В ходе химических реакций атомные ядра не затрагиваются и число атомов каждого химического элемента сохраняется.
Химические реакции протекают при определённых условиях (температура, давление, наличие или отсутствие растворителя, катализа, ультрафиолетовое излучение).
Признаками протекания химических реакций являются выделение или поглощение газа, образование или растворение осадка, изменение цвета, выделение или поглощение теплоты.
Реакции соединения - реакции, в результате которых из двух из двух или нескольких веществ образуется одно новое вещество Реакции разложения - реакции, в результате которых из одного сложного вещества образуется несколько новых веществ Реакции замещения - реакции, в результате которых атомы простого вещества замещают атомы в молекулах сложного вещества Реакции обмена - реакции, в результате которых два сложных вещества обмениваются своими составными частями, образуя два новых вещества
Превращения веществ. Роль химии в жизни человека.
Вещества могут претерпевать два типа превращений: физические и химические.
Физические превращения. Когда с веществом происходит физическое изменение, состав его молекул остается прежним, т.е. вещество сохраняет свою химическую индивидуальность. Существует три типа основных физических превращений - плавление, испарение и замерзание. Лед - твердое вещество - при плавлении превращается в воду - жидкость, которая при замерзании снова становится льдом. Молекулы льда и воды состоят из одних и тех же элементов (H и O), находящихся в одинаковых пропорциях. Когда лед тает, никаких химических реакций не происходит. Другой тип физических превращений - изменение формы вещества, например при его резании, шлифовании, измельчении, растворении, эмульгировании и т.д. Еще один тип физического превращения - сублимация (возгонка), переход твердого вещества непосредственно в газообразное. Именно это превращение имеет место, когда мокрое белье сохнет на морозе.
Химические превращения происходят постоянно и повсюду; при этом изменяется химическая индивидуальность веществ, одни вещества превращаются в другие с иными свойствами. Так, при ржавлении железа образуется новое вещество - ржавчина (оксид железа). Химические превращения могут сопровождаться физическими изменениями. При горении древесины (твердое вещество) образуются диоксид углерода (газ), вода (жидкость) и углерод (твердое вещество). Химические превращения чрезвычайно многообразны, их изучением и классификацией занимается наука химия. Вот некоторые типы превращений, принятые в химии.
Роль химии в современном мире неоспорима, она заняла важное место в системе знаний человечества, накопленных в течение тысячелетий. Ее активное развитие в 20 веке несколько пугает и заставляет людей задуматься о конечной цели применения своих знаний. Но без знания человечество – только отдельная группа индивидуумов, обладающая не самыми лучшими характеристиками.
5. В 1869 году Д.И.Менделеевсформулировал фундаментальный закон природы - закон периодичности. "Свойства простых тел, также формы и свойства соединений элементов, находятся в периодической зависимости от величины атомных вевов элементов"
На основании этого закона и была построена периодическая система химических элементов.
Таблица разделена на периоды, ряды, группы. Каждому химическому элементу предоставлено определённое место в ней. Каждый химический элемент имеет порядковый номер, атомную массу, название, химический символ.
Возьмём первый химический элемент-водород.Порядковый номер-1, атомная масса-1,0079, химический символ-Н.
Каждая из составляющих периодической системы, имеет определённый физический смысл, исполузуя таблицу мы можем определить некоторые характеристики атома элемента.
1.Порядковый номер.По нему мы можем определить заряд ядра атома, число электронов в атоме и число протонов в ядре. Так как практически вся масса атома сосредоточена в ядре, мы можем найти число нейтронов, вычтя из атомной массы порядковый номер.
6. Как и литературным героям, химическим элементам — «героям» химических процессов дают характеристики. Только если для первых в качестве первоисточника используют литературное произведение, то для вторых — Периодическую систему химических элементов Д. И. Менделеева. Однако и в первом, и во втором случае необходим план.
Характеризуя химический элемент, будем придерживаться следующего плана.
Группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.
