Алгоритм прозрачного моста ieee 802.1d
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Слово «прозрачный» в названии алгоритм прозрачного моста отражает тот факт, что мосты и коммутаторы в своей работе не учитывают существование в сети сетевых адаптеров конечных узлов, концентраторов, повторителей. С другой стороны, и перечисленные выше сетевые устройства функционируют, «не замечая» присутствия в сети мостов и коммутаторов.

Алгоритм прозрачного моста не зависит от технологии локальной сети, в которой устанавливается мост/коммутатор, поэтому прозрачные мосты/коммутаторы Ethernet работают точно так же, как прозрачные мосты/коммутаторы FDDI или Token Ring.

Коммутатор строит свою адресную таблицу на основании пассивного наблюдения за трафиком, циркулирующим в подключенных к его портам сегментах. При этом коммутатор учитывает адреса источников кадров данных, поступающих на порты коммутатора. По адресу источника кадра коммутатор делает вывод о принадлежности узла-источника тому или иному сегменту сети.

Рассмотрим процесс автоматического создания адресной таблицы коммутатора и ее использования на примере простой сети, представленной на рис.15.7.

Рисунок 15.7. Принцип работы прозрачного моста/коммутатора

Коммутатор соединяет два сетевых сегмента. Сегмент 1 составляют компьютеры, подключенные с помощью одного отрезка коаксиального кабеля к порту 1 коммутатора, а сегмент 2 — компьютеры, подключенные с помощью другого отрезка коаксиального кабеля к порту 2 коммутатора. В исходном состоянии коммутатор не знает о том, компьютеры с какими МАС-адресами подключены к каждому из его портов. В этой ситуации коммутатор просто передает любой захваченный и буферизованный кадр на все свои порты за исключением того порта, от которого этот кадр получен. В нашем примере у коммутатора только два порта, поэтому он передает кадры с порта 1 на порт 2, и наоборот. Отличие работы коммутатора в этом режиме от повторителя заключается в том, что он передает кадр, предварительно буферизуя его, а не бит за битом, как это делает повторитель. Буферизация разрывает логику работы всех сегментов как единой разделяемой среды. Когда коммутатор собирается передать кадр с сегмента на сегмент, например с сегмента 1 на сегмент 2, он, как обычный конечный узел, пытается получить доступ к разделяемой среде сегмента 2 по правилам алгоритма доступа, в данном примере — по правилам алгоритма CSMA/CD.

Одновременно с передачей кадра на все порты коммутатор изучает адрес источника кадра и делает запись о его принадлежности к тому или иному сегменту в своей адресной таблице. Эту таблицу также называют таблицей фильтрации, или таблицей маршрутизации. Например, получив на порт 1 кадр от компьютера 1, коммутатор делает первую запись в своей адресной таблице.

МАС-адрес 1 — порт 1.

Эта запись означает, что компьютер, имеющий МАС-адрес 1, принадлежит сегменту, подключенному к порту 1 коммутатора. Если все четыре компьютера данной сети проявляют активность и посылают друг другу кадры, то скоро коммутатор построит полную адресную таблицу сети, состоящую из 4 записей — по одной записи на узел (см. рис. 15.7).

При каждом поступлении кадра на порт коммутатора он, прежде всего, пытается найти адрес назначения кадра в адресной таблице. Продолжим рассмотрение действий коммутатора на примере (см. рис. 15.7).

1. При получении кадра, направленного от компьютера 1 компьютеру 3, коммутатор просматривает адресную таблицу на предмет совпадения адреса в какой-либо из ее записей с адресом назначения — МАС-адресом 3. Запись с искомым адресом имеется в адресной таблице.

2. Коммутатор выполняет второй этап анализа таблицы — проверяет, находятся ли компьютеры с адресами источника и назначения в одном сегменте. В примере компьютер 1 (МАС-адрес 1) и компьютер 3 (МАС-адрес 3) находятся в разных сегментах. Следовательно, коммутатор выполняет операцию продвижения (forwarding) кадра — передает кадр на порт 2, который подключен к сегменту получателя, получает доступ к сегменту и передает туда кадр.

3. Если бы оказалось, что компьютеры принадлежали одному сегменту, то кадр просто удаляется из буфера. Такая операция называется фильтрацией (filtering).

4. Если бы запись МАС-адрес 3 отсутствовала в адресной таблице, то есть, другими словами, адрес назначения был неизвестен коммутатору, то он передал бы кадр на все свои порты, кроме порта — источника кадра, как и на начальной стадии процесса обучения.

Процесс обучения коммутатора никогда не заканчивается и происходит одновременно с продвижением и фильтрацией кадров. Коммутатор постоянно следит за адресами источника буферизуемых кадров, чтобы автоматически приспосабливаться к изменениям, происходящим в сети, — перемещениям компьютеров из одного сегмента сети в другой, отключению и появлению новых компьютеров.

Входы адресной таблицы могут быть динамическими, создаваемыми в процессе самообучения коммутатора, и статическими, создаваемыми вручную администратором сети. Статические записи не имеют срока жизни, что дает администратору возможность влиять на работу коммутатора, например, ограничивая передачу кадров с определенными адресами из одного сегмента в другой.

