В експертних дослідженнях речових доказів крім загальнонаукових методів використовуються і спеціальні, котрі, виходячи з принципу спільності, можна у свою чергу підрозділити на загальноекспертні, що використовуються в більшості класів судових експертиз і досліджень, і окремоекспертні.
Система загальноекспертних методів дослідження речових доказів включає:
- методи аналізу зображень;
- методи морфологічного аналізу;
- методи аналізу складу;
- методи аналізу структури;
- методи вивчення фізичних, хімічних і інших властивостей.
Методи аналізу зображень використовуються для дослідження традиційних криміналістичних об'єктів — слідів людини, знарядь і інструментів, транспортних засобів, а також документів, фото-, аудіо- і відеоматеріалів та ін.
Під морфологією розуміють зовнішню будову об'єкта, а також форму, розміри і взаємне розташування (топографію) утворюючих його структурних елементів (частин цілого, включень, деформацій, дефектів і т.п.) на поверхні й в об’ємі, що виникають при виготовленні, існуванні і взаємодії об'єкта.
Найбільш розповсюдженими методами морфологічного аналізу є оптична мікроскопія — сукупність методів спостереження і дослідження за допомогою оптичного мікроскопа.
Серед мікроскопічних методів, використовуваних при дослідженні речових доказів, виділяють метод світлого поля в прохідному світлі — використовується для дослідження прозорих об'єктів із включеннями. Пучок світла, проходячи через непоглинаючі зони препарату, дає рівномірно освітлене поле. Включення на шляху пучка частково поглинає його, частково розсіює, внаслідок чого досліджувана частка виглядає темною плямою на світлому фоні. Для спостереження прозорих об'єктів (які не поглинають світло), невидимих при методі світлого поля, використовують метод темного поля в прохідному світлі. Зображення створюється світлом, розсіяним елементами структури препарату, що відрізняється від середовища показником переломлення. У поле зору мікроскопа на темному фоні видні світлі зображення деталей. Найчастіше методи світлого і темного поля використовуються в експертному дослідженні ювелірних каменів і об'єктів біологічної природи. Мікроскопічні дослідження в прохідному світлі здійснюються за допомогою біологічних мікроскопів (типу МБІ і МБР).
Для спостереження непрозорих об'єктів застосовують метод світлого поля у відбитому світлі. Світло на об'єкт падає під кутом, і морфологія об'єкта видна внаслідок різної відбивної здатності його елементів. Використовується для вивчення широкого кола речових доказів: виробів з металів і сплавів, лакофарбових покрить, волокон, документів, слідів-відображень та ін.
Поляризаційна мікроскопія використовується для дослідження анізотропних об'єктів у поляризованому світлі (прохідному і відбитому), наприклад, мінералів, металевих шліфів, біологічних об'єктів.
Люмінесцентна (флуоресцентна) мікроскопія використовує явище люмінесценції. Об'єкт висвітлюється випромінюванням, що збуджує люмінесценцію. При цьому спостерігається контрастна кольорова картина світіння, що дозволяє виявити морфологічні і хімічні особливості об'єктів.
Ультрафіолетова й інфрачервона мікроскопія дозволяє проводити дослідження за межами видимої зони спектра. Ультрафіолетова мікроскопія (250—400 нм) застосовується для дослідження біологічних об'єктів (наприклад, сліди крові, сперми), інфрачервона (0,75—1,2 мкм) дає можливість вивчати внутрішню структуру об'єктів, непрозорих у видимому світлі (кристали, мінерали, деяке скло, сліди пострілу, залиті, заклеєні тексти).
Стереоскопічна мікроскопія дозволяє бачити предмет об'ємним за рахунок розглядання його двома очима (оптична система включає два окуляри). Більшість мікроскопів, що використовуються для вивчення речовинних доказів, є стереоскопічними. Бінокулярні стереоскопічні мікроскопи (типу МБС) застосовуються при дослідженні практично усіх видів об'єктів (сліди людини і тварин, документи, лакофарбові покриття, метали і сплави, волокна, мінерали, кулі і гільзи і т.д.) як у прохідному, так і у відбитому світлі. Як правило, вони комплектуються насадкою для фотографування (мал. 34). Такими мікроскопами в основному оснащені експертні установи.
