Расчёт зубчатых и червячных передач
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Расчёт зубчатых и червячных передач

Министерство образования

Российской Федерации

Вологодский государственный технический университет

Кафедра теории и проектирования машин и механизмов

 

Детали машин

Методические указания к курсовому проекту.

Часть I: расчёт зубчатых и червячных передач

 

Факультет: промышленного менеджмента

 

Специальности:

150200 - автомобили и автомобильное

хозяйство;

120100 - технология машиностроения,

металлорежущие станки и инструмент;

210200 - автоматизация технологических

процессов и производств

 

Г. Вологда, 2000 г.

ВВЕДЕНИЕ

Темой курсового проекта по деталям машин является механический привод для различных исполнительных машин - конвейеров, станков и т.п. Проект носит комплексный характер и включает в себя расчётную и графическую части.

Расчётно-пояснительная записка к проекту должна содержать следующие разделы: задание на проектирование; введение; подбор электродвигателя и кинематический расчёт привода; проектирование передач редуктора и открытых передач привода; определение конструктивных размеров элементов зубчатых колёс и элементов корпуса редуктора; ориентировочный расчёт валов; эскизная компоновка редуктора; проектирование подшипниковых узлов и подбор подшипников; уточнённый расчёт промежуточного вала редуктора; подбор шпонок и проверка шпоночных соединений; подбор муфт; выбор смазки; назначение посадок основных элементов; перечень использованной литературы. Кроме того, в состав расчётно-пояснительной записки включается спецификация на графическую часть.

Объём графической части составляет 5 листов формата А1, куда входят чертежи общего вида редуктора, его деталей, рамы и общего вида привода.

Настоящие методические указания представляют собой первую часть учебно-методического комплекса по курсовому проектированию деталей машин. Они содержат алгоритмы подбора электродвигателя, кинематического расчёт привода, а также расчёта цилиндрических, конических и червячных передач. Описанные алгоритмы положены в основу программ расчёта передач на ЭВМ. Кроме того, методические указания включают в себя все справочные материалы, необходимые при подготовке исходных данных для расчётов с помощью вычислительной техники.

Методические указания предназначены для студентов всех форм обучения специальностей 150200, 120100, 210200 при курсовом и дипломном проектировании, а также при выполнении студентами-заочниками контрольных работ.

1. ВЫБОР ЭЛЕКТРОДВИГАТЕЛЯ

В общем машиностроении большинство машин приводят в движение от трёхфазных асинхронных электродвигателей переменного тока, которые характеризуются номинальной мощностью Рэл. и номинальной частотой вращения ротора nэл. Электродвигатели различают:

1. По конструкции корпусов:

1). Электродвигатели на лапах, исполнение М 100;

2). Электродвигатели фланцевые на лапах, исполнение М 200;

3). Электродвигатели на лапах, исполнение М 300.

2. По конструкции обмоток:

1). Электродвигатели основного исполнения;

2). Электродвигатели с повышенным скольжением;

3). Электродвигатели многоскоростные.

3. По степени защиты:

1). Закрытые обдуваемые со степенью защиты 1Р44, которая исключает попадание внутрь такого электродвигателя посторонних тел размером более 1 мм;

2). Защищённые со степенью защиты 1Р23, исключающей попадание внутрь электродвигателя посторонних тел размером более 12,5 мм;

4. По назначению:

1). Основное исполнение;

2). Малошумные;

3). Встраиваемые;

4). Со встроенной температурной защитой;

5). Со встроенным электромагнитным тормозом;

6). Крановые;

7). Влагоморозостойкие.

При выборе электродвигателя следует помнить, что высокооборотные двигатели имеют меньшие габарита, массу, стоимость, чем тихоходные той же мощности.

Структура обозначения электродвигателей:

1). Серия разработки;

2). Вид электродвигателя;

3). Исполнения по способу защиты: Н - защищенные, при отсутствии буквы - закрытые обдуваемые;

4). Высота оси вращения в мм:

5). Условное обозначение длины станины - M, L, S;

6). Условное обозначение длины статора - А, В;

7). Число полюсов;

8). Условное обозначение климатического исполнения.

