сычужным ферментом и является плохой средой для развития молочнокислых бактерий. Продукты из них быстро портятся и имеют неприятный вкус.
Состояние здоровья коров. Болезни ведут к снижению молочной продуктивности животного за счет изменения состава и свойств молока. Наиболее заметные изменения в составе молока вызываются инфицированием вымени, в результате нарушается секреция молока. Мастит — воспаление тканей вымени. Маститы могут быть с ярко выраженными клиническими признаками и скрытые (субклинические). Последние более распространены. Возбудитель проникает в паренхиму, а оттуда в альвеолы. Способность молокообразующих клеток к синтезу казеина, лактозы и жира снижается. Для поддержания осмотического давления ионы крови в большом количестве переходят в молоко.
Частично пораженная ткань становится проницаемой для сывороточных белков. Мастит сказывается на составе молока — снижается общее количество сухих веществ, изменяется количественное соотношение между составными частями молока. Это выражается в снижении содержания жира, лактозы и казеина, а также в повышении содержания сывороточных белков, хлорида и соматических клеток. Меняется жирнокислотный состав триглицеридов молочного жира (повышается содержание высокомолекулярных жирных кислот и понижается количество низкомолекулярных жирных кислот, уменьшаются размеры мицеллорного казеина с одновременным повышением в молоке содержания фракции казеина.
Диапазон изменений зависит от степени заболевания. С ростом интенсивности инфекции состав секрета вымени приближается к составу крови. Оно имеет горьковато-солоноватый вкус. Кислотность понижается до 12°Т, pH повышается до 6,83-7,19, плотность снижается до 1,024-1,025 г/см3. Электропроводность повышается, а вязкость понижается.
Сборное молоко, поступающее на молокозаводы, часто имеет примесь анормального молока до 6-15% и более, т. е. в 1 мл такого молока содержится более 500 тыс. соматических клеток. А молоко по содержанию соматических клеток различают: в 1 мл
до 500 тыс.
от 500 тыс. до 1 млн.
> 1 млн.
Молоко с повышенным количеством соматических клеток имеет высокую бактериальную обсеменность и, как правило, содержит стафилококки, обладающие повышенной биологической активностью. Следует иметь в виду, что примесь анормального молока может исказить результаты редуктазной пробы (т. е. при этом завышается сортность контролируемого молока), вследствие замедления процесса восстановления метиленового голубого.
Анормальное молоко менее термоустойчиво, плохо свертывается сычужным ферментом, в нем плохо развиваются производственные молочнокислые бактерии. Наиболее чувствительна к примеси анормального молока болгарская палочка, ацидофильная палочка, диацетиллактис, менее чувств. St. lactis и особенно нечувств. St. термофильный. Сгустки из такого молока имеют повышенную вязкость, меньшую плотность и хуже отделяют сыворотку. Сырное тесто из такого молока — слабое, дряблое, медленно созревает, и сыры получаются с пороками вкуса, консистенции и рисунка. Качество масла, творога и кефира при использовании молока с 20-25% маститного снижается, изменяется вкус, запах, консистенция. Поэтому необходимо тщательно контролировать молока на мастит, для чего существует много методов: определение хлор-сахарного числа (у здоровых оно не > 1,5-2, у больных выше — 6-15); повышается активность каталазы и электропроводность молока. Для подсчета соматических клеток используют микроскоп, счетчики разного рода, подсчет клеток по изменению вязкости молока при добавлении к нему ПАВ (проба с мастопримом — ГОСТ 23453-79).