Порівняльні мікроскопи (типу МИС, МС, МКС) мають спарену оптичну систему, що дозволяє робити одночасне дослідження двох об'єктів. Сполучене зображення виявлених ознак можна відразу ж сфотографувати за допомогою спеціальної мікрофотонасадки. Мікроскопи спеціальні криміналістичні типу МСК дозволяють спостерігати зображення не тільки за допомогою окуляра, але і на спеціальному екрані. В даний час на озброєння в експертно-криміналістичні установи беруться порівняльні мікроскопи, обладнані телекамерами і керовані персональними комп'ютерами, що дозволяють одержувати комбіноване зображення порівнюваних об'єктів на телеекрані (телевізійна мікроскопія), досліджувати об'єкти в поляризованому світлі, зі світлофільтрами, в інфрачервоних або ультрафіолетових променях. Вони дають можливість електронним шляхом змінювати масштаб, контрастність і яскравість зображення. Так у лабораторії балістики та трасологічних досліджень ДНДЕКЦ МВС України при дослідженні широкого використовується автоматизоване робоче місце “Баліст”.
Можливості морфологічних досліджень різко розширилися з появою електронної мікроскопії. Просвітчаста (просвічуюча) електронна мікроскопія заснована на розсіюванні електронів без зміни енергії при проходженні їх через речовину або матеріал. Такі прилади використовують для вивчення деталей мікроструктури об'єктів, що знаходяться за межами роздільної здатності оптичного мікроскопа (дрібніше 0,1 мкм). Він дозволяє досліджувати об'єкти — речові докази у вигляді: тонких зрізів (наприклад, волокон або лакофарбових покрить для дослідження особливостей морфології їхньої поверхні); суспензій, наприклад паливно-мастильних матеріалів. Мікроскопи просвітчастого типу мають роздільну здатність у декілька ангстрем[22].
Растрова електронна мікроскопія (РЕМ) заснована на опроміненні досліджуваного об'єкта добре сфокусованим (за допомогою спеціальної лінзової системи) електронним пучком гранично малого перетину (зонд), що забезпечує досить велику інтенсивність відповідного сигналу (вторинних електронів) від тієї ділянки об'єкта, на який попадає пучок. Різного роду сигнали представляють інформацію про особливості відповідної ділянки об'єкта. Розмір ділянки визначається перетином зонда (від 1—2 до десятків ангстрем). Щоб одержати інформацію про досить велику зону, зонд змушують оббігати (сканувати) задану площу за визначеною програмою. РЕМ, що дозволяє підвищити глибину різкості майже в 300 разів у порівнянні зі звичайним оптичним мікроскопом і досягати збільшення до 200 000 крат, широко використовується в експертній практиці для мікротрасологічних досліджень, вивчення морфологічних ознак найрізноманітніших мікрочастинок: металів, лакофарбових покрить, волосся, волокон, ґрунту, мінералів. Багато растрових електронних мікроскопів постачені так званими мікрозондами-приставками, що дозволяють проводити рентгеноспектральний аналіз елементного складу досліджуваної мікрочастинки.
Розглянемо далі методи аналізу складу, структури і властивостей речовин і матеріалів, найчастіше використовуваних у практиці.
Методи елементного аналізу використовуються для встановлення елементного складу, тобто якісного або кількісного змісту певних хімічних елементів (таблиця Менделєєва) у даній речовині або матеріалі. Коло їх досить широке, однак найбільш розповсюдженими в експертній практиці є наступні.
Емісійний спектральний аналіз — за допомогою джерела іонізації речовина проби переводиться в пароподібний стан і збуджується спектр випромінювання цієї пари. Проходячи далі через вхідну щілину спеціального приладу — спектрографа, випромінювання за допомогою призми або дифракційних ґрат (решіток) розкладається на окремі спектральні лінії, яка потім реєструються на фотопластинці або за допомогою детектора. Якісний емісійний спектральний аналіз заснований на встановленні наявності або відсутності в отриманому спектрі аналітичних ліній шуканих елементів, кількісний — на вимірі інтенсивності спектральних ліній, який пропорційні концентраціям елементів у пробі. Широко використовується для дослідження вибухових речовин, металів і сплавів, нафтопродуктів і пально-мастильних матеріалів, лаків і фарб та ін.