Пример условного обозначения электродвигателя - 4А112МВ6У3. Здесь: 4 - номер серии; А - асинхронный; исполнение закрытое обдуваемое (после буквы А отсутствует буква Н); 112 - высота оси вращения в мм; М - установочный размер по длине станины; В - длина сердечника статора; 6 - число полюсов; У3 - двигатель предназначен для работы в умеренном климате.

Параметры электродвигателей приведены в табл. 1.1.

Потребная мощность приводного электродвигателя определяется по формуле:

(1.1)

где РИ.М. – мощность на валу исполнительного механизма (тихоходном валу привода); h0 - общий К.П.Д. привода.

При проектировании привода конвейера

(1.2)

где F - тяговое усилие на приводном валу в Н; v - скорость тягового элемента в м/с.

(1.3)

где hi - К.П.Д. одной кинематической пары (см. табл. 1.2); a, b, c - количество одинаковых кинематических пар.

Таблица 1.1

Параметры электродвигателей

Таблица 1.2

Таблица 2.1

Таблица 2.2

Двухступенчатые редукторы

Схема редуктора Uред. рекомендат. (предельн.) Uб Uт

Рис. 2.2 График для определения Uт.

Таблица 2.3

Трёхступенчатые редукторы

Схема редуктора Uред. рекомендат. (предельн.) Uб Uп Uт

Рис. 2.3 График для определения Uт и Uп трёхступенчатых редукторов.

Рис. 2.4 График для нахождения .

Материалы зубчатых передач

В зависимости от твёрдости рабочих поверхностей зубьев после термообработки зубчатые колёса можно условно разделить на две группы:

1). С твёрдостью £НВ 350 - нормализованные или улучшенные;

2). С твёрдостью >НВ 350 - объёмно- и поверхностно-закаленные, цементированные, нитроцементированные, цианированные, азотированные.

При твёрдости материала £НВ 350 чистовое нарезание зубьев можно производить после окончательной термообработки заготовки.

Зубчатые колёса с твёрдостью рабочих поверхностей зубьев >НВ 350 применяют в средне- и высоконагруженных передачах с целью уменьшения их габаритов.

Зубья, нарезанные до закалки, после закалки обычно шлифуют для устранения неточностей, обусловленных изменением их форм и размеров при закалке (коробление).

В правильно спроектированной зубчатой паре соотношение твёрдости рабочих поверхностей зубьев шестерни и колеса не может быть выбрано произвольно. Если твёрдость рабочих поверхностей зубьев колеса £НВ 350, то в целях выравнивания долговечности зубьев шестерни и колеса, ускорения их приработки и повышения сопротивляемости заеданию твёрдость поверхностей зубьев шестерни поверхностей зубьев шестерни всегда назначается больше твёрдости зубьев колеса. Для прямозубых колёс разность средних твёрдостей шестерни и колеса должна составлять не менее 20¸30 единиц Бринелля.

Для косозубых колёс твёрдость поверхностей зубьев шестерни желательна возможно большая. Чем она больше, тем больше несущая способность передачи по критерию контактной выносливости.

Для неприрабатывающихся зубчатых передач с твёрдостью рабочих поверхностей зубьев обоих зубчатых колёс ³НВ 45 обеспечивать разность твёрдостей зубьев шестерни и колеса не требуется.

В табл. 3.1 приведены значения механических характеристик и виды термообработки некоторых распространённых марок конструкционных сталей, используемых для изготовления зубчатых колёс, а также других деталей машин (валов, осей, звёздочек цепных передач, червяков, деталей муфт и т.п.). Как следует из этой таблицы, механические характеристики сталей зависят не только от химического состава и вида термообработки, но и от размеров характерного сечения заготовок D или S.

Таблица 3.1

Таблица 3.2

Длительные пределы выносливости dнlimв и d°Flimв,

коэффициенты безопасности Sн и SF,

максимальные допускаемые напряжения [d]нmax и [d]Fmax

Термообработка

Твёрдость

зубьев

Группа

сталей

dнlimв, МПа

Sн

Flimв, МПа

SF

[d]нmax, МПа

[d]Fmax, МПа

на поверхности в сердцевине
Нормализация, улучшение

менее НВ 350

40,45, 40Х,40ХН, 45 ХЦ, 35 ХМ и др. НВ+70 1,1 1,8ННВ 1,75 2,8 sт 2,74ННВ
Объёмная закалка

HRC 45¸55

40Х, 40ХН, 45ХЦ, 35ХМ и др. 18НHRC+150   550     1400
Закалка ТВЧ по всему контуру (модуль m³3 мм) HRC 56¸63 HRC 45¸55 HRC 25¸35 55ПП, У8, 35ХМА, 40Х, 40ХН и др.