Режим кормления. Кормление должно быть полноценным по белку и жиру, минеральным веществам и витаминам, которое влияет на продуктивность, состав и свойства молока. Некоторые виды корма изменяют вкус и запах молока (это полынь, сорняки, чеснок полевой) — эти привкусы и обуславливают пороки молока. Или зимой и весной причиной их может быть скармливание животным силоса, кормовой свеклы, капусты, зеленой ржи и пр. Многие летучие соединения кормов: эфиры, спирты, альдегиды и петоны, обладающие специфическим вкусом и запахом, легко и быстро выделяются в рубце жвачных вместе со жвачкой, затем отрыгиваются коровой, попадают в легкие, затем в кровь и молочную железу. И появляются в молоке через 20-30 мин. после дачи корма. Некоторые соединения содержатся в кормах в связанной форме, высвобождаются только при пищеварении и поэтому медленнее (в течение 1-3 ч) всасываются в кровь и поступают в молоко. Например, диметилсульфид образуется из метилцистина, содержится в капусте, турнепсе. Триметиламин (рыбный привкус) — из бетаина, содержится в сахарной свекле, пшенице, ячмене. Интенсивность кормовых привкусов через 2,5-4 часа после кормления уменьшается, т. к. кровь реадсорбирует пахучие вещества из молока. Коровий (хлебный привкус) обусловлен повышением в молоке концентрации кетоновых телацетона, ацетоуксусной и b-оксимасляной кислот.
Поэтому рационы кормления должны быть правильно составлены, исключая некачественные корма, а также нормировать скармливание животным концентрированных, сочных и др. видов кормов. Так, скармливание большого количества льняных и подсолнечников жмыхов повышает в жире ненасыщенность жирных кислот (С18), масло вырабатывается из такого молока низкого качества, не стойко в хранении. При увеличении скармливания углеводистых кормов (свеклы, картофеля) в жире повышается количество жирных кислот (С11-С12), масло приобретает твердую и крошливую консистенцию. Если корма обеднены Са (барда, кислый жом, пивные дрожжи, силос, жмыхи и пр.), то может образовываться сычужно-вялое молоко, малопригодное к выработке сыра, и сыр из такого молока имеет ломкую, несвязную, крошливую консистенцию. Таким образом, необходимо достаточно добросовестно относиться качеству кормов.
Время года. Сезонным колебаниям подвергаются жир, белок, в меньшей степени лактоза, хлориды. Жир и белок уменьшаются весной, в начале лета; осенью и зимой — повышаются. Лактоза снижается к концу года при одновременном повышении хлоридов. Но при этом надо учитывать все выше перечисленные факторы.
Влияние доения. Состав молока меняется в процессе доения, и в течение дня, т.е. между доениями. Первые порции менее жирные, в конце — более жирные. Это объясняется затвердеванием крупных жировых шариков в секреторных клетках альвеол при повышении давления в вымени.
При более длительном интервале удой молока увеличивается, а жирность его снижается. В утреннем молоке содержание жира ниже, чем в вечернем, т. к. оно получено после длительного интервала между доениями. Самое низкое содержание жира в молоке, полученном ночью (с 21 часа до 3 часов).
311285dok
Коллоидная система молока
1). Характеристика дисперсной фазы.
2). Структура мицелл казеина.
3). Коагуляция.
В коллоидно-дисперсном состоянии в молоке находятся сывороточные белки, казеин, большая часть фосфатов кальция. Это самая чувствительная фаза.
Растворы белков относят к истинным растворам, их считают однофазными гомогенными системами. Однако, свертывание макромолекул глобулярных белков в водном растворе в компактные глобулы можно считать частным случаем перехода гомогенного истинного раствора в двухфазный коллоидный раствор. Поэтому частицы белков молока можно рассматривать как коллоидные частицы, а их устойчивые обратимые водные растворы — как гидрофильные коллоидные растворы.
По свойствам и внутренней структуре коллоидные системы делят на необратимые (лиофобные) и обратимые (лиофильные).
Лиофобные (или гидрофобные, если дисперсионной средой является вода) коллоидные системы не обладают агрегативной и термодинамической устойчивостью, их частицы не связывают воду, стабилизируются за счет возникновения двойного электрического слоя на границе раздела фаз. Системы теряют свою устойчивость при добавлении малых количеств электролита.
Лиофильные (или гидрофильные) коллоидные системы обладают агрегативной и термодинамической активностью, их дисперсная фаза связывает значительные количества воды и образует вокруг частиц развитую сольватную (гидратную) оболочку, от нее и заряда на поверхности частиц зависит стабильность системы. Гидрофильные коллоидные системы коагулируют при добавлении большого количества электролита. Размеры коллоидных частиц молока составляют в(нм): b-лактоглобулина 25-50; a- лактоальбумина —15-20; мицелл казеина — 40-300; фосфата кальция — 10-20. Частицы сывороточных белков молока представлены отдельными макромолекулами, а также их димерами и полимерами.
