Общие географо-экономические сведенья
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Введение

 

Нефтегазодобывающая промышленность занимает важное место в экономике России: она обеспечивает основной прирост добычи топлива в топливно-энергетическом балансе.

Наибольший прирост добычи нефти получен за счёт ускоренного освоения и ввода в разработку новых нефтяных месторождений Западной Сибири.

Рост добычи в Западной Сибири определяет, внедрение новейшей техники, технологий, эффективных методов разработки с применением блочно-индустриальных методов обустройства месторождений.

Вместе с тем нефтегазодобывающий район характеризуется крайне трудными географо-экономическими и природно-климатическими условиями, обуславливающими высокую стоимость капитального строительства.

Естественно, что в столь специфических условиях, при ускоренном развитии нефтедобывающей отросли Западной Сибири, когда решаются не только вопросы темпов, но и полнота извлечения нефти из недр, проблема научно обоснованной комплексной оценки проектирования разработки нефтяных месторождений должна найти правильное решение с учётом требований хозяйственной реформы.

Исследованиями в этом направлении занимаются институты страны. В настоящие время очевидно, что дальнейший быстрый рост добычи должен обеспечиваться не только за счёт новых запасов, но и за счёт новых прогрессивных методов.

Наметились два направления в решении этого вопроса. Первое - отыскание наилучших вытесняющих агентов. Второе направление - отыскание наилучших пространственно-временных систем воздействия и отбора. Сюда входят количественное соотношения между эксплуатационными и нагнетательными скважинами, характеризующими размещение тех и других по площади, временные характеристики их ввода. Цель этого направления улучшать охват залежи процессом разработки и в конечном счёте динамику и итоговые характеристики отбора нефти.

В настоящие время Приразломное месторождение является полигоном испытания различных технологий разработки низко-проницаемых коллекторов (НПК). Здесь в массовом порядке производится гидроразрыв пласта Б4-5.

В широком объёме применяются химические методы обработки призабойной зоны пласта, такие как: использование импульсно-волнового метода, пенообработки, соляно-кислотные обработки, комплексные глинокислотные обработки.



Общая часть

 

Геологическая часть

 

Тектоника

 

В региональном тектоническом плане месторождение приурочено к положительной структуре 1-ого порядка - к Салымской моноклинали, имеющей субмеридиональное направление. На востоке посредством слабовыраженного прогиба Салымская моноклиналь сочленяется с юго-западным погружением Сургутского свода.

Салымская моноклиналь осложняется положительными структурами второго и третьего порядка: на севере Салымским куполовидным поднятием и Пойкинским валом и на юге Верхне-Салымским куполовидным поднятием, которые разделены друг от друга Милясовской котловиной.

Салымское куполовидное поднятие объединяет малоамплитудные положительные структуры IV порядка: Приразломную, Репьевскую, Севскую, Алексинскую, Южно-Лемпинскую. Они характеризуются относительно небольшими размерами - порядка 5,5-6.5 х 2,0-2,2 км при высоте от 15 до 45 м. углы наклона крыльев структур очень малы и не превышают 1. Все структуры имеют унаследованный характер и вверх по разрезу постепенно выполаживаются. Рассматриваемое месторождение приурочено к вышеперечисленным положительным структура.


2.3 Геологическое строение продуктивного пласта БС4-5

 

В разрезе Приразломного месторождения нефтеносными являются песчано-алевролитовые пласты 1АС11, 2АС11, БС1, БС4-5 и 1БС5, причем основным нефтесодержащим объектом является пласт БС4-5, в котором сосредоточены 97% запасов нефти категории С1 месторождения. В пределах зоны приоритетного природопользование пласты 1АС11 и 2АС11 не продуктивны. Пласт БС4-5 (вернее продуктивный горизонт) объединяет песчаные пласты 1БС4, 2БС4, 1БС5 и 2БС5 в единую гидродинамическую систему. В пласте БС4-5 в пределах Приразломного месторождения установлены 2 залежи нефти: одна основная - Приразломная и другая на крайнем северо-востоке месторождения в районе разведочной скважины №191.

Основная залежь в плане имеет заливообразную форму, которая раскрывается и расширяется в северном направлении. Она с запада, юга и востока окаймляется зоной полного замещения продуктивных песчаных коллекторов малопроницаемыми глинистыми разностями пород. Следовательно, залежь относится к типу литологически экранированных. Залежь вскрыта на глубинах 2430-2720 м. Размеры ее составляет 55х30 км при высоте 182 м. В пределах основной залежи как по данным промыслово-геофизических, так и гидродинамических исследований, ВНК не зафиксирован и поэтому он принят условно по подошве нижнего нефтенасыщенного пропластка в скв. №221 на абсолютной отметке - 2549,2 м.

Пласт БС4-5 представлен литологически частым чередованием песчаников, алевролитов и аргиллитов, причем в нижней части продуктивного интервала песчаники преимущественно развиты в виде изолированных линзовидных тел различных размеров и сравнительно небольшой толщины, а в верхней части прослеживается монолитный площадной характер их распространения.

Песчаники серые и буровато-серые, мелкозернистые, слюдистые, среднесцементированные, изредка встречаются прослои углисто-глинистых пород с включениями растительного детрита, с однородной и слоистой текстурой. По вещественному составу алевролиты идентичны песчаникам. Коллекторами являются мелкозернистые песчаники и крупнозернистые алевролиты, которые по емкостно-фильтрационным свойствам по существу не различаются и могут быть разделены лишь по гранулометрическому составу. Цемент песчаников и алевролитов пленочный, порово-пленочный, глинисто-хлоритовый, местами глинисто-карбонатный. Нередко встречаются поры, заполненные кальцитом. В коллекторах содержание глинистой фракции и среднем составляет 11.5%, карбонатной - 3.5%.