17НHRC+200

1,2

900 650

1,75

40НHRC

1260
Закалка ТВЧ сквозная с охватом впадины (модуль m<3 мм) HRC 45¸55 30ХМ, 40Х, 40ХН и др. 550 1430
Азотирование HRC 50¸59 HRC 24¸40 35ХЮА, 38ХМЮА, 40Х, 40ХФА, 40ХНМА и др. 1050   12НHRC+30 1,75 40НHRC 30НHRC 1000
Цементация и закалка HRC 56¸62 HRC 30¸45 Цементируемые стали всех марок 23НHRC   750 1,55 40НHRC 1200

Примечания: 1). Значения dнlimв и d°Flimв, [d]нmax и [d]Fmax определяют по средней твёрдостью зубьев;

2). Для передач, выход из строя которых связан с тяжёлыми последствиями, значения коэффициентов безопасности следует увеличить до Sн=1,25 и SF=1,35 соответственно;

3). Обозначения размеров сечений заготовок D и S (см. табл. 3.1) приведены ниже.

Рис. 3.1 График для определения Nно

(3.2)

NS - суммарное число циклов перемены напряжений.

(3.3)

n – частота вращения, рассматриваемого зубчатого элемента, об/мин; t – суммарное время работы передачи в течение срока службы, ч; nз - число вхождений в зацепление зубьев рассчитываемого зубчатого колеса за один его оборот (чаще всего nз=1).

(3.4)

Ксут - коэффициент использования передачи в течение суток; Кгод - коэффициент использования передачи в течение года; L - срок службы передачи, годы.

(3.5)

Кне - коэффициент приведения при расчёте на контактную выносливость (режим с переменной нагрузкой заменяют постоянным, эквивалентным по усталостному воздействию); - при частотах вращения валов, не изменяющихся с изменением нагрузки.

Нагрузка, с которой работает передача, может быть постоянной или переменной во времени. Пример графиков постоянной (а) и переменной (б) нагрузки показан на рис. 3.2.

Рис. 3.2 Графики нагрузки

Тпик, Т1, …, Тi - крутящие моменты на валу колеса, с которыми работает передача; tпик, t1, …, ti - время их действия; nпик, n1, …, ni - частоты вращения; t - суммарное время работы передачи.

Если полученное значение Nне>Nно, то следует принять Nне>Nно.

Допускаемое контактное напряжение [d]н для зубьев прямозубых передач определяют раздельно для шестерни [d]н1 и колеса [d]н2 и в качестве расчётного принимают меньшее из них. При расчёте зубьев косозубых передач при разности средних твёрдостей рабочих поверхностей зубьев шестерни и колеса НВ1-НВ2³100 за допускаемое контактное напряжение принимают меньшее из двух полученных по зависимостям:

для косозубых и шевронных зубчатых колёс

или (3.6)

для конических колёс с круговыми зубьями

или (3.7)

Предварительное значение межосевого расстояния

, мм (4.1)

Здесь и ниже знак "плюс" - для внешнего зацепления, знак "минус" - доя внутреннего. Полученное значение аw следует округлить до ближайшего значения по СТ СЭВ 229-75 (ГОСТ 2185-66).

1-ый ряд: 40, 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, 800.

2-ой ряд: 71, 90, 112, 140, 180, 224, 280, 355, 450, 560, 710, 900.

U - передаточное число передачи (см. п. 2.1, 2.2); [d]н - расчётное значение допускаемого контактного напряжения (см. п. 3.2), МПа; ze - коэффициент, учитывающий суммарную длину контактных линий.

 

Для прямозубых передач

;

Для косозубых и шевронных передач

.

 

ea - коэффициент торцового перекрытия, ea=1,6; Т2 - номинальный крутящий момент на валу колеса рассчитываемой передачи, Н´м;

- коэффициент ширины зубчатых колёс передачи, его выбирают по табл. 4.1.