Макромолекулы белков свернуты в компактные глобулы, имеющие отрицательный заряд и очень прочные гидратные оболочки. Они обладают большой устойчивостью в молоке, не коагулируют при достижении изоэлектрической точки, хотя при понижении РН образует ассоциаты из нескольких мономеров. Выделить белки можно путем уменьшения их растворимости — введением в молочную сыворотку большего количества электролита, т. е. высаливанием. Высаливание сульфатом аммония и магния лежит в основе фракционирования сывороточных белков молока.
При нагревании молока до высоких температур сывороточные белки денатурируют, затем агрегируют и частично коагулируют.
Казеин в молоке содержится в виде мономеров (так называемый растворимый казеин) и в форме полимеров (субмицеллерный и мицеллерный казеин). Мицеллы казеина обладают свойствами гидрофильного золя, который при определенных условиях может перейти в гель. Только под действием сычужного фермента золь казеина переходит в гель необратимо, т. е. казеин проявляет свойства, присущие гидрофобным коллоидам.
Коллоидный фосфат кальция малорастворим в воде и в молоке образует типичную неустойчивую коллоидную систему с гидрофобной дисперсной фазой. Его растворимость повышается под влиянием казеина, вместе с которым он входит в состав мицелл. Таким образом, мицеллы казеина представляют собой коллоидную фазу смешанного состава, обладающую свойствами гидрофильного и гидрофобного золя. Нахождение казеина и фосфата кальция в молоке в виде сложных мицелл имеет большое значение для новорожденного. Так, под действием химозина в его желудке мицеллерный белок легко образует сгусток, который подвергается дальнейшему воздействию пепсина. Кроме того, в составе растворимых мицелл казеина транспортируются очень важные для молодого организма соли кальция.
Структура мицелл казеина. Известно несколько моделей структур казеина. Сейчас получила свое признание модель пористой структуры мицелл. Мицеллы казеина имеют почти сферическую форму, средний диаметр от 70 до 100 нм с колебаниями от 40 до 300 нм, молекулярная масса 6·108 (с колебаниями от 26·107 до 5·109). Мицеллы казеина состоят из нескольких сотен субмицелл диаметром 10-15 нм и молекулярной массой 250.000-300.000. В состав субмицелл и мицелл не входит -казеин, он находится в свободном состоянии. Субмицеллы представляют собой агрегат из 10-12 субединиц — основных фракций казеина ( ), соединенных между собой гидрофобными, электростатическими и водородными связями и кальциевыми мостиками. Соотношения между фракциями ( ) могут быть различными (3:2:1; 2:2:1), и т. д., но с уменьшением размера субмицелл и мицелл увеличивается относительное содержание в них казеина. Полипентидные цепи фракций казеина свертываются в субмицелле таким образом, что большинство гидрофобных групп составляют основное ядро, а гидрофильные располагаются на поверхности субмицелл. Гидрофильная часть (оболочка) содержит отрицательно заряженные кислотные группы глютаминовой, аспарагиновой и фосфорной кислот. Усиливают гидрофильные свойства субмицелл и мицелл, ориентированные наружу гликомакропептиды -казеина, которые располагаются на поверхности субмицелл. Известно, что пептитдная часть гликомакропептидов содержит большое количество оксиаминокислот (серина и треонина), глютаминовой и аспарагиновой кислот, а углеводная — свободные карбоксильные группы сиаловой кислоты.
Соединения субмицелл в устойчивые мицеллы происходит с помощью коллоидного фосфата кальция, и возможно за счет цитрата кальция и гидрофобных взаимодействий. Схематично это представлено:
Точный состав коллоидного фосфата кальция и механизм его взаимодействия с казеином до конца не изучен, но выяснено, что удаление его из молока вызывает нарушение структуру мицеллы, что сопровождается увеличением в молоке свободных — -казеинов, которые чувствительны к ионам кальция.
