Модель келдыша – файсала – риса
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

 Исходная модель Келдыша. Цель этого раздела состоит в аналитическом приближенном решении нестационарного уравнения Шредингера, описывающего поведение атомарной системы во внешнем электромагнитном поле:


 , (8)

 

Здесь - невозмущенный гамильтониан атомарной системы, а величина  представляет собой потенциал взаимодействия атомарной системы с внешним электромагнитным полем. Предполагаются известными собственные функции и собственные значения энергии стационарного гамильтониана:

 

, (9)

 

Точное выражение для амплитуды перехода из начального связанного состояния атома или атомарного иона i в конечное состояние непрерывного спектра f под действием поля лазерного излучения имеет следующий вид ( напомним, что всюду используется атомная система единиц, в которой постоянная Планка, масса электрона и его заряд предполагаются равными единице):

 

, (10)

 

Здесь конечное состояние описывается точной волновой функцией . Выражение (10) эквивалентно исходному нестационарному уравнению Шредингера (8).Вероятность связанно-свободного перехода  за время t дается квадратом модуля выражения (10).

Начальное состояние дискретного спектра атома в (10) является невозмущенным и берется из решения уравнения (9).Взаимодействие атома с электронным полем бралось Келдышем в дипольном приближении (так как размеры атома малы по сравнению с длиной волны электромагнитного излучения), используя так называемую калибровку «длины»

 

, (11)

 

 Здесь F – вектор напряженности электромагнитного поля электромагнитной волны. Предполагалось, что это поле мало по сравнению с характерным атомным полем рассматриваемой атомной системы [2].

 Основная идея Келдыша заключалась в том, чтобы заменить неизвестную точную волновую функцию конечного состояния на так называемую волковскую волновую функцию, в которой пренебрегается полем атомного остова и учитывается только поле электромагнитной волны. В калибровке длины этой волновая функция имеет следующий вид

 

, (12)

 

 Здесь векторный потенциал электромагнитного поля связан с напряженностью поля известным соотношением

 

 , (13)

 

Указанная волновая функция (11) описывает электрон, колеблющийся в поле электромагнитной волны и имеющий канонический импульс . Средняя (за период колебаний) энергия колебаний Eкол электрона в поле монохроматической электромагнитной волны с частотой  равна  (для поля линейной поляризации) или  (для поля циркулярной поляризации).

Тогда из (10) для амплитуды связанно-свободного перехода получим приближенное выражение:

 

, (14)

 

Энергия фотона лазерного излучения предполагается в подходе Келдыша малой по сравнению с потенциалом ионизации атома (или атомарного иона):

,

Это условие, вместе с условием малости напряженности поля по сравнению с атомной напряженностью, позволяет вычислить аналитически амплитуду перехода, используя метод перевала при интегрировании по времени. Конечно. Такой подход наиболее приемлем для короткодействующего потенциала, для которого только волновая функция S - состояния непрерывного спектра не является плоской волной.

 В предположении, что лазерное поле является монохроматическим, т.е. напряженность поля лазерного излучения имеет вид

 

,

 

Келдыш получил вероятность ионизации в единицу времени. Без учета предэкспоненты для случая поля линейной поляризации эта экспоненциально малая вероятность не зависит от вида атомарного потенциала и имеет универсальный вид:


 , (15)

 

В полученном выражении введен так называемый параметр адиабатичности (или параметр Келдыша)

 

 ; (16)

 

Именно он и определяет характер процесса нелинейной ионизации. Еще раз подчеркнем, что полученное выражение справедливо с потенциальной точностью. Для поля циркулярной или эллиптической поляризации аналогичное выражение выглядит более громоздко, и мы его не приводим.

Отметим также, что модель Келдыша калибровочно неинвариантна. Это означает, что выражение для вероятности нелинейной ионизации зависит от того, в какой форме выбирается взаимодействие атома с полем лазерного излучения: в калибровке « длины» или же в калибровке «скорости». Априори неясно, какая из этих форм дает более точные результаты [1].

 



Туннельный предел

Туннельный режим соответствует низкочастотному пределу, когда параметр адиабатичности много меньше единицы, точнее, . В этом пределе зависимость вероятности ионизации от частоты поля исчезает, а сама вероятность ионизации в единицу времени (15) приобретает ту же форму, что и для ионизации атома медленно меняющимся со временем электрическим полем , усредненную по периоду поля:


 , (17)

 

Основной вклад в эту вероятность дают слагаемые в сумме (15) с очень большими числами N поглощенных фотонов порядка . Эти числа велики по сравнению с минимальным числом  поглощенных фотонов, допустимым законом сохранения энергии. Сумма по числам поглощенных фотонов в окрестности этого значения заменяется непрерывным интегрированием. Так выглядит надпороговое поглощение фотонов электромагнитного излучения в туннельном режиме ионизации [1].

 Однако точное решение указанной задачи для ионизации основного состояния атома водорода постоянным электрическим полем с учетом усреднения вероятности по периоду медленно меняющегося поля линейной поляризации дает результат с другой предэкспонентой:

 

 ; (18)

 

Необходимо отметить, что выражение (18) показывает вероятность ионизации одного атома в единицу времени [2].

 


Механизм ионизации

 

Важнейшим механизмом рождения зарядов в разрядах является ионизация невозбужденных молекул ударами электронов. Скорость ионизации, т.е. число актов в 1см3 за 1с равно


, (19)

,

 

 где - сечение ионизации электронами с энергией , - функция их распределения по энергиям, I- потенциал ионизации, - частота ионизации - постоянная, N- число молекул.

Частота ионизации является главной характеристикой процесса. Скорость ионизации целесообразно характеризовать ионизационным коэффициентом - число актов ионизации совершаемых электроном на 1см пути вдоль поля Е.

В нашем случае постоянного поля  (20), а электронная лавина нарастает вдоль направления движения Х по закону ;


Дата: 2019-05-29, просмотров: 216.