Таблица 4.1

Рекомендуемые значения yва

Положение зубчатых колёс относительно опор

Симметричное Несимметричное Консольное
0,315¸0,5 0,25¸0,4 0,2¸0,25

Примечания: 1). Меньшие значения yва, для передач с повышенной твёрдостью поверхности зубьев ³HRC 45;

2). Для шевронных передач, выполненных по схеме табл. 2.2

;

3). Значения yва каждой последующей ступени передачи следует увеличить на 20¸30%;

4). Для передвижных зубчатых колёс коробок скоростей yва=0,1¸0,2;

5). Значения yва принимать стандартными по СТ СЭВ 229-75 (ГОСТ 2186-66): 0,16; 0,2; 0,315; 0,4; 0,5; 0,63; 0,8; 1,0.

Кнa - коэффициент, учитывающий распределение нагрузки между зубьями: для прямозубых передач Кнa=1, для косозубых и шевронных передач определяется по рис. 4.1, где цифры 6, 7, 8, 9 у прямых - степени точности по нормам плавности работы по ГОСТ 1643-72.

Рис. 4.1. Графики для определения Кнa.

При проектном расчёте, когда размеры зубчатых колёс ещё не известны, для приближённого определения окружной скорости v (vm) следует пользоваться зависимостью:

(4.2)

для передачи с коническими зубчатыми колёсами:

(4.3)

Значения коэффициента cv даны в табл. 4.2.

Таблица 4.2

Передача

Термообработка

  У12 ТВЧ12 Ц12 ТВЧ1+ТВЧ2 12) Ц12
Цилиндрическая прямозубая 1300 1400 1550 1750 2100
Цилиндрическая косозубая 1500 1600 1750 1950 2350
Коническая прямозубая 800 850 900 1000 1200
Коническая с круговыми зубьями 1000 1000 1100 1100 1350

Примечания: 1). Здесь У - улучшение, З - закалка объёмная, ТВЧ - поверхностная закалка токами высокой частоты, Ц - цементация;

2). Индекс "1" относится к шестерне, а "2" - к колесу.

По найденному значению скорости v (vm) определяют степень точности (по нормам плавности) зубчатых передач. Силовые закрытые зубчатые передачи выполняют со степенью точности не ниже приведённой в табл. 4.3.

Таблица 4.3

Таблица 4.4

Коэффициент К°нb

Твёрдость

поверхности зубьев

Схема передачи на рис. 4.2

1 2 3 4 5 6 7

0,2

а 1,16 1,1 1,04 1,03 1,02 1,0 1,0
б 1,22 1,13 1,06 1,04 1,03 1,02 1,0

0,4

а 1,35 1,22 1,1 1,06 1,04 1,03 1,01
б 1,43 1,25 1,12 1,07 1,05 1,04 1,02

0,6

а 1,55 1,36 1,15 1,10 1,07 1,04 1,03
б 1,67 1,45 1,20 1,14 1,08 1,05 1,04

0,8

а 1,9 1,55 1,23 1,16 1,11 1,06 1,04
б 2,0 1,7 1,28 1,2 1,14 1,08 1,06

1,0

а 2,3 1,75 1,3 1,2 1,15 1,10 1,05
б 2,25 1,90 1,38 1,27 1,20 1,12 1,07

1,2

а - - 1,4 1,26 1,20 1,13 1,07
б - - 1,48 1,35 1,25 1,16 1,08

Примечание: в табл. 4.4. и 4.5 твёрдость рабочих поверхностей зубьев

и

и

Кнv - коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении (см. табл. 4.5).

Для конических зубчатых колёс с круговыми зубьями коэффициент Кнv принимают равным таковому для цилиндрических косозубых колёс с той же твёрдостью рабочих поверхностей зубьев, что и у конических колёс.

Таблица 4.5

Коэффициент Кнv

Степень

точности

Твёрдость

поверхности зубьев

Окружная скорость v (vm), м/с

1 2 4 6 8 10

6

а
б

7

а
б

8

а
б

9

а
б

Примечание: в числителе - прямозубые колёса, в знаменателе - косозубые колёса.

Рабочая ширина венца

Рабочая ширина колеса , мм.