Пористая структура мицелл позволяет проникать внутрь их Н2О, ферментам. Мицеллерный казеин, сильно гидратирован — содержит 2-3,7 г и более воды на 1 г белка, и поэтому вода не только окружает мицеллу казеина в виде гидратной оболочки, но и заполняет большую часть ее объема, т. е. иммобилизуется мицеллой.
В свежем молоке мицеллы казеина устойчивы, не коагулируют при механической обработке (очистке, сепарировании, гомогенизации), и нагревании молока до высоких температур. Снижение их устойчивости и коагуляции наблюдается лишь при понижении РН молока, повышении концентрации ионов кальция, внесении сычужного фермента. А устойчивость и коагуляция коллоидных растворов зависит от соотношения молекулярных сил, притяжения и электростатических сил отталкивает между коллоидными частицами. В свежем молоке последние силы превалируют над силами молекул притяжения, и коллоидная система находится в устойчивом состоянии. И для того, чтобы вызвать соединение и коагуляцию мицелл казеина, необходимо снизить отрицательный заряд, т. е. перевести мицеллы в изоэлектрическое состояние, или близкое к нему, и разрушить гидратные оболочки.
В практике коагуляцию казеина осуществляют снижая РН молока и добавляя кислоты (кислотная коагуляция), внося хлорид кальция (термокальциевая коагуляция), сычужный фермент (сычужная коагуляция). Коагуляция — это хлопьеобразование, оно происходит в результате дестабилизации коллоидных частиц в изоэлектрической точке, когда снижается количество поверхностных зарядов и снижается потенциал отталкивания, и гидратная оболочка ослабевает.
Кислотная коагуляция — образуется при осаждении белков молока молочной кислотой или другими органическими и неорганическими кислотами. Кислота снижает отрицательный заряд казеиновых мицелл, т. к. Н-ионы подавляют диссоциацию карбоксильных групп казеина, и гидроксильных групп. Н3РО4 и при этом группы СОО — переходят в СООН, а РО3-2 в РО3Н2, в результате достигается равенство положительных и отрицательных зарядов при РН 4.6-4.7. При кислотной коагуляции помимо снижения отрицательных зарядов казеина нарушает структуру ККФК, от него отщипляются фосфаты кальция и структурообразующий кальций, и их переход в раствор дополнительно стабилизирует казеиновые мицеллы.
[ККФК] + С3О6О3 ® казеино + Са3(РО4)2 + (С3Н5О3)2Са.
Структурообразующий кальций:
R - СН2 - О
казеин
Состав коллоидного фосфата кальция, присутствующий в частицах казеина и характер его связи до сих пор неизвестны. Это могут быть гидрофосфат или фосфат кальция, их смесь, а также кальций фосфатцитратный комплекс и др. Фосфор коллоидного фосфата кальция в отличие от фосфора органического, входящего в состав казеина, называют неорганическим. Фосфат кальция, по-видимому, может взаимодействовать с серинофосфатными группами казеина соединяя его молекулы между собой наподобие кальциевых мостиков:
Добавление кислоты снижает РН, тем самым разрушается коллоидная система — такое явление может носить желательное, также нежелательное явление: при производстве кислотного творога и технического казеина, нежелательное явление — самопроизвольное скисание сырого и питьевого молока.
Сычужная коагуляция — носит необратимый характер и включает две стадии: ферментативную и коагуляционную. На первой стадии под действием основного компонента сычужного фермента —химозина — происходит разрыв пептидной связи фенилаланин (105) и метионин (106) в полипептидных цепях -казеина КФК. В результате протеолиза, молекулы -казеина распадаются на гидрофобный пара -казеин и гидрофильный гликомакропептид. Схематично это выглядит так:
Гликомакролептиды имеют высокий отрицательный заряд и обладают сильными гидрофильными свойствами. При их отщеплении частично разрушается гидратная оболочка, силы электростатического отталкивания между частицами уменьшаются и дисперсная система теряет устойчивость.
На второй стадии дестабилизированные мицеллы казеина (параказеина), собираются в агрегаты и образуется сгусток, т. е. происходит гелеобразование. Сычужная свертываемость — желательное явление, свертывание молока протеидами микробного происхождения — нежелательное явление.