Лазерний мікроспектральний аналіз заснований на поглинанні речовиною сфокусованого лазерного випромінювання, завдяки високій інтенсивності якого починається випаровування речовини мішені й утворюється хмара пари — смолоскип, який служить об'єктом дослідження. За рахунок підвищення температури й інших процесів відбувається збудження й іонізація атомів смолоскипа з утворенням плазми, що є джерелом аналізованого світла. Фокусуючи лазерне випромінювання, можна робити спектральний аналіз мікрокількостей речовини, локалізованих у малих об’ємах (до 10-10 см3) і встановлювати якісний і кількісний елементний склад найрізноманітніших об'єктів практично без їхнього руйнування.
Рентгеноспектральний аналіз. Проходячи через речовину, рентгенівське випромінювання поглинається, що приводить атоми речовини в збуджений стан. Повернення до вихідного стану супроводжується спектральним рентгенівським випромінюванням. За наявністю спектральних ліній різних елементів можна визначити якісний, а за їх інтенсивністю — кількісний склад речовини. Це один з найбільш зручних методів елементного аналізу, що на якісному і часто на напівкількісному рівні є практично неруйнуючим, Лише у рідкісних випадках при дослідженні ряду об'єктів, як правило, органічної природи, можуть відбутися видозміни їхніх окремих властивостей. Використовується для дослідження широкого кола об'єктів: металів і сплавів, часток ґрунту, лакофарбових покрить, матеріалів документів, слідів пострілу, тощо.[23] (мал. 35, 36).
Атомно-абсорбційний аналіз — метод, заснований на поглинанні випромінювання вільними атомами. Через шар атомної пари проби, одержуваних за допомогою атомізатора (звичайно це полум'я або трубчаста піч), пропускають випромінювання в діапазоні 190—850 нм. Поглинаючи кванти світла, атоми переходять у збуджені енергетичні стани. Цим переходам в атомних спектрах відповідають так звані резонансні лінії, характерні для даного елемента. Концентрація того або іншого елемента визначається виходячи зі співвідношення інтенсивності випромінювання до і після проходження через поглинаючий шар. Для встановлення зв'язку між поглинаючою здатністю і концентрацією речовини в атомізатор вводять трохи стандартних зразків з відомим змістом елемента і будують калібрований графік. Метод використовується для кількісного елементного аналізу і характеризується дуже високою чутливістю, швидкістю, простотою пробоподготовки, однак малопридатний для оглядового аналізу проби невідомого складу.[24]
Під молекулярним складом об'єкта розуміють якісний (кількісний) вміст у ньому простих і складних хімічних речовин, для встановлення якого використовуються методи молекулярного аналізу. Це насамперед хіміко-аналітичні методи, що традиційно застосовуються в криміналістиці вже десятки років, наприклад краплинний аналіз — хімічні реакції, проведені з краплинними кількостями розчину аналізованої речовини і реагенту. Успіх застосування методу багато в чому залежить від правильного вибору і застосування контрастних кольорових реакцій. Використовують для проведення в основному попередніх досліджень отрутних, наркотичних і сильнодіючих, вибухових і інших речовин. Для цього методу створені набори, що орієнтовані на роботу з визначеними видами слідів: "Крапля", "Капіляр" та ін.
Іншим досить розповсюдженим методом є мікрокристалоскопія, метод якісного хімічного аналізу за характерним кристалічним осадом, що утворюється при дії відповідних реактивів на досліджуваний розчин. Використовується при дослідженні слідів травлення в документах, фармацевтичних препаратів, отрутних і сильнодіючих речовин та ін.
