Граничные условия на кромках рассматриваемой прямоугольной свободно опёртой по контуру пластины (4)
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Каждый член ряда (3) удовлетворяет граничным условиям на контуре рассматриваемой пластины, т.е. условиям равенства нулю в точках на контуре величины прогиба пластины и изгибающих моментов:

 

 (4)

 

Уравнение, устанавливающее сочетание нагрузок Т1 и Т2, при котором свободно опёртая по контуру прямоугольная пластина может потерять устойчивость (8)

Подставляя формулу (3) в дифференциальное уравнение (1), Получим


или

 (5)

 

Рассматриваемая пластина может потерять устойчивость при таком сочетании нагрузок Т1 и Т2, при котором какая-либо из скобок, входящих в выражение (5), обратится в нуль.

При этом соответствующее Аmn может стать отличным от нуля и форма потери устойчивости пластины будет

 

 (6)

 

Таким образом, эйлерово сочетание нагрузок Т1 и Т2 определится из условия:

 

 

Учитывая обозначения (2), получим

 

 (7)

 

Или

 (8)

 


Устойчивость прямоугольной свободно опёртой по контуру пластины, одинаково сжатой в обоих направлениях. (11)

Для дальнейшего исследования полезно выражение (7) переписать следующим образом:

 

 (9)

 

При различных комбинациях чисел "m" и "n" мы имеем, на основании выражения (9) линейную зависимость между напряжениями σ1 и σ2.

Будем откладывать на оси абсцисс некоторой системы координатных осей напряжение σ1, а на оси ординат-напряжение σ2 (рис.2). Тогда любой точке плоскости будет соответствовать некоторая комбинация напряжений σ1 и σ2

 

Рис.2

 

Рассматривая пластину с определенным отношением сторон а: b, можем, задаваясь различными "m" и "n", построить ряд прямых по уравнениям (9). Область тех напряжений, при которых пластина не теряет устойчивости, будет ограничена ближайшими к началу координат участками всех построенных прямых различных "m" и "n".

Легко убедиться, что для определения этих участков нужно построить лишь прямые, соответствующие различным "m" при n=1 и различным "n" при m=1.

Если σ12., т.е. пластина одинаково сжата в обоих направлениях, то на основании выражения (9) получим

 

σ12  (10)

 

Правая часть формулы (10) растет при увеличении чисел "m" и "n". Поэтому в таком случае для разыскания эйлеровых значений сжимающих напряжений следует в формуле (10) положить m = n =1. Тогда получим

 

 (11)

 

где  - цилиндрическая жесткость пластины.

Следовательно, одинаково сжатая в двух пластина теряет устойчивость с образованием одной полуволны независимо от величины отношения а: b.

Расчёт эйлеровых значений сжимающих усилий прямоугольной свободно опёртой по контуру пластины, одинаково сжатой в обоих направлениях.

 

 

Дата: 2019-05-29, просмотров: 201.