Определение силовых и кинематических параметров привода
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Силовые (мощность и вращающий момент) и кинематические (частота вращения и угловая скорость) параметры привода рассчитывают на валах привода из требуемой (расчетной) мощности двигателя Рдв и его номинальной частоты вращения nном при установившемся режиме. Расчеты проводятся в таблице 2.3.

 

Таблица 2.3. Определение силовых и кинематических параметров привода.

Параметр

Вал

Последовательность соединения

 элементов привода по

кинематической схеме

дв - м - зп - оп - рм

Мощность Р, кВт

дв

Рдв = 2,8 кВт

Б

Р1 = Рдвмпк = 2,8 · 0,98 · 0,995 = 2,73 кВт

Т

Р2 = Р1зппк = 2,73 · 0,97 · 0,995 = 2,63 кВт

рм

Ррм = Р2цпc = 2,63 · 0,93 · 0,99 = 2,42 кВт

Частота

вращения

 n, об / мин

Угловая

скорость

 ω, 1/ с

дв

nном = 955 об/мин

ωном =100 с-1

Б

n1 = nном = 955 об/мин

ω1 = ωном = 100 с-1

Т

n2 = n1/Uзп = 239 об/мин

ω2 = ω1/Uзп = 25 c-1

рм

nрм = n2/Uоп = 70 об/мин

ωрм = ω2/Uоп = 7,35 c-1

Вращающий момент Т, Н

м

дв

Тдв = Рдв · 1000 / ωном = 2800/100 = 28 Н· м

Б

Т1 = Тдвмпк = 28 · 0,98 · 0,995 = 27,3 Н· м

Т

Т2 = Т1Uзпзппк = =27,3 · 4 · 0,97 · 0,995 = 105,4 Н·м

рм

Трм = Т2Uццпc = =105,4 · 3,4 · 0,93 · 0,99 = 330Н·м

 

Табличный ответ к задаче представлен в табл. 2.4:

 

Таблица 2.4. Силовые и кинематические параметры привода.

Тип двигателя 4АМ112MА6УЗ Рном = 3 кВт nном = 955 об/мин

Параметр

Передача

Вал

Закры-тая

Цеп-ная пере-дача

Параметр

Дв.

Редуктора

Приводной рабочей машины

Б Т

Передаточное число, U

4

3,4

Расчет мощности Р, кВт

2,8 2,73 2,63 2,42

Угловая скорость ω, с-1

100 100 25 7,35

КПД, η

0,97

0,93

Частота вращения n, об/мин

955 955 239 70

Вращающий момент Т, Н· м

28 27,3 105,4 330

 



Задача 3. Выбор материала зубчатой передачи

 

Выбираем материал зубчатой передачи

 

а) По таблицам определяем марку стали: для шестерни — 40Х, твердость ≥ 45HRCэ; для колеса — 40Х, твердость ≤ 350 HB.

б) Также определяем механические характеристики стали 40Х: для шестерни твердость 45…50 HRC, термообработка — улучшение, Dпред = 125 мм; для колеса твердость 269…302 HB, термообработка — улучшение, Sпред = 80 мм.

в) Определяем среднюю твердость зубьев шестерни и колеса:

 

HB 1ср. = (50+45) / 2 = 47,5HRC=450 HB

HB2ср =(269+302) / 2 = 285,5НВ.

 

3.2 Определяем допускаемые контактные напряжения для зубьев шестерни []H1 и колеса []H2:

а) Рассчитываем коэффициент долговечности КHL:

Наработка за весь срок службы:

для колеса

 

N2 = 573· Lh· 2 = 573 · 15000· 25 = 214,9 · 106 циклов,

 

для шестерни

 

N1 = 573· Lh·  = 573 · 15000· 100 = 859,5 · 106 циклов.

 

Число циклов перемены напряжений NН0, соответствующее пределу выносливости, находим по табл. 3.3 [1, с.51] интерполированием:

Nно1= 68 · 106 циклов и Nно2 = 22,7 · 106 циклов.

Т.к. N1 > Nно1 и N2 > Nно2 , то коэффициенты долговечности KHL1 = 1 и KHL2 = 1.

б) Определяем допускаемое контактное напряжение []H соответствующее числу циклов перемены напряжений Nно: для шестерни

 

[]но1 = 14 HRC ср. +170=14·47,5 +170=835 Н/мм2

для колеса

[]но2 = 1,8· HB 2ср +67 = 1,8 · 285,5 + 67 = 580,9 Н/мм2

 

в) Определяем допускаемое контактное напряжение:

 

для шестерни []н1= KHL1· []но1= 1 · 835 = 835 Н/мм2,

для колеса []н2 = KHL2· []но2 = 1 · 580,9 = 580,9 Н/мм2.

 

Т.к. HB1ср - HB2ср > 70 и HB2ср =285,5<350HB, то значение []н рассчитываем по среднему допускаемому значению из полученных для шестерни и колеса:

[]н =0,45([]н1+[]н2) = 637,2 Н/мм2.

 

При этом условие []н < 1.23· []н2 соблюдается.

 

3.3 Определяем допускаемые напряжения изгиба для зубьев шестерни []F1 и колеса []F2.

 

а) Рассчитываем коэффициент долговечности KFL.

Наработка за весь срок службы : для шестерни N1 = 859,5 · 106 циклов, для колеса N2= 214,9 · 106 циклов.

Число циклов перемены напряжений, соответствующее пределу выносливости, NF0 = 4· 106 для обоих колес.

Т.к. N1 > NF0 и N2 > NF0, то коэффициенты долговечности KFL1 = 1 и KFL2 = 1.

 

б) По табл. 3.1 /1/ определяем допускаемое напряжение изгиба, соответствующее числу циклов перемены напряжений NF0:

 

для шестерни []Fo1= 310 Н/мм2 , в предположении, что m<3 мм;

для колеса []Fo2 =1,03· HB2ср=1,03 · 285,5 = 294 Н/мм2

в) Определяем допускаемые напряжения изгиба:

 

для шестерни []F1= KFL1· []Fo1= 1 · 310 = 310 Н/мм2,

для колеса []F2= KFL2· []Fo2= 1 · 294 = 294 Н/мм2.

 

Т.к. передача реверсивная, то []F уменьшаем на 25%: []F1 = 310 · 0,75 = 232,5 Н/мм2; []F2 = 294 · 0,75 = 220,5 Н/мм2.

 

Табличный ответ к задаче представлен в табл. 3.1:

Таблица3.1. Механические характеристики материалов зубчатой передачи.

Элемент передачи

Марка стали

Dпред

Термообработка

 HB

1ср

[]H []F
Sпред

HB2ср

Н/мм2

Шестерня 40Х 125 У

450

835 232,5
Колесо 40Х 80 У

285,5

580,9 220,5


Задача 4. Расчет зубчатых передач редуктора

 

Дата: 2019-05-28, просмотров: 238.