Однак основними методами дослідження молекулярного складу речових доказів є на сьогоднішній день молекулярна спектроскопія і хроматографія.[25] Молекулярна спектроскопія (спектрофотометрія) — метод, що дозволяє вивчати якісний і кількісний молекулярний склад речовин, заснований на вивченні спектрів поглинання, випущення і відображення електромагнітних хвиль, а також спектрів люмінесценції в діапазоні довжин хвиль від ультрафіолетового до інфрачервоного випромінювання. Включає:
інфрачервону (ІЧ) спектроскопію — один з найбільш інформативних методів, що дозволяє досліджувати молекулярний склад і природу досліджуваних речовин. Заснований на поглинанні молекулами речовини ІЧ випромінювання, що переводить їх у збуджений стан. ІЧ-спектри поглинання реєструють за допомогою спектрофотометрів. Використовується для встановлення складу нафтопродуктів, парфюмерно-косметичних товарів і ін.[26] (мал. 37);
спектроскопію у видимій і ультрафіолетовій зонах спектра, що заснована на поглинанні електромагнітного випромінювання сполуками, що містять хромофорні (визначальне фарбування речовини) і ауксохромні (не визначальні поглинання, але посилюючі її інтенсивність) групи. За спектрами поглинання судять про якісний склад і структуру молекул. Кількісний (спектрофотометричний) аналіз заснований на: переведенні речовини, якщо вона безбарвна, у поглинаючу світловий потік забарвлену сполуку за допомогою певних реактивів; вимірювання оптичної щільності за допомогою спеціального приладу — фотометра. Оптична щільність при однаковій товщині шарів тим більше, чим вище концентрація речовини в розчині. За електронними спектрами встановлюють, наприклад, склад домішок і зміни, що відбуваються в об'єкті під впливом навколишнього середовища.
Хроматографія використовується для аналізу складних сумішей речовин. Вона заснована на різному розподілі компонентів між двома фазами — нерухомою і рухомою (елюєнтом). В залежності від агрегатного стану елюєнта розрізняють газову або рідинну хроматографію. У газовій хроматографії як рухливу фазу використовується газ. Якщо нерухомою фазою є тверде тіло (адсорбент), хроматографія називається газоабсорбційною, а якщо рідина, нанесена на нерухомий носій, — газорідинною.[27] У рідинній хроматографії як рухливу фазу використовують рідину. Аналогічно газовій розрізняють рідинно-абсорбційну і рідинно-рідинну хроматографію. Хроматографічний поділ проводять у трубках, заповнених сорбентом (колоночна хроматографія), у капілярах довжиною в кілька десятків метрів (капілярна хроматографія), на пластинках, покритих шаром абсорбенту (тонкошарова хроматографія), на папері (паперова хроматографія). Методи хроматографії використовуються при дослідженні широкого кола об'єктів судових експертиз, наприклад, чорнила і паст кулькових ручок, наркотичних препаратів, харчових продуктів і напоїв, вибухових речовин, барвників, паливно-мастильних матеріалів і багатьох інших (мал. 38).
Під фазовим складом розуміють якісний або кількісний склад певних фаз у даному об'єкті. Фаза — це гомогенна частина гетерогенної системи, причому в даній хімічній системі фази можуть мати однаковий (α-залізо і γ-залізо в мисливському ножі) і різний (закис і оксид міді на мідному дроті) хімічний склад. Фазовий склад всіх об'єктів, що мають кристалічну структуру, встановлюється за допомогою рентгенофазового аналізу, який успішно застосовується в експертній практиці для не руйнуючого дослідження найширшого кола об'єктів: металів і сплавів, будівельних, лакофарбових матеріалів, фармацевтичних препаратів, парфюмерно-косметичних виробів, вибухових речовин та ін. Метод заснований на неповторності розташування атомів і іонів у кристалічних структурах речовин, що відображається у відповідних рентгенометричних даних. Аналіз цих даних і дозволяє встановлювати якісний і кількісний фазовий склад.
