Таблица 1.
Группы и виды пылеулавливающего оборудования для улавливания пыли сухим способом.
Группа оборудования | Вид оборудования |
Область применения
Примечание. Знак «+» означает применение; знак «-» означает неприменение.
Таблица 2.
Группы и виды пылеулавливающего оборудования для улавливания пыли мокрым способом.
Группа оборудования | Вид оборудования |
Область применения
Примечание. Знак «+» означает применение; знак «-» означает неприменение.
Пылеулавливающее оборудование, в котором отделение пыли от воздушного потока осуществляется последовательно в несколько ступеней, отличающихся по принципу действия, конструктивным особенностям и способу очистки, относят к комбинированному пылеулавливающему оборудованию.
Классификация пылеулавливающего оборудования согласно ГОСТ 12.2.043-80 приведена на схеме. На схеме дополнительно показан вид пылеулавливающего оборудования – биофильтр, применяемый для очистки выбросов, от ряда органических пылей.
Раздел 2. Виды воздушных фильтров.
2.1. Ячейковые фильтры
Ячейковые фильтры являются старейшим видом воздушных фильтров. В настоящее время применяют унифицированные ячейковые фильтры с фильтрующим слоем из различных материалов. Ячейка фильтра представляет собой разъемную металлическую коробку. В корпус ячейки укладывается фильтрующий слой. Рамка ячейки имеет ручки для установки и извлечения из панели.
Фильтр ФяР (фильтр Река). Фильтрующим слоем являются металлические гофрированные сетки. Сетки промасливаются специальными маслами (висциновым и др.). Регенерация осуществляется путем промывки запыленных ячеек фильтра в содовом растворе.
Фильтры ФяВ заполнены гофрированными винипластовыми сетками. По эффективности и пылеемкости идентичны фильтрам ФяР. Могут применяться как в замасленном, так и сухом виде. При применении в сухом виде эффективность несколько ниже.
В фильтрах ФяП в качестве фильтрующего материала применен губчатый пенополиуретан, обработанный в растворе щелочи для придания ему воздухопроницаемости. Фильтр обладает меньшей пылеемкостью, чем ФяВ. Регенерация производится промывкой водой. Простота регенерации облегчает эксплуатацию фильтра.
Фильтр ФяУ заполнен стекловолокнистым упругим фильтрующим материалом ФСВУ. Пылеемкость фильтра меньше, чем ФяВ и ФяР. Запыленный материал подлежит замене.
Ячейки фильтров устанавливают в плоские или в V-образные панели.
2.2. Самоочищающиеся масляные фильтры
Самоочищающиеся фильтры лишены основного недостатка ячейковых фильтров – необходимости выполнения трудоемкой операции по ручной промывке запыленных панелей. Кроме того, они компактны, допускают большую удельную воздушную нагрузку, чем ячейковые фильтры.
Применяют два вида самоочищающихся масляных фильтров – с фильтрующим слоем, образованным пружинной сеткой, и слоем из сетчатых шторок.
Самоочищающиеся масляные фильтры с пружинной сеткой. Очистка воздуха производится при его последовательном прохождении через две движущиеся бесконечные пружинные сетки, смоченные маслом (воздух проходит через четыре плоскости, смоченные маслом). Каждая сетка приводится в движение с помощью двух пар валов, получающих вращение от электродвигателя через редуктор. Необходимо обеспечить равномерное движение воздуха по всему сечению фильтра со скоростью до 3 м/с.
При движении пружинных сеток их нижние части погружаются в масляную ванну и при этом очищаются от осевшей на них пыли. Масло в ванне периодически сменяется. Применяют масло висциновое, веретенное, трансформаторное, турбинное и др. Сорт масла должен соответствовать времени года согласно рекомендации завода-изготовителя фильтров.
Самоочищающийся масляный фильтр с сетчатыми шторками. Фильтрующий слой создают сетчатые шторки, прикрепленные к втулочным цепям, надетым на приводные шестеренки. На вертикальных участках движения цепей шторки перекрывают друг друга. В нижней и верхней частях фильтра шторки разъединяются. При прохождении шторок через масляную ванну они промываются, и слой масла обновляется. Шторки движутся периодически – через 12 минут.
Фильтрующая панель поворачивается за 12 – 20 с. (в зависимости от размеров фильтра). Удельная воздушная нагрузка фильтра 8350 м3/(ч×м3). Установка фильтров снабжается системой маслоснабжения с его подогревом, циркуляцией и очисткой.
Рекомендуемая скорость воздуха при прохождении фильтра 2,5 – 2,6 м/с.
Самоочищающиеся фильтры со шторками выпускает ряд зарубежных фирм и отечественных предприятий.
2.3. Рулонные фильтры
Промышленность до недавнего времени изготовляла рулонный фильтр ФРУ, предназначенный для очистки приточного и рециркуляционного воздуха с запыленностью менее 0,5 мг/м3. Возможно применение фильтра и при большей запыленности при технико-экономическом обосновании. Серийно выпускались фильтры производительностью 20-120 м3/ч. Фильтры могут устанавливаться в вентиляционных камерах и в кондиционерах.