Ширина шестерни , мм. (4.6)

Полученные значения в1 и в2 округляют до ближайших значений.

Модуль передачи

Значение модуля определяют по эмпирической зависимости с последующей проверкой на изгибную выносливость. При твёрдости рабочих поверхностей зубьев шестерни и колеса £НВ 350.

(4.7)

При твёрдости рабочей поверхности зубьев шестерни Н1>HRC 45 и колеса Н2£НВ 350.

(4.8)

При твёрдости рабочих поверхностей зубьев шестерни и колеса ³НRC 45, но менее HRC 60.

(4.9)

Для передач с твёрдостью зубьев >HRC 60 значение модуля устанавливают из расчёта на изгиб. Принятое значение модуля должно соответствовать стандартному по СТ СЭВ 310-76:

1 ряд: 1; 1,25; 1,5; 2,2; 2,5; 3,0; 4,0; 5,0; 6,0; 8,0; 10 мм.

2 ряд: 1,125; 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 5,5; 7,0; 9,0 мм.

Для силовых передач m<1,5 мм принимать нежелательно.

Угол наклона зубьев

Косозубая передача:

(4.10)

и определяют Cosbmin с точностью до 0,0001.

Для шевронных передач bmin=25°.

Суммарное число зубьев

Прямозубая передача:

(4.11)

Косозубая передача:

(4.12)

Рекомендуемые значения угла b=7°¸20° - косозубые передачи, 25°¸40° - шевронные передачи.

Полученное значение zS округляют в меньшую сторону до целого числа.

Окружная скорость колёс

, м/с (4.19)

Таблица 4.6

Коэффициент Кнa для косозубых и шевронных колёс

Степень точности 6 7 8
Кнa 0,72 0,81 0,91

КFb - коэффициент, учитывающий распределение нагрузки по ширине венца.

Для прирабатывающихся прямозубых, а также косозубых и для прямозубых конических колёс значение КFb определяют по зависимости:

(4.22)

где КoFb выбирают по табл. 4.7.

В табл. 4.7. и 4.8 твёрдость рабочих поверхностей зубьев

и

и

х - коэффициент режима (см. п. 4.1).

Для прирабатывающихся зубьев при постоянной нагрузке х=1; КFb=1.

Для прирабатывающихся зубьев зубчатых колёс КFb= КoFb.

Для конических зубчатых колёс с круговыми зубьями при любом режиме нагрузки:

КFv - коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении. Значение КFv выбирают по табл. 4.8. При этом точность конических прямозубых колёс условно принимают на одну степень меньше их фактической точности.

Для конических зубчатых колёс с круговыми зубьями коэффициент принимают равным таковому для цилиндрических косозубых рабочих поверхностей зубьев, что и у конических колёс.

Таблица 4.7

Коэффициент К°Fb

Твёрдость

поверхности зубьев

Схема передачи на рис. 4.2

1 2 3 4 5 6 7

0,2

а 1,08 1,06 1,02 1,01 1,0 1,0 1,0
б 1,10 1,08 1,03 1,02 1,0 1,0 1,0

0,4

а 1,22 1,10 1,07 1,05 1,03 1,02 1,0
б 1,24 1,12 1,10 1,06 1,04 1,02 1,01

0,6

а 1,40 1,22 1,11 1,08 1,06 1,03 1,02
б 1,16 1,24 1,13 1,10 1,07 1,04 1,03

0,8

а 1,70 1,40 1,18 1,12 1,09 1,05 1,03
б 1,80 1,50 1,21 1,15 1,11 1,07 1,05

1,0

а 2,03 1,62 1,26 1,17 1,12 1,09 1,04
б 2,10 1,80 1,31 1,23 1,16 1,1 1,06

1,2

а 1,34 1,22 1,17 1,11 1,06
б 1,40 1,30 1,21 1,14 1,07

Таблица 4.8

Коэффициент КFv

Степень

точности

Твёрдость

поверхности

зубьев

Окружная скорость v (vm), м/с

1 2 4 6 8 10

6

а
б

7

а
б

8

а
б

9

а
б

YF2 – коэффициент, учитывающий форму зуба колеса, значения его выбирают по табл. 4.9. в зависимости от числа зубьев z2 для прямозубых колёс и эквивалентного числа зубьев zv2 для косозубых и шевронных зубчатых колёс.

