Твердые сплавы и их маркировка
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

К спеченным твердым сплавам относятся материалы, состоящие из высокотвердых и тугоплавких карбидов вольфрама, титана, тантала, соединенных металлической связкой.

Твёрдые сплавы изготавливают методом порошковой металлургии. Порошки карбидов смешивают с порошком кобальта, выполняющего роль связки, прессуют и спекают при 1400 - 1550 ОС.

В зависимости от состава карбидной основы спеченные твердые сплавы выпускают трех групп (ГОСТ 3882-74*). Вольфрамовые (системы WC - Co) - однокарбидные, маркируемые буквами ВК и цифрой, показывающей содержание кобальта (К) в процентах, остальное- карбиды вольфрама (В): ВК3; ВК3-М; ВК6; ВК6-М; ВК6-ОМ; ВК6-В; ВК8; ВК8-В; ВК8-ВК; ВК10; ВК10‑ХОМ; ВК4-В; ВК11-В; ВК10-КС; ВК20; ВК20-КС; ВК11-ВК; ВК13. Буквы, стоящие в конце обозначения марок, указывают размеры зерен карбидов вольфрама: М - мелкозернистые; ОМ - особомелкозернистые; С - среднезернистые; В, КС - крупнозернистые; К, ВК - особокрупнозернистые; ХОМ - особомелкозернистые, легированные карбидом хрома. Титано-вольфрамовые (системы TiC-WC-Co) - двухкарбидные, маркируемые буквами Т, К и цифрами, показывающими содержание карбидов титана (Т) и кобальта (К) в процентах, остальное - карбиды вольфрама: Т30К4; Т15К6; Т14К8; Т5К10. Титано - тантало - вольфрамовые (системы TiC-TaC-WC-Co) - трехкарбидные, маркируемые: ТТ7К12; ТТ8К6; ТТ10К8; ТТ10К8Б; ТТ20К9; ТТ8К7. Цифры в марках после букв ТТ обозначают суммарное содержание карбидов титана и тантала в процентах, а после буквы К - количество кобальта в процентах; остальное - карбиды вольфрама. Буква Б в марке указывает на различие соотношения между карбидами титана и тантала по сравнению с маркой без дополнительной буквы.

Пример расшифровки марки: ВК-6М - однокарбидный спеченный твердый сплав вольфрамовой группы, содержащий 6% кобальта, остальное - мелкозернистые карбиды вольфрама (94%);

Т15К6 - двухкарбидный спеченный твердый сплав вольфрамо - титановой группы, содержащий кобальта 6%, карбидов титана 15%, карбиды вольфрама - остальное (79%);

ТТ7К12 - трехкарбидный спеченный твердый сплав титано - тантало - вольфрамовой группы, 7 - суммарное содержание карбидов титана и тантала в процентах, 12 - содержание кобальта в процентах, остальное (81%) - карбиды вольфрама.

В безвольфрамовых спеченных твердых сплавах карбид вольфрама заменен карбидом титана и карбонитридом титана, а в качестве связки используют никель, железо, молибден.

Марки безвольфрамовых спеченных твердых сплавов, в качестве твердой составляющей которых используется сложный карбид титана и ниобия (Ti + Nb)C, маркируются: ТМ1, ТМ2 и др. (ГОСТ26530-85).

Марки, в которых твердой составляющей является карбид титана (TiC), маркируются: ТН-20, ТН-30, ТН-50 и др. (ГОСТ26530-85).

Марки, в которых твердой составляющей является карбонитрид титана (TiCN), маркируются: КТН-16 (ГОСТ26530-85).

В безвольфрамовых сплавах марок ТН цифры указывают примерное содержание никель - молибденовой связки в процентах(ТН-20) - 20% и карбидов титана - 80%.

В сплавах ТМ1, ТМ3, КНТ-16 цифры 1, 3, 16 - условный порядковый номер. С увеличением номера в сплавах ТМ1, ТМ3 уменьшается содержание сложного карбида титана и ниобия. Так, в сплаве ТМ1 содержится 90% (Ti+Nb)C, 5% Ni, 5% Mo; в сплаве ТМ3 - 64% (Ti+Nb)C, 21% Ni, 15% Mo; в сплаве КНТ-16 - 74% TiCN, 19,5% Nb, 6,5% Mo.

Сверхтвердые материалы

К основным группам сверхтвердых материалов относят алмазы, нитрид бора, оксид алюминия (Al2O3) и нитрид кремния (Si3N4) в монокристальной форме или в виде порошков (минералокерамика).