Часто фазовий склад одночасно дає уявлення і про структуру об'єктів. Металографічний і рентгеноструктурний аналізи використовуються для вивчення кристалічної структури об'єктів. За допомогою металографічного аналізу вивчаються зміни макро- і мікроструктури металів і сплавів у зв'язку зі зміною їхнього хімічного складу й умов обробки. Рентгеноструктурний аналіз дозволяє визначати орієнтацію і розміри кристалів, їхню атомну й іонну будову, вимірювати внутрішнє напруження, вивчати зміни, що відбулися в матеріалах під впливом тиску, температури, вологості і на підставі отриманих даних судити про "біографії" тієї або іншої деталі, за руйнуваннями визначати причини пожежі, вибуху або автодорожньої події.[28]
Методи дослідження окремих властивостей об'єктів можуть бути найрізноманітнішими. При дослідженні речових доказів аналізується, наприклад, електропровідність об'єктів (електропроводів або обвуглених залишків деревини при визначенні джерела пожежі), магнітна проникність (для діагностики зміни маркірування), мікротвердістъ (для дослідження слідів газокисневого різання, зварених швів і шлаків при встановленні механізму розкриття металевих сховищ), концентраційні межі спалаху і запалення, температура запалення і самозапалювання і багато чого іншого.
Технічні засоби експертного дослідження матеріальних джерел
Зафіксована в матеріальному джерелі інформація не завжди очевидна, а її ознаки часто не можна виявити шляхом попереднього дослідження за допомогою комплекту технічних засобів слідчого. У таких випадках вилучені речові джерела досліджують шляхом проведення судової експертизи, як правило, у стаціонарних умовах із застосуванням спеціальних технічних засобів. Така техніка запозичена з різних галузей науки і техніки та скомпонована в лабораторні комплекти.
Так, експертно-криміналістичні підрозділи органів внутрішніх справ України мають спеціальні базові лабораторії повного профілю:
а) дослідження матеріалів, речових виробів;
б) біологічних досліджень;
в) автотехнічних досліджень;
г) вибухово-технічних досліджень;
д) балістичних досліджень;
е) дослідження харчових продуктів.
У науково-дослідних експертно-криміналістичних центрах УМВС і УМВСТ діють лабораторії (групи), в яких сконцентрована експертна техніка для таких досліджень, як дактилоскопічні, трасологічні, балістичні, для техніко-криміналістичного дослідження документів, рукописних текстів, холодної зброї, зовнішнього вигляду, рис обличчя.
Експертну техніку можна класифікувати таким чином:
1) лабораторна;
2) вимірювальна;
3) освітлювальна;
4) відтворення зображення;
5) мікроскопічна;
6) акустична;
7) дослідження мікрооб'єктів і запаху;
8) автоматизації та комп'ютеризації.
Лабораторна техніка є допоміжним засобом при дослідженнях різного класу об'єктів. До неї належать хімічний посуд; засоби пакування і зберігання; пінцети; лупи; штативи; джерела енергії; комплекти інструментів (наприклад, слюсарні, столярні); засоби нагрівання, моделювання тощо.
Вимірювальна лабораторна техніка експертних лабораторій значно відрізняється від засобів вимірювання, які є у комплектах. Ці прилади дозволяють проводити вимірювання будь-яких фізичних тіл в агрегатному стані. Так, для складних і точних вимірювань твердих тіл використовуються великий інструментальний мікроскоп (БІМ-1) та інші моделі, для виявлення і вимірювання газоподібних об'єктів застосовують газові аналізатори, наприклад трубку Мохова-Шинкаренка, пристрій "Джміль", детектор "РД-1", "Експрес-тест Ф-2" та інші. Для вимірювання порожнин використовують кронциркулі, нутроміри, каліброметри, шаблони, а для вимірювання температур — термометри, термопари, пірометри тощо.[29]
Засоби освітлення. Крім люмінесцентних ламп і ламп розжарення, в лабораторіях широко представлені джерела ультрафіолетового, рентгенівського, інфрачервоного і лазерного випромінювання.
Засоби відтворення зображення. Відтворення досліджуваного об'єкта, його ознак і результатів дослідження є найважливішою стадією. Зараз отримати зображення можна різноманітними методами, використовуючи майже кожну ділянку електромагнітного спектра — від космічних променів до радіохвиль. У криміналістичних лабораторіях використовується техніка для отримання зображень в рентгенівській, УФ, видимій, 14 ділянках спектра.