Динамические записи имеют срок жизни — при создании или обновлении записи в адресной таблице с ней связывается отметка времени. По истечении определенного тайм-аута запись помечается как недействительная, если за это время коммутатор не принял ни одного кадра с данным адресом в поле адреса источника. Это дает возможность коммутатору автоматически реагировать на перемещения компьютера из сегмента в сегмент — при его отключении от старого сегмента запись о его принадлежности к нему со временем вычеркивается из адресной таблицы.

Кадры с широковещательными МАС-адресами, как и кадры с неизвестными адресами назначения, передаются коммутатором на все его порты. Такой режим распространения кадров называется затоплением сети (flooding). Наличие коммутаторов в сети не препятствует распространению широковещательных кадров по всем сегментам сети. Однако это является достоинством только тогда, когда широковещательный адрес выработан корректно работающим узлом.

Нередко в результате каких-либо программных или аппаратных сбоев протокол верхнего уровня или сетевой адаптер начинают работать некорректно, а именно постоянно с высокой интенсивностью генерировать кадры с широковещательным адресом. Коммутатор в соответствии со своим алгоритмом передает ошибочный трафик во все сегменты. Такая ситуация называетсяшироковещательным штормом (broadcast storm).

К сожалению, коммутаторы не защищают сети от широковещательного шторма, во всяком случае, по умолчанию, как это делают маршрутизаторы. Максимум, что может сделать администратор с помощью коммутатора для борьбы с широковещательным штормом, — установить для каждого узла предельно допустимую интенсивность генерации кадров с широковещательным адресом. Но при этом нужно точно знать, какая интенсивность является нормальной, а какая — ошибочной. При смене протоколов ситуация в сети может измениться, и то, что вчера считалось ошибочным, сегодня может оказаться нормой.

Протокол, реализующий алгоритм коммутатора, располагается между уровнями MAC и LLC (рис. 15.8).

Рисунок 15.8. Место протокола коммутатора в стеке протоколов

22.Понятие сетевой модели.Сетевая модель OSI.

сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.

Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.

Эталонная сетевая модель OSI

OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.

Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.

Перечислим их:

7. Прикладной уровень (application layer)

6. Представительский уровень или уровень представления (presentation layer)

5. Сеансовый уровень (session layer)

4. Транспортный уровень (transport layer)

3. Сетевой уровень (network layer)

2. Канальный уровень (data link layer)

1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше ;)

Прикладной уровень

Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень

Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).

Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.

Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень

Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.

Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать ;)

Транспортный уровень

Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).

А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.

Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.

На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.

Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень

Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.

Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.

На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.

Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.

Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).

Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

Канальный уровень

Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.

IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.

LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.

MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.

Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.

Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.

Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

Физический уровень

Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.

Подробности и спецификации ждите в следующих статьях и в курсе CCNA. Вся первая часть курса CCNA (Exploration 1) посвящена модели OSI.

 

23.Сетевая модель TCP/IP.Пакетирование и инкапсуляция.

Сетевая модель TCP/IP

Модель TCP/IP принято называть моделью DOD (Department of Defense — Министерство обороны США).

От сетевой модели OSI, модель DOD (или TCP/IP) отличается количеством уровней. Здесь их всего 4 (начну, как и в первой статье с верхнего):

4. Уровень приложений (Application)

3. Транспортный уровень (Transport)

2. Сетевой уровень (Internet)

1. Уровень сетевого доступа (Network Access)

Как не странно, но четырех уровней DOD хватает, для того, чтобы покрыть семь уровней модели OSI. Хоть и есть некоторые разногласия. В целом, если не вдаваться в подробности, уровень приложений (Application) модели DOD соответствует трём верхним уровням модели OSI (application, presentation, session), транспортный уровень соответствует транспортному, а сетевой – сетевому соответственно и уровень сетевого доступа соответствует двум нижним модели OSI (data link, physical).

А если вдаваться в подробности, то нужно начать с того, что сетевая модель TCP/IP была разработана значительно раньше модели OSI. Модель TCP/IP сформировывалась уже на существующих протоколах, а вот OSI наоборот – сначала создали модель, а затем протоколы для неё, от этого у каждой свои плюсы и минусы. OSI более современная модель, поэтому в интернете обсуждают чаще её, а вот протоколы используются TCP/IP стека (группы, стопки (одного на другом)) основанные на модели DOD.

Вот Вы уже и знакомы с двумя сетевыми моделями, очень подробно они описаны в CCNA Exploration 1 - Network Fundamentals Version 4.0 English

Продолжим изучать работу и взаимодействие всех уровней

Пакетирование и инкапсуляция.

Инкапсуляция – это свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе и скрыть детали
реализации от пользователя.
Инкапсуляция неразрывно связана с понятием интерфейса класса. По сути, всё то, что не входит в интерфейс, инкапсулируется в классе.

Пакетирование – механизм разбиения передаваемой информации на блоки определенной длины, включая опознавательные знаки начала блока и его конца;

24.Стек протоколовTCP/IP.



Стек протоколов TCP/IP

Дата: 2019-05-28, просмотров: 373.