Алмаз - кубическая кристаллическая модификация углерода, нерастворим в кислотах и щелочах. Величина алмаза измеряется в каратах (один карат равен 0,2 г). Различают природные технические (А) и поликристаллические синтетические (АС) алмазы. Синтетические алмазы получают путем перевода углерода в другую модификацию за счет значительного объема графита в условиях высоких температур (~25000С) и давлений (~1 000 000 МПа).

Синтетические поликристаллические алмазы марки АСБ типа баллас выпускаются по ТУ 2-037-19-76 (АСБ-1, АСБ-2, ..., АСБ-5), поликристаллические алмазы марки АСПК типа карбонадо - по ТУ 2-037-96-73 (АСПК-1, АСПК-2, АСПК-3).

Материалы на основе кубического нитрида бора (КНБ) разделяются на две группы: материалы, содержащие свыше 95% кубического нитрида бора, и материалы, содержащие 75% кубического нитрида бора с различными добавками (например, Al2O3). К первой группе относятся эльборР (композит 01), гексанитР (композит 10), белбор (композит 02), исмит, ПТНБ.Ко второй группе относится композит 05 с массовой долей КНБ 75% и Al2O3 25%.

Из минералокерамических инструментальных материалов наиболее широкое применение получают следующие материалы:

Оксидная керамика (белая), которая состоит из оксида алюминия (безводного природного глинозема Al2O3 около 99%) с незначительными добавками оксида магния (MgO) или других элементов. Выпускаются марки: ЦМ332, ВШ-75 (ТУ 2-036-768-82); ВО13 (ТУ 48-19-4204-2-79).

Оксид алюминия – корунд. Используют технические (природные) и синтетические корунды. Из синтетических корундов широкое применение получили электрокорунды (представляющие собой кристаллический оксид А12О3) марок 16А,15А,14А,13А,12А и т.д. и карборунды (представляющие собой химическое соединение кремния с углеродом SiC) марок 55С, 54С, 53С, 52С, 64С, 63С, 62С.

Оксидно-карбидная (черная) керамика состоит из Al2O3 (60 – 80%), карбидов тугоплавких металлов (TiC) и окислов металлов. Выпускаются марки ВОК60, ВОК71 и В3 по ГОСТ 25003-81.

Оксидно–нитридная керамика состоит из нитридов кремния (Si3N4) и тугоплавких материалов с включением оксида алюминия и некоторых других компонентов. К этой группе относят марки: кортинит - ОНТ-20 ( по ТУ 2-Р36-087-82) исилинит Р (по ТУ 06-339-78).

Режущая керамика

Промышленность выпускает четыре группы режущей керамики: оксидную (белая керамика) на основе Al2O3, оксикарбидную (черная керамика) на основе композиции Al2O3-TiC, оксиднонитридную (кортинит) на основе Al2O3-TiN и нитридную керамику на основе Si3N4.

Основной особенность режущей керамики является отсутствие связующей фазы, что значительно снижает степень ее разупрочнения при нагреве в процессе изнашивания, повышает пластическую прочность, что и предопределяет возможность применения высоких скоростей резания, намного превосходящих скорости резания инструментом из твердого сплава. Если предельный уровень скоростей резания для твердосплавного инструмента при точении сталей с тонкими срезами и малыми критериями затупления составляет 500-600 м/мин, то для инструмента, оснащенного режущей керамикой, этот уровень увеличивается до 900-1000 м/мин.

Составы основных типов режущей керамики и некоторые физико-механические свойства представлены в табл. 2.12.

Таблица 2.12 Состав, свойства и области применения керамики

Марки керамики

Состав sи,, Гпа r, г/см3 HRA, не менее Область приме- нения

О к с и д н а я

ЦМ332 Al2O3 – 99% MgO – 1% 0,3-0,35 3,85-3,90 91 К01-К05
ВО-13 Al2O3 – 99% 0,45-0,5 3,92-3,95 92 Р01-Р10, К01-К05
ВШ-75 Al2O3 0,25-0,3 3,98 91-92 К01-К05