Фильтр собирают из двух или трех секций в зависимости от требуемой производительности. Секция состоит из сварного корпуса, подвижной решетки. Решетка натянута между нижним и верхним валами. Нижний вал – ведущий. В верхней и нижней частях каркаса установлены катушки с фильтрующим материалом. Перемещение решеток и вращение катушек осуществляется с помощью электродвигателя мощностью 0,25 кВт через редуктор. По мере загрязнения материал перематывается с верхних катушек на нижние. В фильтре применяют фильтрующий материал типа ФСВУ. Он представляет собой слой из стеклянного волокна толщиной 30 – 50 мм, промасленный и пропитанный в процессе изготовления связующими веществами. Слой обладает рыхлостью и упругостью. Материал изготовляется в виде полотнищ длиной 15 м. Подвижная решетка обеспечивает необходимую жесткость и прочность фильтрующего слоя.
Перемотка катушек производится периодически при достижении определенного значения гидравлического сопротивления в результате накопления пыли. Скорость перемещения материала при перемотке около 0,5 м/мин.
2.4. Воздушные фильтры высокой эффективности с материалами ФП
Материалы ФП и процесс их получения разработаны в Физико-химическом институте им. Л. Я. Карпова. Материалы ФП представляют собой исключительно равномерные слои ультратонких полимерных волокон.
Поскольку механическая прочность слоя волокон материала ФП невелика, он нанесен на тканевую подложку (марля, бязь, перкаль), которая и обеспечивает необходимую прочность.
В большинстве материалов ФП волокна сцеплены между собой за счет сил трения, и фильтрующий слой выдерживает значительную деформацию. Удлинение при разрыве – от 30 – 50%. Высокая пластичность обеспечивает надежную эксплуатацию фильтров, снаряженных материалами ФП.
Материалы ФП в зависимости от того, из какого полимера они изготовлены, стойки к различным химическим веществам, к высоким температурам – до 250 - 270°C.
Волокна ФП имеют вид ленты, ширина которой в 3 – 5 раз больше толщины. Материалы ФПП обычно обозначают по размеру волокон, а именно по ширине: например, ФПП-15, ФПП-25, ФПП-70 – обозначает фильтр Петрянова из перхлорвиниловых волокон шириной волокон соответственно 1,5; 2,5; 7,0 мкм.
Материалы ФП, изготовленные из полимеров с высокими изоляционными свойствами (перхлорвинил, полистирол), могут получать и удерживать электрические заряды. В результате повышается эффективность фильтра.
При длительном хранении, механическом воздействии, при высокой влажности, под воздействием ионизирующих излучений фильтровальные материалы теряют электрические заряды. Это же происходит и при накоплении в фильтре пыли в результате длительной эксплуатации.
Данные для выбора материалов ФП, применяемых в фильтрах систем вентиляции, приведены в табл. 3.
Таблица 3.
Выбор материалов ФП
Название фильтра | Рекомендуемая марка материала ФП | Удельная нагрузка по воздуху, нм3/(ч*м2) | Эффективность очистки*, % (не менее) |
Очистка приточного воздуха и нетоксичных вентиляционных выбросов. | ФПП-70-0,2 | до 150 | 90 |
Очистка рецеркуляционного и систем кондиционирования. | ФПП-70-0,5 | до 150 | 99 |
Очистка вентиляционных выбросов, содержащих токсичные или радиоактивные аэрозоли. | ФПП-15-1,5 | до 150 | 99-99,9 |
Стерилизация вентиляционного воздуха. | ФПП-15-3 | до 150 | 99,9-99,99 |
Очистка вентиляционного воздуха и других газов с целью улавливания и возврата ценных продуктов. | ФПП-25-3 | до 150 | 99,9-99,99 |
Очистка вентиляционных выбросов «горячих» камер, боксов, каньонов и т.п. | ФПА-15-4 | до 150 | 99,9-99,99 |
Очистка вентиляционного воздуха, содержащего аэрозоли особо опасных веществ | ФПП-15-4,5 | до 150 | 99,9-99,995 |
* - данные по аэрозолям относятся к высокодисперсным аэрозолям с размером частиц 0,1-0,2 мкм. |
Широко распространен фильтр тонкой очистки – рамочный фильтр ЛАИК (лаборатория института Карпова). В одном м3 фильтра расположено до 100 м2 поверхности фильтрующего материала. П-образные рамки размещаются с чередованием открытых и закрытых сторон в двух противоположных направлениях. Техническая характеристика фильтра ЛАИК дана в табл. 4.
Таблица 4.