Мікроскопічна техніка — невід'ємне знаряддя праці експерта. У криміналістичних лабораторіях найчастіше використовуються стереоскопічні мікроскопи МБС різних моделей, біологічні, люмінесцентні, вимірювальні і мікроскопи для порівняння — МС-51 і спеціальний криміналістичний МСК-1 (мікроскоп порівняльний криміналістичний). Більшість складних мікроскопів з'єднані з фото- або кінокамерою, телевізійною системою, що фіксує дослідження. У простих мікроскопах фіксація отриманого зображення виконується фотоапаратами за допомогою спеціальних мікрофотонасадок МФН-1, МФН-2, МФН-5 та інших пристроїв.
Технічні засоби дослідження в невидимих променях спектра представляють прилади і пристрої, що дозволяють досліджувати речові докази в ультрафіолетовій, інфрачервоній і рентгенівській зонах спектра.
До засобів ультрафіолетової техніки відносяться мікроскопи МЛ-1, МЛ-2, спеціальний пристрій «Таран», портативні джерела УФЛ, УК-1, ОЛД-41, «Фотон» і ін.
Для дослідження в ІЧП як джерела застосовують лампи розжарювання, електронно-оптичні перетворювачі (ЕОП), прилади нічного бачення С-230, З-270, НН-12, НСПУ.
В експертно-криміналістичних підрозділах останнім часом широко використовується прилад «Регула» 4005 ИКЛ2 (мал. 40), який призначений для дослідження документів, грошових знаків і цінних паперів при збільшенні до 35 крат у всьому видимому, УФ- та ІЧ- діапазонах.
Прилад дозволяє здійснювати контроль автентичності документів, грошових знаків і цінних паперів на предмет:
- виявлення місць внесення змін у первинний зміст документа методами дописки, домальовування, травленням, змиванням, переклеюванням і т.п.;
- наявності (відсутності) водяних знаків, філігран, смуг і ниток безпеки, планшет, кінеграм, кольорових волокон та інших захисних елементів основи документа (паперу, пластики);
- наявності (відсутності) ознак основних засобів поліграфічного захисту документів (ірисного розкату фарби, металографії, Орловського, високого, офсетного й іншого способів і видів друку, мікродруку й ін.);
- наявності (відсутності) абсорбційних або флуоресцентних УФ- властивостей матеріалів документа, що перевіряється;
- наявності (відсутності) магнітних властивостей матеріалів, використаних при виконанні окремих елементів документа;
- наявності (відсутності) ІЧ-захисту документів, грошових знаків і цінних паперів.
Прилад забезпечує дослідження об'єктів при плавному переході з видимого в ІЧ- діапазон.
Можливе підключення приладу до відеомонітора, відеомагнітофона, персонального комп'ютерова (при наявності пристрою відеовводу) для протоколювання, документування і редагування зображень досліджуваних об'єктів у видимому і ІЧ- діапазонах.
Акустична техніка у фоноскопічних лабораторіях компонується у вигляді автоматизованого робочого місця експерта (АРМЕ), до якого належать пристрої візуалізації фонограми, персональний комп'ютер, спектроаналізатор, синтезатор мови.
Засоби дослідження мікрочасток і запаху — це оптичні прилади і мікроінструменти, лупи, мікропіпетки, пінцети, люмінесцентні джерела світла, вимірювальні прилади, а також комплекти, спеціально виготовлені для роботи з мікрооб'єктами на місці події і в кабінеті слідчого.[30] Для дослідження слідів запаху застосовують фізичні, хімічні методи і відповідні засоби. На місці події використовуються одорологічні валізи і найпростіші засоби роботи із слідами запаху.
Засоби комп'ютеризації і автоматизації потрапили в експертні лабораторії в середині нашого століття і серйозно вплинули на працю експерта, звільнивши його від рутинної роботи, насамперед від оброблення кількісних показників приладів під час вимірювання властивостей і ознак об'єктів. Комп'ютерна техніка дозволила формувати індивідуальні та галузеві банки даних, довідкової інформації, методик дослідження щодо конкретного виду об'єкта, зрештою, розробка програмних засобів дозволила звернутися до автоматичного формування висновків експерта в процесі дослідження. Нові програми створюють можливість обчислювати випадкові помилки і надавати експерту інформацію для прийняття оціночних рішень.