О к с и к а р б и д -

н а я

В-3 Al2O3 – 60% TiC – 40% 0,6 4,2 94 Р01-Р10
ВОК-63 Al2O3 – 60% TiC – 40% 0,65-0,7 4,2-4,6 94 Р01-Р05 К01-К05
ВОК-71 Al2O3 – 60% TiC – 40% 0,7-0,75 4,5-4,6 94 Р01-Р05 К01-К05
О к с и н и т - р и д н а я ОНТ-20 (корти нит) Al2O3 > 60% TiN – 30% 0,64 4,3 90-92 К01-К05
н и т р и д - н а я РК-30 (сили нит-Р) Si3N4, Y2O3, TiC 0,7-0,8 3,2-3,4 94 К10-К20

Недостаток оксидной керамики – ее относительно высокая чувствительность к резким температурным колебаниям (тепловым ударам). Поэтому охлаждение при резании керамикой не применяют.

Указанное является главной причиной микро- или макровыкрашиваний режущей керамики и контактных площадок инструмента уже на стадиях приработочного или начального этапа установившегося изнашивания, приводящего к отказам из-за хрупкого разрушения инструмента. Отмеченный механизм изнашивания керамического режущего инструмента является превалирующим.

В последние годы появились новые марки оксидной керамики в состав которых введены окись циркония (ZrO2) и армирование ее «нитевидными» кристаллами карбида кремния (SiC). Армированная керамика имеет высокую твердость (HRCА-92) и повышенную прочность (sизг до 1000 МПа).

Параллельно с совершенствованием керамических материалов на основе оксида алюминия созданы новые марки режущей керамики на основе нитрида кремния (силинит-Р). Такой керамический материал имеет высокую прочность на изгиб (sизг=800 МПа), низкий коэффициент термического расширения, что выгодно отличает его от оксидных керамических материалов. Это позволяет с успехом использовать нитридокремниевый инструмент при черновом точении, получистовом фрезеровании чугуна, а также чистовом точении сложнолегированных и термообработанных (до HRC 60) сталей и сплавов.

Режущую керамику выпускают в виде неперетачиваемых сменных пластин. Пластины изготавливают с отрицательными фасками по периметру с двух сторон. размер фаски f=0,2…0,8мм, угол ее наклона отрицательный от 10 до 30°. Фаска необходима для упрочнения режущей кромки.

Допустимый износ керамических пластин намного меньше износа твердосплавных пластин. Максимальный износ по задней поверхности не должен превышать 0,3…0,5мм, а при чистовых операциях 0,25…0,30мм.

При назначении режимов резания для керамики имеются рекомендации:

1. Предпочтительна квадратная форма пластины с максимально возможным углом заострения b и наибольшим радиусом при вершине пластины rb.

2. Ширину фаски f выбирают в зависимости от твердости обрабатываемого материала, чем тверже обрабатываемый материал, тем ширина фаски больше.

3. Скорость резания нужно назначать максимально допустимой исходя из жесткости системы СПИД и характеристик оборудования.

4. Заготовки, обрабатываемые пластинами из режущей керамики, должны иметь на входе и выходе резца фаски, ширина которых превышает припуски на обработку, а также канавки в местах перехода от цилиндрической поверхности к торцевой.

В настоящее время керамической инструмент рекомендуют для чистовой обработки серых, ковких, высокопрочных и отбеленных чугунов, низко- и высоколегированных сталей, в том числе улучшенных, термообработанных (HRC до 55-60), цветных сплавов, конструкционных полимерных материалов (К01-К05, Р01-Р05). В указанных условиях инструмент оснащенный пластинами из режущей керамики, заметно превосходит по работоспособности твердосплавный инструмент.

Применение керамического инструмента при обработке с повышенными значениями сечений среза (txS), при прерывистом резании резко снижает его эффективность вследствие высокой вероятности внезапного отказа из-за хрупкого разрушения режущей части инструмента. Во многом это объясняет сравнительно низкий объем используемого в промышленности Украины керамического инструмента (до 0,5% от общего объема режущего инструмента), для развитых стран Запада этот объем составляет от 2 до 5%.

 

Абразивные материалы и методы абразивной обработки

Абразивные материалы (абразивы) – материалы, которые используются для зачистки и шлифования поверхностей из металла, пластика, минералов, стекла, дерева и т.д. Они обладают повышенной твердостью, поэтому широко применяются для порезки, хонингования, суперфиниша.

Изготовление любых деталей в производственных условиях предполагает обработку поверхностей абразивами. Доводка готовых изделий осуществляется с помощью абразивного инструментария – наждачной бумаги, шлифовальных кругов, полировальных дисков и т.д. Выбор абразива и метода обработки определяются степенью твердости материала и целями его дальнейшего применения.