(4.23)

В табл. 4.8. числитель – прямозубые колёса; знаменатель – косозубые колёса.

Yb – коэффициент, учитывающий наклон зуба; Yb=1 – для прямозубых передач.

Для косозубых и шевронных передач:

, где Ðb - в градусах.

[d]F2 – допускаемое напряжение изгиба для материала колеса, МПа (см. п. 3.3).

Напряжение изгиба в опасном сечении зуба шестерни:

, МПа (4.24)

Значение YF1 определяют аналогично определению этого параметра для колеса.

Таблица 4.9

z или zv

Коэффициенты смещения инструмента

-0,5 -0,4 -0,25 -0,16 0 +0,16 +0,25 +0,4 +0,5
12 3,68 3,46
16 4,28 4,02 3,78 3,54 3,40
20 4,40 4,07 3,83 3,64 3,50 3,39
25 4,30 4,13 3,90 3,72 3,62 3,47 3,40
32 4,50 4,27 4,05 3,94 3,78 3,65 3,59 3,46 3,40
40 4,14 4,02 3,88 3,81 3,70 3,61 3,57 3,48 3,42
50 3,96 3,88 3,78 3,73 3,66 3,58 3,54 3,49 3,44
63 3,82 3,78 3,71 3,68 3,62 3,57 3,54 3,50 3,47
71 3,79 3,74 3,68 3,66 3,61 3,56 3,55 3,50 3,48
80 3,73 3,70 3,66 3,63 3,60 3,55 3,55 3,51 3,50
90 3,70 3,68 3,64 3,62 3,60 3,55 3,55 3,53 3,51
100 3,68 3,66 3,62 3,61 3,60 3,56 3,56 3,55 3,52
160 3,64 3,62 3,62 3,62 3,62 3,59 3,58 3,56 3,56
  3,63 3,63 3,63 3,63 3,63 3,63 3,63 3,63 3,63

Предварительное значение диаметра внешней делительной окружности колеса

, мм (6.1)

где Т2 – номинальный крутящий момент на валу колеса, рассчитываемой передачи (см. п. 2.3), Н´м; U – принятое передаточное число (см. п. 2.2); КНb - коэффициент, учитывающий распределение нагрузки по ширине венца (см. п. 4.1); КНv - коэффициент, учитывающий динамическую нагрузку, возникающую в зацеплении (см. п. 4.1); [d]Н – расчётное допускаемое контактное напряжение (см. п. 3.2), МПа; uн – коэффициент, учитывающий вид конической передачи при расчёте на контактную выносливость; принимают:

а) для конических зубчатых колёс с прямыми зубьями и линейным контактом uн=0,85;

б) для конических зубчатых колёс с круговыми зубьями по табл. 6.1.

Таблица 6.1

Коэффициенты uн и uF для расчёта конических колёс с круговыми зубьями

u

Термообработка зубьев

У12 ТВЧ12; З12; Ц12 ТВЧ1+ТВЧ2; З12; Ц12
uн 1,22+0,21´U 1,13+0,13´U 0,81+0,15´U
uF 0,94+0,8´U 0,85+0,048´U 0,65+,11´U

Здесь У – улучшение, З – объемная закалка, Ц – цементация, ТВЧ – поверхностная закалка токами высокой частоты.

Полученное значение d'e2 округляют до ближайшего de2 по ГОСТ 12289-76:

50; (56); 63; (71); 80; (90); 100; (112); 125; (140); 160; (180); 200; (225); 250; 280; 315; 355; 400; 450; 500; 560; 630.

6.2 Предварительное значение диаметра внешней делительной окружности шестерни:

(6.2)

Число зубьев шестерни

Предварительное значение числа зубьев шестерни z'1для прямозубых колёс определяют по формуле:

(6.3)

и для колёс с круговыми зубьями:

(6.4)

Далее предварительное значение числа зубьев уточняют в соответствии с табл. 6.2 и округляют до целого числа.

Значение чисел зубьев z1 шестерни не должно быть менее приведённого в табл. 6.3.