Хорошая электропроводность
Большая теплопроводность
Примером подобной ковалентной связи могут быть связи происходящие молекуле водорода. Когда атомы водорода сближаются, в их электронные облака проникают друг в друга, в науке это называется перекрыванием электронных облаков. Как следствие, электронная плотность между ядрами увеличивается, сами они притягиваются друг к другу, а энергия системы уменьшается. Тем не менее, при слишком близком приближении ядра начинают отталкиваться, и таким образом возникает некое оптимально расстояние между ними.
11.
Тип кристаллической решетки | Характеристика |
Ионные | Состоят из ионов. Образуют вещества с ионной связью. Обладают высокой твердостью, хрупкостью, тугоплавки и малолетучи, легко растворяются в полярных жидкостях, являются диэлектриками. Плавление ионных кристаллов приводит к нарушению геометрически правильной ориентации ионов относительно друг друга и ослаблению прочности связи между ними. Поэтому их расплавы (растворы) проводят электрический ток. Ионные кристаллические решетки образуют многие соли, оксиды, основания. |
Атомные (ковалентные) | В узлах находятся атомы, которые соединены между собой ковалентными связями. Атомных кристаллов много. Все они имеют высокую температуру плавления, не растворимы в жидкостях, обладают высокой прочностью, твердостью, имеют широкий диапазон электропроводимости. Атомные кристаллические решетки образуют элементы III и IV групп главных подгрупп (Si, Ge, B, C). |
Продолжение табл. З4
Молекулярные | Состоят из молекул (полярных и неполярных), которые соединены между собой слабыми водородными, межмолекулярными и электростатическими силами. Поэтому молекулярные кристаллы имеют малую твердость, низкие температуры плавления, малорастворимы в воде, не проводят электрический ток и обладают высокой летучестью. Молекулярную решетку образует лед, твердый углекислый газ («сухой лед»), твердые галогенводороды, твердые простые вещества, образованные одно- (благородные газы), двух- (F2, Cl2, Br2, J2, H2, N2, O2), трех- (O3), четырех- (P4), восьми- (S8) атомными молекулами, многие кристаллические органические соединения. |
Металлические | Состоят из атомов или ионов металлов, соединенных металлической связью. Узлы металлических решеток заняты положительными ионами, между которыми перемещаются валентные электроны, находящиеся в свободном состоянии (электронный газ). Металлическая решетка является прочной. Этим объясняются свойственные большинству металлов твердость, малая летучесть, высокая температура плавления и кипения. Она же обусловливает такие характерные свойства металлов как электро- и теплопроводность, блеск, ковкость, пластичность, непрозрачность, фотоэффект. Металлической кристаллической решеткой обладают чистые металлы и сплавы. |
Кристаллы по величине электропроводности делятся на три класса:
Проводники I рода – электропроводность 104 - 106 (Ом × см)-1–вещества с металлической кристаллической решеткой, характеризующиеся наличием «переносчиков тока» - свободно перемещающихся электронов (металлы, сплавы).
Диэлектрики (изоляторы) – электропроводность 10-10-10-22 (Ом × см)-1 – вещества с атомной, молекулярной и реже ионной решеткой, обладающие большой энергией связи между частицами (алмаз, слюда, органические полимеры и др.).
Полупроводники – электропроводность 104-10-10 (Ом × см)-1 – вещества с атомной или ионной кристаллической решеткой, обладающие более слабой энергией связи между частицами, чем изоляторы. С ростом температуры электропроводность у полупроводников возрастает (серое олово, бор, кремний и др.)
12. Окисли́тельно-восстанови́тельные реа́кции (ОВР), также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — это встречно-параллельные химические реакции , протекающие с изменением степеней окисления и не более 2 атомов, входящих в состав реагирующих веществ (или ионов веществ ), реализующимся путём перераспределения электронов между атомом-окислителем ( акцептором ) и атомом-восстановителем (донором).
Среди оксидов также имеются твердые при обычных условиях вещества – SiO2, Fe2O3, жидкие – H2O и, конечно, газообразные – CO, CO2.
Под действием электрического тока ионы приобретают направленное движение: положительно заряженные частицы движутся к катоду, отрицательно заряженные – к аноду. Поэтому положительно заряженные частицы называются катионами, а отрицательно заряженные – анионами.
В ходе химических реакций атомные ядра не затрагиваются и число атомов каждого химического элемента сохраняется.
Дата: 2019-05-29, просмотров: 226.