Что такое абразивные материал

Абразивными называются материалы, обладающие высокой степенью твердости по сравнению с обрабатываемыми поверхностями. Они предназначены для механической зачистки, порезки, шлифования, полирования или заточки других материалов. Условно все абразивы подразделяют на два типа:

  1. природные;
  2. искусственные (синтетические).

Существует множество материалов с высокими абразивными свойствами, которые применяются в промышленности. Работоспособность абразивов определяется несколькими параметрами:

  • материалом зерна;
  • степенью зернистости;
  • конфигурацией инструментария.

Износоустойчивость шлифматериала зависит от показателей твердости, химической неактивности резцовых составляющих, их термостойкости и т.д. Зачастую под абразивами понимают сверхпрочные материалы, такие как кварц или алмаз. Но в некоторых случаях даже мягкие абразивные материалы могут использоваться для шлифования или полирования.

Абразивной способностью обладают все материалы, имеющие определенную степень твердости, вязкости, износоустойчивости и форму абразивных зерен. Именно на существенном различии степени твердости основаны механические принципы шлифования, порезки и полирования материалов.

Технические характеристики абразивов определяют двумя способами:

  1. по минералогической шкале (шкала Мооса);
  2. вдавливанием пирамиды из алмаза в испытуемый материал.

Под абразивной способностью следует понимать возможность одних материалов обрабатывать другие. В производстве используются только те инструменты, которые обладают достаточной механической прочностью. Это позволяет минимизировать затраты на частую замену разрушившихся абразивов.

Виды абразивных материалов

Абразивные материалы классифицируют по нескольким критериям:

  • степень твердости – сверхтвердые, твердые и мягкие;
  • размер шлифовальных частиц – грубые, средние и тонкие;
  • химический состав – природные и синтетические.

Пригодность абразивных материалов к механической обработке определяется кристаллографическими, термическими, химическими и физическими свойствами. Немаловажное значение в определении степени износоустойчивости абразивов имеет их способность к истиранию, разламыванию и плавлению во время обработки.

Вид абразивного материала определяют по степени его зернистости. Для этого его просеивают через сито с определенным размером ячеек. Величина абразивных зерен характеризуется фракцией. Она может быть мелкой, крупной, предельной, комплексной или основной. После просеивания материала определяется процентное содержание основной фракции, которая впоследствии обозначается индексами Д, Н, В И П.

Твердость абразивных материалов влияет на сферу их применения и особенности механической обработки. Сверхтвердые абразивы с крупными зернами используют для грубой шлифовки и зачистки поверхностей, а более мягкий абразивный материал применяют для полировки и финишной обработки деталей.

Природные абразивные материалы

В большинстве случаев естественный абразивный материал по своим техническим характеристикам – износоустойчивости, твердости, термостойкости – уступает синтетическим абразивам. Тем не менее, многие из них используются в промышленности для порезки и шлифования материалов. К наиболее распространенным из них относятся:

  • гранат – природный минерал, состоящий из смеси изоморфных рядов, используется для резки и шлифовки;
  • алмаз – минерал, обладающий алмазоподобной кубической формой углерода, который применяется для резки сверхпрочных материалов;
  • корунд – бинарное соединение из кислорода и алюминия, использующееся для шлифовки в виде порошка;
  • мел – углекислый кальций, который применяется для очень тонкой абразивной обработки;
  • красный железняк – минерал железа, использующийся для полирования поверхности стекол и металла;
  • пемза – пористая вулканическая порода, которую чаще используют для грубой шлифовки;
  • трепел – сцементированная осадочная порода, которая используется в форме порошка для обработки металла и камней;
  • кварц – диоксид кремния, который используется только в сочетании с водой для пескоструйной обработки камней;
  • наждак – минеральное вещество, в состав которого входит корунд и магнетик; применяется для зачистки, шлифования и полирования поверхностей.

Природные абразивные материалы используют при изготовлении ручного и стационарного оборудования для механической обработки заготовок или готовых деталей. Сфера их применения определяется техническими и абразивными свойствами. Наиболее износоустойчивым и прочным является алмаз, который может использоваться как для порезки материалов, так и для шлифования поверхностей.

Искусственные абразивные материалы

Широкое применение в промышленности нашли синтетические абразивные материалы. В отличие от природных, они обладают лучшими эксплуатационными характеристиками. Большая однородность основных фракций обеспечивает качественную обработку поверхностей из металла, пластика, стекла, дерева, камня и т.д.