Кальциевая коагуляция связана со снижением отрицательного заряда казеина под влиянием положительно заряженных ионов двухвалентного кальция (вводят СаСl2). Ее применяют в промышленности для осаждения молочных белков из обезжиренного молока. Коагуляцию хлоридом кальция обычно проводят при высокой температуре (до 85оС), поэтому она носит название термокальциевая коагуляция.
Повышенная температура вызывает денатурацию сывороточных белков, которые коагулируют вместе с казеином. Белковый продукт, полученный на основе комплексного осаждения казеина и сывороточных белков, называется молочным белком, или копреципитатом. Его используют для обогащения некоторых пищевых продуктов. Степень использования белков при кальциевой коагуляции при температуре 90-85оС — 96-97%; при сычужной коагуляции — 85,6% (не осаждается казеин и лишь небольшая часть денатурированных сывороточных белков).
Фаза эмульсии
1). Состав и структура оболочки шариков жира.
2). Факторы устойчивости жировой эмульсии молока.
Молоко представляет собой эмульсию жировых шариков в молочной плазме. Плазма — молочная жидкость, свободная от жира, в ней присутствуют все остальные части молока в неизменном виде. Эмульсия представляет собой тонкодисперсную систему из двух нерастворяющихся одна в другой жидкостей, причем одна из жидкостей в тончайшем распределении, находится в другой. Свежевыдоеное молоко — двухфазная эмульсия. При длительном охлаждении часть жира в жировых шариках выкристаллизовывается и образуется трех- и многофазная эмульсия.
Вследствие различной величины жировых шариков в молоке оно образует полидисперсную эмульсию. Средний диаметр жировых шариков равен 2 — 2,5 мкм с колебаниями от 0,1 до 10 мкм и более. Размер их и количество в молоке непостоянны и зависят от всех зоотехнических факторов. Размеры жировых шариков имеют и практическое значение при переходе жира в продукт при производстве сливок, масла, сыра, творога.
Физическая стабильность шариков жира в молоке и молочных продуктах, зависит в основном от состава и свойств их оболочек. Оболочка жирового шарика состоит из двух слоев различного состава — внутреннего тонкого, который плотно прилегает к кристаллическому слою высокоплавких триглицеридов жировой глобулы и внешнего рыхлого (диффузного), который легко десорбирует при технологической обработке молока. Схематично это можно представить так:
Основной компонент внутреннего слоя — лецитин, в незначительном количестве содержатся кефалин, сфингомиелин. Фосфолипиды, вследствие полярного строения молекул является хорошими эмульгаторами. молекула которых состоит из двух частей — липофильной — она обладает химическим сродством с жиром и гидрофильной — которая присоединяет гидратную воду.
Белковые компоненты оболочки по растворимости в воде (разбавленных солевых растворах) делятся на две фракции: одна плохо растворима в воде, содержит 14% азота, содержит меньше лезина, валина, лейцина, глютаминовой и аспарагиновой кислот, больше аргинина по сравнению с молоком. Она включает значительное количество гликопротеидов, содержащих гексозы, гексозамины и сиаловую кислоту. В другую водорастворимую белковую фракцию входят гликопротеид с высоким содержанием углеводов и разнообразные ферменты: ксантиноксидазу, фосфатазу, холинэстеразу, глюкоза-6 фосфотазу и др. Большая их часть идентична ферментам клеточных мембран. В оболочке шариков жира обнаружены, кроме белков и липидов, обнаружены минеральные вещества: Cu, Fe, Mo, n, Ca, Mg, Se, Na, K. С оболочкой связано от 5 до 25% нативной меди молока и 28-29% нативного Fe (содерание Cu в 1 г оболочки составляет 5-25 мкг, Fe — 70-150 мкг.). Fe и Mo являются компонентами ксантиноксидазы, Cu входит в состав специфиического (богатого CU) белка оболочки, а остальные минеральные элементы в виде катионов плазмы молока связываются с отрицательно заряженными группами белков оболочек шариков жира.
Таким образом, внешний слой оболочки жирового шарика состоит из фосфолепидов, оболочечного белка и гидратной воды.