Таблица 6.2

Рекомендуемые числа зубьев

Зубчатый элемент Твёрдость рабочих поверхностей зубьев Значение z1
Шестерня

³HRC 45

z1=z'1

Колесо
Шестерня

³HRC 45

£HB 350

z1=1,3´z'1

Колесо
Шестерня

<HB 350

z1=1,6´z'1

Колесо

Таблица 6.3

Рекомендуемые числа зубьев

Передаточное число Прямозубые колёса Колёса с круговыми зубьями
1,0 17 17
1,15 16 16
1,3 15 15
1,4 14 14
1,6 14 13
2,0 13 12
2,5 12 11
3,15 12 10

Число зубьев колеса

(6.5)

Значения z2 округляют до целого числа.

Углы делительных конусов

Колеса: .

Шестерни: .

Внешний окружной модуль

 

Прямозубые колёса

Колёса с круговыми зубьями

 

Значения внешнего окружного модуля разрешается не округлять до стандартного по СТ СЭВ 310-76, так как одним и тем же режущим инструментом можно нарезать колёса с различными модулями, лежащими в некотором непрерывном интервале значений. Точность вычислений me и mte не ниже 0,0001. Принимать внешний окружной модуль для силовых зубчатых передач менее 1,5 мм нежелательно.

Средний модуль

Средний окружной модуль для прямозубых колёс:

(6.15)

Средний нормальный модуль для колёс с круговыми зубьями:

(6.16)

при bm=35°

Модули mm и mп не округлять.

Окружная скорость колёс

, м/с (6.17)

где .

Окружная сила на шестерне

Прямозубые колёса:

(6.26)

Колёса с круговыми зубьями:

(6.27)

Радиальная сила на шестерне:

Прямозубые колёса:

(6.28)

Колёса с круговыми зубьями:

(6.29)

Коэффициенты gа и gr определяются по табл. 6.6 и входят в формулу со своими знаками. Напряжение наклона зуба шестерни выбирают таким, чтобы сила Fa1 была направлена к основанию конуса.

Таблица 6.6

Коэффициенты gа и gr

Направление зуба и вращения колеса

Коэффициент осевого усилия gа Коэффициент радиального усилия gr
  Направление линии зуба правое. Вращение по часовой стрелке.

при bm=35°

при bm=35°

  Направление линии зуба левое. Вращение против часовой стрелки.
  Направление линии зуба правое. Вращение против часовой стрелки.

при bm=35°

при bm=35°

  Направление линии зуба левое. Вращение по часовой стрелке.

 

7. РАСЧЁТ ЧЕРВЯЧНОЙ ПЕРЕДАЧИ

Таблица 7.2

Допускаемые напряжения [s]н и [s]F

Группа

материала

Для расчёта зубьев

На прочность рабочих поверхностей На изгибную выносливость
I

II
III

Здесь [s]он – исходное допускаемое напряжение для расчёта на прочность рабочих поверхностей зубьев червячного колеса, МПа (см. табл. 7.3); soF – предел изгибной выносливости материала червячного колес, МПа (см. табл. 7.3); [s]Нmax и [s]Fmax – предельное допускаемое напряжение для расчёта рабочих поверхностей зубьев и предельное напряжение изгиба для расчёта зубьев червячного колеса на кратковременную пиковую нагрузку, МПа (см. табл. 7.4); Cv - коэффициент, учитывающий интенсивность износа материала I-ой группы и зависящий от vск следующим образом:

Vск £1 2 3 4 5 6 7 ³8
Сv 1,33 1,21 1,11 1,02 0,95 0,88 0,83 0,8

NНе и NFe – эквивалентное число циклов перемены напряжений соответственно при расчёте на контактную прочность и на изгиб, вычисляемое по (3.2) и (3.9).

При этом выражения для коэффициентов приведения K и KFe имеют вид:

(7.2)

где Т2i, ti, n2i – крутящие моменты на валу колеса, соответствующие им времена действия и частоты вращения; Т2 и n2 – номинальный момент на валу колеса и частота его вращения.

Таблица 7.3

Значения [s]он, soF и SF

Группа

материала

Для расчёта зубьев

SF

На прочность рабочих поверхностей На изгибную выносливость
I

1,75

II
III 2,0

Примечания: 1). Большие значения [s]он для червяков с твёрдыми (³HRC 45) шлифованными и полированными витками, меньшие – в остальных случаях.