В производственных условиях для шлифования и порезки материалов могут использоваться:

  • эльбор (боразон) – обработка стали и металлических сплавов;
  • купрошлак – механическая очистка деревянных, металлических и бетонных покрытий;
  • бор-углерод-кремний – шлифование стекла, камней, цветных и черных металлов;
  • искусственный алмаз – обработка металлических деталей и камня;
  • карборунд – обработка титана, цветного металла, стали и других сплавов;
  • карбид бора – шлифование черного металла и поверхностей стекла;
  • электрокорунд – преимущественно обработка черных металлов;
  • диоксид титана – полирование деталей из цветных металлов;
  • фианит – обработка металлических поверхностей;
  • диоксид олова – полирование стекол и металлов;
  • стальная дробь – шлифование мягкого камня (мрамора).

Сыпучие абразивные материалы используются в пескоструйной обработке, а также при изготовлении шлифовальных и полировальных кругов. Сверхпрочные абразивы применяют для порезки древесины, стекла или металлических сплавов.

Методы абразивной обработки

Природные и синтетические абразивные материалы успешно применяются в следующих видах механической обработки:

  • круглое шлифование – механическая обработка отверстий, сферических и цилиндрических поверхностей;
  • бесцентровое шлифование – механическая обработка обоймы подшипников, наружных или внутренних поверхностей;
  • плоское шлифование – механическая обработка вертикальных и горизонтальных поверхностей несложной геометрии;
  • ленточное бесцентровое шлифование – обработка сложных профилей и других наружных поверхностей;
  • разрезание – демонтаж и затоговительное производство;
  • притирка – механическое притирание поверхностей;
  • гидроабразивная обработка – струйная очистка различных поверхностей;
  • ультразвуковая обработка – изготовление штампов и пробивка сквозных отверстий в металле;
  • пескоструйная обработка – грубая очистка поверхностей от ржавчины, краски и других типов загрязнений;
  • магнитно-абразивная обработка – очистка и шлифование материалов в магнитном поле с помощью намагниченного сыпучего абразива;
  • хонингование – шлифование отверстий в металлических насосах, трубах, цилиндрах;
  • полирование – устранение шероховатостей на поверхности;
  • суперфиниш – сверхтонкая полировка готовых изделий из металла, стекла, камня и т.д.

Для вышеперечисленных типов обработки используются разные абразивные материалы. Шлифование, пескоструйная очистка и другие типы механической отделки позволяют добиться желаемой степени ровности и гладкости поверхностей.

Виды абразивных инструментов

Качество шлифования и порезки материалов во многом зависит от способа применения абразива. В промышленности все абразивные материалы закрепляются в специальных установках, обеспечивающих максимальную точность производимых работ. К числу наиболее распространенных абразивных инструментов можно отнести:

  • шлифовальные диски;
  • шлифовальные ленты;
  • полировальные круги;
  • наждачную бумагу;
  • бруски для заточки;
  • отрезные круги;
  • галтовочные тела;
  • мелкозернистые пасты;
  • стальную вату;
  • крупные зерна (для пескоструйной обработки).

Абразивными инструментами также считаются абразивные материалы, изготовленные в определенной форме – заточный брусок, отрезной диск и т.д. Их износоустойчивость и эксплуатационные характеристики во многом зависят от качества их крепления к стационарным станкам или ручному инструменту.

Если в инструменте абразив закреплен плохо, то во время работы он будет испытывать избыточную нагрузку, что приведет к выпадению зерен и ухудшению его абразивных свойств. В связи с этим при производстве многих их них стали использовать армирующие сетки из металла и стекловолокна.

 

МЕДЬ И ЕЕ СПЛАВЫ

 

Медь относится к группе цветных металлов, наиболее широко применяемых в промышленности. Порядковый номер меди в периодической системе Д. И. Менделеева — 29, атомный вес А = 63,57. Медь имеет гранецентрированную кубическую решетку (ГЦК) с периодом а = 3,607 Å. Удельный вес меди g = 8,94 г/см3, температура плавления — 1083 0С. Чистая медь обладает высокой тепло — и электропроводностью. Удельное электрическое сопротивление меди 0,0175 мкОм×м, теплопроводность l = 395 Вт/(м×град). Предел прочности sв = 200…250 МПа, твердость 85…115 НВ, относительное удлинение d = 50 %, относительное сужение y = 75 %.