Состав и структура оболочек шариков жира после охлаждения, хранения и обработки молока отличаются от состава и структуры нативных оболочек. Так, в процессе охлаждения и хранения сырого молока на внутренней мембране адсорбируются иммуноглобулины, и липаза, которую называют мембранной, в отличие от плазменной); а при механической и тепловой обработке еще казеин и денатурированный b-лактоглобулин. Коренным образом изменяется состав оболочки в процессе гомогенизации молока и сливок.
2. Факторы устойчивости жировой эмульсии молока — она достаточно устойчива. Все выше перечисленные воздействия незначительно изменяют состав, физико-химические свойства оболочек жировых шариков, не нарушая при этом стабильности жировой эмульсии.
При технологической обработке молока в первую очередь изменяется внешний слой оболочки, имея неровную, шероховатую, рыхлую поверхность и довольно большую толщину после перемешивания, встряхивания и хранения. Оболочки шариков жира становятся более гладкими и тонкими. Это объясняется десорбцией липопротеидных мицелл из оболочек в плазму. Одновременно с десорбцией мицелл происходит сорбция белков и др. компонентов плазмы молока на поверхности мембраны шариков жира. Вот эти два явления десорбции — сорбции вызывают изменение состава и поверхностных свойств оболочек, что приводит к снижению прочности и частичному разрыву.
В процессе тепловой обработки молока уже происходит частичная денатурация мембранных белков, что способствует дальнейшему снижению стабильности оболочек шариков жира. Они могут быть разрушены довольно быстро и в результате специального механического воздействия: например, при производстве масла, при действии концентрированных кислот и щелочей, амилового спирта.
Стабильность жировой эмульсии в первую очередь объясняется возникновением на поверхности капелек жира электрического заряда за счет содержания на поверхности оболочки жирового шарика полярных групп — фосфолипидов, СООН, NH2, СООН — группы маловой кислоты белковых и углеводных компонентов. Значит на поверхности создается суммарный отрицательный заряд (изоэлектрического тока — рН 4,5). К отрицательно заряженным группам присоединяется катион кальция, магния и др. В результате образуется второй электрический слой, силы отталкивания которого превышают силы притяжения. И поэтому не происходит расслоения эмульсии, кроме того дополнительно стабилизирует жировую эмульсию гидратная оболочка, которая образуется вокруг полярных групп мембранных компонентов.
Вторым фактором устойчивости жировой эмульсии является создание на границе раздела фаз структурно-механического барьера за счет того, что оболочки жировых шариков обладают повышенной вязкостью, механической прочностью и упругостью, которые препятствуют слиянию шариков. Этот фактор наиболее сильный фактор стабилизации концентрированных эмульсий, например, высокожирные сливки. Следовательно, для обеспечения устойчивости жировой эмульсии молока и сливок в процессе выработки молочных продуктов необходимо стремиться сохранить неповрежденными оболочки шариков жира и не снижать степень их гидратации. Для этой цели надо сократить до минимума механические воздействия на дисперсную фазу молока при транспортивке, хранении и обработке, избегать его вспенивания, правильно проводить тепловую обработку, т. к. длительная выдержка при высоких температурах может вызвать значительную денатурацию структурных белков оболочки и нарушение ее целостности. А также для стабилизации жировой эмульсии необходимо широко применять дополнительное диспергирование жира путем гомогенизации.
При выработке одних молочных продуктов перед инженером-технологом стоит задача предотвратить агрегирование и коалесценцию шариков жира, то при получении масла наоборот стоит задача разрушить (деэмульгировать) стабильную жировую эмульсию и выделить из нее дисперсную фазу.
Коалесценция — это когда слои дисперсионной среды или адсорбционные слои и частицы сливаются в новые более крупные образования, причем это приводит к заметному разделению фаз.
Агрегация диспергированных частиц с образованием более крупных частиц, которые под действием силы тяжести выпадают в осадок, приводит к флокуляции или коагуляции.
Схема строения двойного электрического слоя вокруг коллоидной частицы
1 — коллоидная частица.
2 — двойной электрический слой.
3 — его адсорбционная часть.
4 — диффузная часть.
Дата: 2019-05-29, просмотров: 296.