Вычисление физических величин
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

При деформировании системы все физические величины, такие как напряжение , температура , кинетическая энергия , потенциальная энергия  характеризующие деформируемую систему меняются. Их мгновенные значения, усредненные по малым промежуткам времени чтобы исключить тепловые колебания, описывают состояние деформируемой системы. В отличие от равновесных систем мы не можем теперь использовать усреднение по времени, а должны использовать усреднение по различным начальным состояниям системы.

Кинетическая и потенциальная энергия находятся как

  (17)
  (18)

Температура определяется как

  , (19)

где  - размерность системы. В двухмерном случае  - средней кинетической энергией. Выражение для тензора напряжений, основанное на вириальной теореме [14,15], имеет вид

  , (20)

где  - -компоненты тензора напряжений для атома ,  - объем, приходящийся на атом  ( , где  - полный объем системы),  - масса атома ,  - -компонента его импульса,  - расстояние между атомами  и  (  - компонента вектора, направленного от -го атома к -му атому). Это выражение для тензора напряжений не единственное, существуют и другие его определения. Однако, когда напряжения усредняются по объему различные определения быстро сходятся к макроскопическому полю напряжений. Во время моделирования кривые напряжение - деформация строятся после усреднения атомного напряжения по всей системе.



Визуализация

 

МД позволяет получать огромные объемы информации, описывающие исследуемую систему во всех деталях. Поэтому возникает задача, извлечь из этого моря информации нужную информацию и предоставить ее в виде, удобном для восприятия. Например, увидеть дефекты находящиеся внутри трехмерного кристалла, невозможно, поскольку их закрывают атомы, находящиеся на том же луче зрения, но ближе к наблюдателю. Однако, оставив только атомы, окружающие дефекты и удалив все остальные, это можно легко сделать. Другая возможность состоит в использовании анимации для исследования временной эволюции деформируемой системы.

Во время деформирования кристаллов упорядоченное расположение атомов кристалла нарушается, появляются дефекты. Для исследования локального атомного порядка обычно используется алгоритм, известный как Common Neighbor Analysis (CNA) [16,17]. Для того чтобы определить структуру кристалла в этом алгоритме исследуются связи между атомами и его соседями. Два атома считаются связанными, если расстояние между ними меньше критического расстояния, выбранного между первыми двумя пиками в радиальной функции распределения. Связи классифицируются с помощью трех целых чисел . Первое из них, , есть число общих соседей, т.е. атомов, связанных с обоими атомами в рассматриваемой связи. Второе, , есть число связей между этими общими соседями. Третье, , есть самая длинная цепочка, которую можно образовать из этих связей.

 Число и тип связей, которые имеет атом, определяют локальную кристаллическую структуру. Например, атомы в совершенном ГЦК кристалле имеет 12 связей типа 421, тогда как в совершенном ГПУ кристалле имеют 6 связей типа 421 и 6 типа 422.

 Использование CNA позволяет сделать видимыми при моделировании дислокации, границы зерен и дефекты упаковки. Например, при деформировании кристаллов меди, с помощью CNA классифицируют атомы на три класса: ГЦК, ГПУ и “другие”, где в класс “другие” попадают атомы, которые имеют число связей, отличное от 12, или тип их связей отличен от 421 и 422. Тогда внутренние дефекты упаковки видны как две сопряженные (111) плоскости ГПУ атомов, несвойственные дефекты упаковки видны как две (111) плоскости атомов ГПУ, разделенных (111) плоскостью атомов ГЦК. Границы двойников видны как одиночные (111) плоскости ГПУ атомов. Ядра дислокации и границы зерен состоят из атомов класса “другие”, хотя границы зерен содержат также немного ГПУ атомов.

 Тепловые колебания атомов мешают выполнять CNA. Если при моделировании температура сравнительно низкая, достаточно тщательно выбрать критическое расстояние. Для высоких же температур необходимо предварять CNA короткой минимизацией (достаточной чтобы уменьшить тепловые колебания атомов, но избежать движения дислокаций).

 В двухмерных системах нет нужды выполнять CNA анализ - дефекты видны непосредственно. Кроме того, в отличие от трехмерных систем, отсутствуют заслоняющие атомы. Поэтому двухмерные системы удобны для анимации, т.е. воспроизведения временной эволюции деформируемой системы. Для создания анимации через заданное число шагов по времени МД, используя координаты атомов, формировалося изображение системы, которое затем сохранялось на жестком диске в bmp-файле. Анимация достигалась выводом этих изображений на экран дисплея в той же последовательности, в которой они создавались. Одно из преимуществ анимации - это наглядность. Поля других физических величин, например, напряжения, температуры, используя подходящую кодировку, также можно использовать для анимации.



Дата: 2019-05-29, просмотров: 174.