Медь — немагнитный металл. Она обладает хорошей технологичностью: обрабатывается давлением, резанием, легко полируется, хорошо паяется и сваривается, имеет высокую коррозионную стойкость. Основная область применения — электротехническая промышленность.

Электропроводность меди существенно понижается при наличии даже очень небольшого количества примесей. Поэтому в качестве проводникового материала применяют в основном особо чистую медь М00 (99,99 %), электролитическую медь М0 (99,95 %), М1 (99,9 %). Марки технической меди М2 (99,7 %), М3 (99,5 %), М4 (99,0 %).

В зависимости от механических свойств различают медь твердую, нагартованную (МТ) и медь мягкую, отожженную (ММ).

Вредными примесями в меди являются висмут, свинец, сера и кислород. Действие висмута и свинца аналогично действию серы в стали; они образуют с медью легкоплавкие эвтектики, располагающиеся по границам зерен, что приводит к разрушению меди при ее обработке давлением в горячем состоянии (температура плавления эвтектики соответственно 270 0С и 326 0С).

Сера и кислород снижают пластичность меди за счет образования хрупких химических соединений Сu2O и Сu2S.

В качестве конструкционного материала технически чистую медь применяют редко, так как она имеет низкие прочностные свойства, твердость. Основными конструкционными материалами на основе меди являются сплавы латуни и бронзы. Для маркировки медных сплавов используют следующее буквенное обозначение легирующих элементов:

· О — олово; Ц — цинк; Х — хром;

· Ж — железо; Н — никель; С — свинец;

· К — кремний; А — алюминий; Ф — фосфор;

· Мц — марганец; Мг – магний; Б – бериллий.

Латуни

Латуни — это медные сплавы, в которых основным легирующим элементом является цинк.

В зависимости от содержания цинка латуни промышленного применения бывают:

1. однофазные a — латуни, содержащие до 39 % цинка (это предельная растворимость цинка в меди);

2. двухфазные (a+b|)- латуни, содержащие до 46 % цинка;

3. однофазные b|- латуни ,содержащие до 50 % цинка.

Однофазные a- латуни пластичны, хорошо обрабатываются резанием, давлением при температурах ниже 300 0С и выше 700 0С (в интервале от 300 0С до 700 0С — зона хрупкости). С увеличением содержания цинка прочность латуней повышается. В латунях b|- фаза представляет собой упорядоченный твердый раствор на базе электронного соединения СuZn с решеткой ОЦК, она хрупкая и прочная. Поэтому, чем больше в латунях b|- фазы, тем они прочнее и менее пластичны. Практическое применение имеют латуни с содержанием цинка до 42…43 %.

Латуни, обрабатываемые давлением, маркируются буквой Л (латунь), после которой ставятся буквенные обозначения легирующих элементов; цифры, следующие за буквами, указывают содержание меди и количество соответствующего легирующего элемента в процентах. Содержание цинка определяется по разности от 100 %. Например, латунь Л62 содержит 62 % Сu и 38 % Zn. Литейные латуни маркируются буквой Л, после которой ставится содержание цинка и других легирующих элементов в процентах. Количество меди определяется по разности от 100 %. Например, латунь ЛЦ36Мц20С2 содержит 36 % Zn, 20 % Mn, 2 % Pb и 42 % Сu.

К однофазным a — латуням относятся Л96 (томпак), Л80 (полутомпак), Л68, имеющая наибольшую пластичность (d = 56 %). Двухфазные (a+b|) — латуни марок Л59 и Л60 имеют меньшую пластичность в холодном состоянии, но большую прочность и износостойкость. Однофазные имеют после отжига sв = 250…350 МПа и d = (50…56) %, двухфазные — sв = 400…450 МПа и d = (35…40 %).

Для повышения механических свойств и коррозионной стойкости латуни могут легироваться оловом, алюминием, марганцем, кремнием, никелем, железом и др.

Введение легирующих элементов (кроме никеля) уменьшает растворимость цинка в меди и способствует образованию b|- фазы, поэтому такие латуни чаще двухфазные (a+b|). Никель увеличивает растворимость цинка в меди, и при достаточном его содержании латунь из двухфазной становится однофазной. Свинец облегчает обрабатываемость резанием и улучшает антифрикционные свойства. Сопротивление коррозии повышают Al, Zn, Si, Mn, Ni, Sn.