Методи "лабораторної" криміналістики
Фізичні методи — найпоширеніші, особливо мікроскопічні, і звичні для кожної лабораторії. Вони спроможні збільшувати дозволену здатність зору людини, виявляти і досліджувати слабовидимі і невидимі ознаки об'єктів. Для цього застосовуються оптичні, поляризаційні, люмінесцентні, вимірювальні спектроскопічні та інші інструментальні методи разом з відповідною апаратурою, яка нерідко з'єднана із засобами фото-, кіно- і відеофіксації.
Мікроскопічні методи дослідження відрізняються від органолептичних тим, що тут використовуються засоби, які розширюють сприйняття людини (зокрема, вдосконалюють зорові сприйняття). При цьому застосовують мікроскопи оптичні та електронні. Перші мають роздільність до 2000, а другі — більше мільйона. Об'єктами дослідження виступають мікрочастки, які людське око розрізнити не може — структура поперечних зрізів лакофарбового покриття, склад і структура металу, рослинні волокна, частки ґрунту, біологічних об'єктів від людини або тварини. Результати мікроскопічного дослідження відображаються на фотознімках, адже мікроскопи безпосередньо сполучені з фото та кінокамерами й вимірювальними засобами.
Вимірювальні методи використовують як найпростіші (лінійка, рулетка, мікрометри, штангенциркулі, кутомірні пристрої тощо), так і складні прилади (теодоліти, вимірювальні мікроскопи, спектрографи, вимірювальні хроматографи, спектрометри тощо).
Методи дослідження в ультрафіолетових променях. УФП невидимі для людського ока, вони розташовані в електромагнітному спектрі за фіолетовими променями. Основна властивість УФП — викликати люмінесценцію, у зв'язку з чим вони є засобом люмінесцентного аналізу. УФП дозволяють відновлювати витравлені, замиті тексти в документах, на тканинах та інших об'єктах, диференціювати сипкі речовини (ґрунт, барвники), паливо-мастильні матеріали, біологічні об'єкти (спори, насіння і т.п.); плями крові, сперми, слини,
Методи дослідження в інфрачервоних променях. ІЧП в електромагнітному спектрі розташовані за червоними, мають проникаючу здібність і викликають інфрачервону люмінесценцію. За допомогою ІЧП можна прочитати тексти, закриті тонким шаром дерева, паперу, фарбником, прозорим для ІЧП. Фотозйомка в ІЧП дозволяє одержати чіткі знімки об'єктів в тумані і темряві (прилади нічного бачення, ЕОП та ін.,). Методом інфрачервоної люмінесценції відновлюють пожовклі тексти, видалені підчисткою, диференціюють фарбники, які звичайним зором визначити неможливо.
Методи дослідження у рентгенівських променях. РП в електромагнітному спектрі, з одного боку, відносяться до УФП, а з другого, — до гамма променів. РП мають здатність проникнення через об'єкти органічного та біологічного походження, і у зв'язку з цим використовуються для пошуку тайників у стінах, виявлення схованок зброї, вибухових пристроїв у валізах, поштових відправленнях, контейнерах, в аеропортах при догляді багажу (за допомогою спеціально виготовлених пристроїв, установок). У ході криміналістичної експертизи з використанням РП можна визначити механізм замка, спосіб спорядження та вид снаряду в патроні, розкрити структуру паперу (наприклад, грошові купюри) і т.п. Криміналістичні методи, в яких використовується РП, називають рентгенівськими, рентгенографічними.
Люмінесцентний аналіз - сучасний високочутливий метод, який дозволяє вирішувати багато питань у судових експертизах. При дослідженні використовується властивість об'єктів матеріального світу люмінесціювати при опроміненні УФ-, ІЧ-, РП-променями та іншими частинами електромагнітного спектру. Люмінесцентний метод можна віднести як до експертного, так і до "польового". Слідчий за допомогою освітлювачів "Таран", УП-1, УФО-1 має змогу дослідити документи та встановити сліди травлення, перевірити грошові купюри, визначивши підроблені.