2). Для передач с расположением червяка вне масляной ванны следует уменьшить на 15%.

Таблица 7.4

Значения [s]Нmax и [s]Fmax

Группа материала [s]Нmax [s]Fmax
I 4´sт

0,8´s7

II 2´sт
III 1,65´sU 0,75´sU

Осевой модуль

(7.6)

Полученное расчётом значение модуля округляется до ближайшего стандартного (см. табл. 7.6).

Модули m и коэффициенты

Коэффициент смещения

(7.8)

Если х<-1 или х>1, то надо, варьируя значениями z2 и q повторить расчёт до получения -1£х£1. При необходимости уменьшения q следует учитывать, что из условия жёсткости вала червяка qmin=0,212´z2. С уменьшением q увеличивается угол подъёма витков червяка l и, следовательно, КПД передачи.

Углы подъёма витка червяка

Делительный угол подъёма витка:

(7.9)

Начальный угол подъёма витка:

(7.9)

Значения q, q и g

z1

q

8 10 12,5 14 16 20

1

g 7°7¢ 5°43¢ 4°35¢ 4°05¢ 3°35¢ 2°52¢
q 72 108 154 176 225 248

2

g 14°2¢ 11°19¢ 9°5¢ 9°28¢ 7°7¢ 5°53¢
q 57 86 121 140 171 197

3

g 26°34¢ 21°48¢ 17°45¢ 15°57¢ 14°2¢ 11°19¢
q 47 70 98 122 137 157

Червяк

Делительный диаметр: .

Начальный диаметр: .

Диаметр вершин витков: .

Диаметр впадин витков: ,

где h*f=1,2 кроме эвольвентных червяков, для которых h*f=1+0,2´Cos g.

Длина нарезанной части червяка (см. табл. 7.8) .

Увеличение длины нарезанной части червяка на 3´m выполняют только для шлифуемых и фрезеруемых червяков.

Таблица 7.8

Значения в01

х z1=1 и 2 z1=4
-1
-0,5
0
+0,5
+1

Червячное колесо

Диаметр делительной (начальной) окружности: .

Диаметр вершин зубьев: .

Наибольший диаметр: .

Диаметр впадин: .

Ширина венца: при z1=1 и 2

при z1=4.

Силы в червячном зацеплении

Окружная сила на колесе, равная осевой на червяке:

(7.16).

Окружная сила на червяке, равная осевой силе на колесе:

(7.17).

Радиальная сила, раздвигающая червяк и колесо:

(7.18)

7.14 Проверка передачи по напряжениям изгиба

(7.19)

где YF - коэффициент формы зуба (см. табл. 7.9), зависящий от эквивалентного числа зубьев червячного колеса zv.

Таблица 7.9

Значения YF

zv YF
26 1,85
28 1,80
30 1,76
32 1,71
35 1,64
37 1,61
40 1,55
45 1,48
50 1,45
60 1,40
80 1,34
100 1,30
150 1,27
300 1,24

Если sн>[s]F, то следует, увеличив модуль m и остальные размеры передачи, произвести повторный расчёт.

Приведённые коэффициенты

Трения f и углы трения j

vск f j
0,01 0,1¸0,12 5°40¢¸6°50¢
0,1 0,08¸0,09 4°30¢¸5°10¢
0,25 0,065¸0,075 3°40¢¸4°20¢
0,5 0,055¸0,065 3°10¢¸3°40¢
1 0,045¸0,055 2°30¢¸3°10¢
1,5 0,04¸0,05 2°20¢¸2°50¢
2 0,035¸0,045 2°00¢¸2°30¢
2,5 0,03¸0,04 1°40¢¸2°20¢
3 0,028¸0,035 1°30¢¸2°00¢
4 0,023¸0,030 1°20¢¸1°40¢
7 0,018¸0,026 1°00¢¸1°30¢
10 0,016¸0,024 0°55¢¸1°20
15 0,014¸0,020 0°50¢¸1°10¢

Для передач с колёсами из материалов II и III-ей групп следует принимать большие из двух в данном диапазоне значений величины f и j.

Расчёт зубчатых и червячных передач

Министерство образования

Российской Федерации

Вологодский государственный технический университет

Дата: 2019-05-29, просмотров: 272.