В морском судостроении применяются оловянистые ”морские” латуни, например, ЛО70-1 (70 % Сu, 1 % Sn, 29 % Zn). Она используется для изготовления конденсаторных трубок, деталей теплотехнической аппаратуры.

Алюминиевые латуни используют для изготовления конденсаторных трубок, цистерн, втулок, а также для изготовления коррозионно-стойких деталей, работающих в морской воде. Марки латуней: ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2 (в электрических машинах, в хим. машиностроении). Из латуни ЛАНКМц75-2-2,5-0,5-0,5 изготовляют цельнотянутые круглые трубы для производства манометрических трубок и пружин в приборах повышенного класса точности. С помощью закалки и старения sв достигает 700 МПа.

Марганцевые латуни кроме хороших механических и технологических свойств (обрабатываются давлением в холодном и горячем состоянии) обладают высокой коррозионной стойкостью в морской воде, хлоридах и перегретом паре. Латуни ЛМц 58-2 и ЛМцА 57-3-1 применяются в основном для изготовления крепежных изделий арматуры.

Кремнистые латуни характеризуются высокой прочностью (sвдо 640 МПа), пластичностью и вязкостью до минус 183 0С. Латунь ЛК80-3 применяют для изготовления арматуры, деталей приборов в судо- и общем машиностроении.

Свинцовистые латуни отлично обрабатываются резанием и обладают высокими антифрикционными свойствами. Латуни ЛС60-1, ЛС59-1 применяют для изготовления крепежных деталей , зубчатых колес, втулок.

Никелевая латунь обладает повышенными механическими (sвдо 785 МПа) и коррозионными свойствами, обрабатывается давлением в холодном и горячем состоянии. Латунь ЛН65-5 применяется для изготовления манометрических и конденсаторных трубок, различного вида проката.

Литейные латуни содержат те же элементы, что и латуни, обрабатываемые давлением; от последних литейные отличает, как правило, большее легирование цинком и другими металлами. Вследствие этого они обладают хорошими литейными характеристиками.

Бронзы

Бронзы — это сплавы меди с оловом, алюминием, кремнием и другими элементами.

По технологическому признаку бронзы делятся на деформируемые и литейные. Деформируемые маркируются буквами Бр, после которых перечисляются легирующие элементы, а затем соответственно содержание этих элементов в процентах. Содержание меди определяется по разности от 100 %. Например, БрОЦС 8-4-3 содержит 8 % Sn, 4 % Zn, 3 % Pb, 85 % Сu.

Литейные бронзы маркируются аналогично литейным латуням. Например, бронза Бр06Ц3Н6 содержит 6 % Sn, 3 % Zn, 6 % Pb, 85 % Сu.

Бронзы по сравнению с латунью обладают лучшими механическими, антифрикционными свойствами и коррозионной стойкостью.

Оловянные бронзы. Наибольшее практическое значение имеют сплавы, содержащие до 10…12 % Sn. Предельная растворимость олова в меди 15,8%, однако в реальных условиях кристаллизации и охлаждения предельная растворимость снижается примерно до 6 %. К однофазным сплавам относятся бронзы с содержанием олова до 5…6 % и a — фаза, представляет твердый раствор олова в меди с ГЦК — решеткой. При большем содержании олова наряду с a — раствором присутствует эвтектоид (a + Сu31Sn8). Предел прочности бронзы возрастает с увеличением олова, но при его высоких концентрациях резко снижается из-за большего количества хрупкого интерметаллида Сu31Sn8.

Оловянные бронзы обычно легируют Zn, Pb, Ni, P. Цинк улучшает технологические свойства бронзы и удешевляет ее. Фосфор улучшает литейные свойства. Для изготовления художественного литья содержание фосфора может достигать 1 %. Свинец (до 3…5 %) вводится в бронзу для улучшения ее обрабатываемости резанием. Никель повышает механические свойства, коррозионную стойкость и плотность отливок, уменьшает ликвацию. Среди медных сплавов оловянные бронзы имеют самую низкую линейную усадку (0,8 % при литье в землю и 1,4 % — в металлическую форму).

Для проведения пластичности проводится гомогенизация сплавов при температурах 700…750 0С с с быстрым охлаждением. Остаточные напряжения снимаются отжигом при 550 0С.