Характеристики фильтра ЛАИК
Марка фильтра | Фильтрующая поверхность | Фильтрующий материал | Производительность, нм3/ч | Сопротивление Па | Габариты, мм | Допустимая температура, 0С | Назначение | |
При нагрузке 150 м3/ч*м2 | Входное сечение | Длина | ||||||
ЛАИК СП-3/15 | 15,1 | 2250 | 180 | 565*735 | 780 | 60 | Для приточной и вытяжной вентиляции | |
ЛАИК СП-6/15 | 15,1 | 2250 | 240 | 565*735 | 780 | |||
ЛАИК СП-3/17 | 17,5 | ФПП-15 | 2550 | 150 | 615*995 | 355 | ||
ЛАИК СП-6/17 | 17,5 | 2550 | 210 | 615*995 | 355 | |||
ЛАИК СП-3/21 | 21,0 | 3150 | 290 | 650*690 | 625 | Для стерилизации воздуха и систем кондиционирования | ||
ЛАИК СП-6/21 | 21,0 | 3150 | 340 | 650*690 | 625 | |||
ЛАИК СП-3/26 | 26,0 | 3950 | 400 | 660*665 | 750 | |||
ЛАИК СП-6/26 | 26,0 | 3950 | 460 | 660*665 | 750 | |||
ЛАИК СЯ | 16,0 | 2400 | 130 | 550*630 | 310 | Для приточной вентиляции и систем кондиционирования |
Для очистки значительных количеств воздуха из отдельных фильтров устраивается фильтровальная перегородка, в которой устанавливают несколько десятков или более фильтров.
2.5. Электрические воздушные фильтры
Фильтры, применяемые для очистки от пыли приточного воздуха, устроены несколько иначе, чем электрические пылеуловители, используемые для очистки выбросов в атмосферу.
Электрический воздушный фильтр – двухзонный. Вначале поток воздуха, подвергающегося очистке, проходит зону 1, которая представляет собой решетку из металлических пластин с натянутыми между ними коронирующими электродами из проволоки. К электродам подведен постоянный ток напряжением 13-15 кВ положительного знака от выпрямителя 2. Получив электрический заряд при прохождении ионизационной зоны, пылевые частицы в потоке воздуха направляются в осадительную зону 3. Она представляет собой пакет металлических пластин, расположенных параллельно друг другу на расстоянии 8 – 12 мм. К каждой второй пластине подведен ток напряжением 6,5 – 7,5 кВ положительного знака. Пыль осаждается на заземленных пластинах, к которым ток не подведен.
Вокруг коронирующего электрода происходит электрический разряд, сопровождающийся свечением («корона»). В результате электрических разрядов происходит выделение атомарного кислорода (одноатомные молекулы), образование озона O 3, а также оксидов азота. При напряжении, применяемом в воздушных фильтрах, и при наличии в нем двух зон озон и оксиды азота выделяются в небольших количествах и опасности для людей не представляют. В электрических пылеуловителях, применяемых для очистки выбросов, используют ток напряжением 80-100 Вт, кроме того, в этих аппаратах к коронирующим электродам подведен ток отрицательного знака, что по имеющимся данным сопровождается более интенсивным выделением вредных веществ (в 8 раз).
Сила электрического тока и потребляемая мощность в электрических фильтрах невелики и находятся в пределах соответственно 0,8 мА и 10 Вт на 1000 м3/ч очищаемого воздуха.
Фракционная эффективность электрического фильтра дана в табл. 5.
Таблица 5.
Таблица 6.
Таблица 8.
Таблица 10.
Таблица 13.
Таблица 11.
Таблица 12.
Таблица 1
Расчет полого скруббера
Количество тепла, которое необходимо отнять от газа в процессе его охлаждения и передать жидкости (воде), рассчитывают по формуле
Q=V0(c+f1cП)(t1-t2); Дж/с (1)
где V0 - количество сухого газа при нормальных условиях, м?(н)/с;
с – объемная теплоемкость сухого газа при нормальных условиях, Дж/(м?(н)·°C);
сП - теплоемкость водяного пара, Дж/(кг·°C);
f1 - начальное влагосодержание газа, кг/м?(н);
t1, t2- соответственно начальная и конечная температуры газа на выходе в скруббер и на выходе из него, °C.
Пренебрегая теплопотерями в окружающую среду, полезный рабочий объем скруббера рассчитывают по формуле
где k – объемный коэффициент теплопередачи в скруббере, Вт/(м?·°С);
?t – средняя разность температур газа и жидкости, °C.
Зависимость объемного коэффициента теплопередачи от плотности орошения и массовой скорости в скрубберах была получена Г.Ф. Алексеевым и В.А. Оленевым опытным путем при исследованиях охлаждения и очистки доменного газа водой:
ккал/(м3*ч*0С), (3)
где U – плотность орошения, кг/(м?·ч);
ρГ – плотность газа, кг/м?;
υГ – скорость газа, м/с.
Таблица 3
Таблица 1.
Группы и виды пылеулавливающего оборудования для улавливания пыли сухим способом.
Группа оборудования | Вид оборудования |
Область применения
Примечание. Знак «+» означает применение; знак «-» означает неприменение.
Таблица 2.
Дата: 2019-05-29, просмотров: 257.