Методи дослідження речових доказів, де як джерела збудження використовують радіаційні, називають радіоактивними, ізотопними. Радіоактивні випромінювання мають високу проникаючу здатність, що дозволяє просвітити товсті шари металу, камінної кладки. У криміналістиці використовуються установки з ізотопом кобальта-60, стронція-90 для дослідження металевих і біологічних об'єктів. Радіоактивні ізотопи використовуються для нанесення поміток з метою пошуку об'єкта у випадках крадіжки. Застосовують радіоактивні мітки, суворо дотримуючись вимог інструкції техніки безпеки.
Хімічні методи дослідження. З класичних хімічних методів використовують полярографічні, хроматографічні, спектральні методи дослідження. Багато хімічних методів з'єднуються з фізичними і називаються фізико-хімічними. Об'єктами хімічних досліджень у криміналістиці можуть бути всякі речовини і предмети матеріального світу для встановлення складу, походження, однорідності або різнорідності.
Хроматографічні методи, зокрема тонкошарова і газова хроматографія, досить поширені в практиці хімічних досліджень. Визначення походження наркотиків, барвників, паливно-мастильних речовин проводиться методом газорідинної хроматографії на складному обладнанні.
Спектральний або адсорбційний аналіз — це методи дослідження елементного складу речовини. Вони дозволяють визначити її кількісні характеристики на рівні групової належності (боєприпаси, наркотики, клеючі речовини, барвники, різноманітні рідини — отрути, кров, слина, сеча). Зокрема, завдяки спектральному аналізу можна встановити вид наркотику, район його вирощування, район добування золота, тобто вирішити проблему джерела походження конкретної речовини (чи з цього шматка свинцю виготовлений шріт, тобто чи служить саме цей шматок свинцю джерелом походження шроту).
Біологічні методи. Об'єктами біологічних досліджень є предмети, мікрочастки рослинного і тваринного походження. До об'єктів рослинного походження належать: деревина, вироби з неї, деревне вугілля, рослини та їхні частини (стебла, листя, насіння, квіти, спори, зерно, зернопродукти). Об'єкти тваринного походження: волосся, шерсть, вовна, пір'я, пух і вироби з цих матеріалів.
Біологічні методи дослідження засновані на сучасній високочутливій техніці та нових методиках. Деякі з них такі: ботанічні, спорово-пилкові, іхтіологічні, орнітологічні, вірусологічні, генної інженерії, гістологічні, ембріологічні та багато інших.
Кібернетичні методи — загальне визначення методів інформатики та обчислювальної техніки, які останнім часом одержали широке розповсюдження в криміналістичних дослідженнях та у практиці розкриття злочинів. Зокрема, в правоохоронних органах створені банки інформації різного ступеня спільності (АБД-республіка, АБД-область та АБД-район). Збирання, обробка й зберігання інформації в банках здійснюються автоматичними способами, технічними засобами (ЕОМ) за спеціальними програмами. За допомогою таких програм на ЕОМ можна сконструювати портрет злочинця зі слів потерпілого, розрахувати дані судово-автотехнічної експертизи, провести порівняння зразків та автоматичне пізнання їх (наприклад пошук злочинця за відбитками пальців з місця події тощо).
Криміналісти у співдружності з програмістами на основі узагальнення слідчої практики розробили системи типових способів вчинення злочину, що дозволяє за виявленими ознаками відшукати спосіб вчинення злочину.
Сучасні методи та засоби дослідження й використання слідів запаху у практиці розслідування злочинів утворюють самостійний розділ криміналістичної техніки — криміналістичну одорологію, Сліди запаху використовуються для розшуку злочинців, крадених речей, наркотиків, боєприпасів, вибухових речовин за допомогою службово-розшукового собаки. Для роботи із слідами запаху використовується одорологічна валіза, в якій є спеціальні прилади ("Парус") для роботи з мікрооб'єктами. Виявлений на місці пригоди слід запаху консервують та зберігають в спеціальних банках інформації, а якщо виявляється підозрюваний чи обвинувачений, запах із банка даних використовують для одорологічної ідентифікації шляхом виїмки або провадження судової експертизи.
Дата: 2019-05-29, просмотров: 271.