Оловянные деформируемые бронзы Бр0Ф7-0.2, БрОЦС4-4-4, БрОЦ4-3 и другие имеют более высокую прочность, упругость, сопротивление усталости, чем литейные. Их используют для изготовления подшипников скольжения, шестерен, трубок контрольно — измерительных и других приборов, манометрических пружин и т.д.

Литейные оловянные бронзы. По сравнению с деформируемыми они содержат большее количество легирующих элементов, имеют ниже жидкотекучесть, малую линейную усадку, склонны к образованию усадочной пористости. Бронзы БрОЗЦ7С5Н, БрО10Ф1, БрО6Ц6С3, БрО5С25 и другие применяются для изготовления арматуры, работающей в воде и водяном паре, подшипников, шестерен, втулок.

Алюминиевые бронзы отличаются высокими механическими антикоррозионными свойствами, жидкотекучестью, малой склонностью к дендритной ликвации. Из-за большой усадки трудно получить сложную фасонную отливку. Они морозостойки, немагнитны, не дают искры при ударах. По коррозионной стойкости превосходят латуни и оловянистые бронзы.

Алюминий растворяется в меди, образуя a — твердый раствор замещения с пределом растворимости 9,4 %. При большем содержании в структуре появляется эвтектоид (a + g|); g| — интерметаллид Сu32Al9.

Однофазные бронзы БрА5, БрА7 имеют хорошую пластичность и относятся к деформируемым. Обладают наилучшим сочетанием прочности и пластичности: sв = 400…450 МПа, d = 60 %.

Двухфазные бронзы (a + g|) имеют повышенную прочность до 600 МПа, но пластичность заметно ниже d = (35…45) %. Эти сплавы упрочняются термообработкой и дополнительно легируются Fe, Ni, Mn.

Железо измельчает зерно и повышает механические и антифрикционные свойства алюминиевых бронз. Никель улучшает механические свойства и износостойкость, температуру рекристаллизации и коррозионную стойкость. Марганец повышает технологические и коррозионные свойства.

Бронзы БрАЖН10-4-4, БрАЖМц10-3-1-5 и др. применяются для изготовления зубчатых колес, деталей турбин, седел клапанов и других деталей, работающих в тяжелых условиях износа при повышенных температурах до 400 0С, корпуса насосов, клапанные коробки и др.

Закалка проводится с температуры 950 0С, после чего бронзы подвергают старению при 250…300 0С в течение 2…3 ч.

Кремнистые бронзы применяются в качестве заменителей оловянистых бронз. До 3 % кремний растворяется в меди, и образуется однофазный a-твердый раствор. При большем содержании кремния появляется твердая и хрупкая g-фаза. Никель и марганец улучшает механические и коррозионные свойства. Они не теряют пластичности при низких температурах, хорошо паяются, обрабатываются давлением, немагнитны и не дают искры при ударах. Их используют для деталей, работающих до 500 0С, а также в агрессивных средах (пресная, морская вода).

Бронзы БрКН1-3, БрКМц3-1 применяют для изготовления пружин, антифрикционных деталей, испарителей и др.

Бериллиевые бронзы. Содержат 2…2,5 % Ве. Эти сплавы упрочняются термической обработкой. Предельная растворимость бериллия в меди при 866 0С составляет 2,7 %, при 600 0С — 1,5 %, а при 300 0С всего 0,2 %. Закалка проводится при 760…800 0С в воде и старение при 300 0С в течение 3 ч. Сплав упрочняется за счет выделения дисперсных частиц g-фазы СuBe, что приводит к резкому повышению прочности до 1250 МПа при d = 3…5 %. Бронзы БрБ2, БрБНТ1,9 и БрБНТ1,7 имеют высокую прочность, упругость, коррозионную стойкость, жаропрочность, немагнитны, искробезопасны (искра не образуется при размыкании электрических контактов). Применяются для изготовления мембран, пружин, электрических контактов.

Свинцовые бронзы. Свинец практически не растворяется в жидкой меди. Поэтому сплавы после затвердевания состоят из кристаллов меди и включений свинца. Такая структура обеспечивает высокие антифрикционные свойства. Бронза БрС30 применяется для изготовления вкладышей подшипников скольжения, работающих при повышенных давлениях и с большими скоростями. По сравнению с оловянистыми бронзами, теплопроводность ее в 4 раза больше, поэтому она хорошо отводит теплоту, возникающую при трении. Прочность этих бронз невысокая sв = 60 МПа, d = 4 %

 

Дата: 2019-05-28, просмотров: 245.