Общая толщина пласта БС4-5 в среднем равна 35 м, причем в северо-западном направлении в районе скв. № 222 ее значение составляет 50 м, т.е. прослеживается тенденция к постепенному увеличению толщины его в этом направлении. Эффективная нефтенасыщенная толщина в пределах залежи варьирует от 0 до 21,8м. Продуктивный пласт перекрывается пачкой глин толщиной до 40-50 м.

В разрезе продуктивного пласта БС4-5 а пределах месторождения выделяются от 1 до 10 прослоев коллекторов различной толщины, примерно половина из которых имеет толщину не более 1 м. В западной части месторождения число проницаемых, прослоек больше и значения их толщины выше нежели в восточной части месторождения.

Толщина глинистого раздела между монолитной и расчлененной частями продуктивного интервала колеблется в пределах от 0,4 до 9,4 м, причем примерно на половине площади разбуренной части месторождения толщина глинистого раздела составляет 0.4 - 1.6м.


2.4 Емкостно-фильтрационная характеристика продуктивного пласта БС4-5

 

Коллекторские свойства песчано-алевролитовых пород пласта БС4-5 исследованы по керну из 19 разведочных скважин, размещенных по площади месторождения относительно равномерно. Степень освещенности продуктивных интервалов пласта анализами керна характеризуется следующим показателем - на 0,4 м. толщины пласта приходится в среднем один анализ керна.

Статистические характеристики емкостно-фильтрационных свойств пласта БС4-5 Приразломного месторождения в целом и раздельно для его монолитной и расчлененной частей приведены в таблице 2.1 Эти данные свидетельствуют о том что коллекторы пласта БС4-5 откосятся к низкопроницаемым.

Из таблицы 2.1 следует, что средние значения пористости коллекторов пласта в целом и верхней (монолитной) его части по существу не изменились по сравнению с данными "Комплексной схемы разработки". Величина пористости коллекторов нижней расчлененной линзовидной части уменьшилась до 16,5%. Значения же проницаемости коллекторов верхней и нижней части разреза пласта БС4-5 существенно не различаются, так как они и так низки. Величины проницаемости коллекторов пласта БС4-5, определенные по образцам керна, распределяются в следующем соотношении в объеме продуктивного пласта: 38% имеют проницаемость до 5х10 мкм^2, 33% - в интервале 5 - 15х10 мкм^2, 15% - от 15 до 25х10 мкм^2 и 14% - от 25 до 85х10 мкм^2. Более детальная характеристика распределения проницаемости коллекторов пласта БС4-5 месторождения по данным разведочных скважин приведена в табл.2.1

Пласт испытан в 25 разведочных скважинах. Во всех скважинах получены притоки нефти различной интенсивности. В 18 скважинах испытания проведены при динамических уровнях от 968 м до 1513 м дебиты нефти колебались а пределах от 2.1 м3/сутки до 20.2 м^3/сутки, а в 5 скважинах по 2 и 6 мм штуцерах дебит нефти изменялся от 4.8 до 36.1 м^3/сутки.

Параметр нефтенасыщенности бил получен по данным ГИС на основе петрофизических зависимостей по скважинам, пробуренным на основе петрофизических зависимостей по скважинам, пробуренным на нефильтрующихся растворах по месторождениям Сургутского свода. При подсчете запасов нефти в 1985 г. среднее значение нефтенасыщенности принято равным 72%.

Таблица 2.1

Характеристика

БС4-5

Монолит

Расчлененная часть

пласта

порис-тость,% проницаемость мкм2*10-3 порис-тость,% проницаемость мкм2*10-3 порис-тость,% проницаемость мкм2*10-3
1 2 3 4 5 6 7
Кол-во определений 154 143 126 127 56 56
  17,5 12,7 17,5 10,9 16,5 12,3
Среднее 17,5* 14,0* 17,6* 15,3* 17,2* 11,3*
Коэфф. вариации 0,07 1,13 0,07 1,16 0,08 1,25
Минимальн. значение 14,0 0,3 14,0 0,3 13,3 0,6
Максимал. значение 20,0 86,5 20,0 86,5 19,7 53,2

 

 * - данные Комплексной технологической схемы разработки, СибНИИНП, 1990 г.

Таблица 2.2

Толщина Наименование ПластБС4-5 Пласт1БС4 Пласт2БС4 Пласт БС5
Общая Среднее значение, м Коэф. вариации, доли ед. Интервал изменения, м min max 28,7 0,160 22 39,2 7,22 0,4 2,4 11,4 16,2 0,4 7,0 30,0 3,0 (2 скв) 2,0 4,0
Нефтенасыщен- ная Среднее значение, м Коэф. вариации, доли ед. Интервал изменения, м min max 6,87/5,32* 0,44 2,8 12,6 4,78/4,27* 0,4 2,0 8,4 1,35 1,0 0,0 3,6 2,5 1,8 3,2
Эффек- тивная Среднее значение, м Коэф. вариации, доли ед. Интервал изменения, м min max 6,87/5,32* 0,44 2,8 12,6 4,78/4,27* 0,4 2,0 8,4 1,35 1,0 0,0 3,6 2,5 1,8 3,2

 

* - данные Комплексной технологической схемы разработки, СибНИИНП, 1990 г.

Таблица 2.3

Пласт

Кол-во

скваж.

Коэфф. песчанистости, доли ед.

Коэфф. расчлененности, доли ед.

средн

Коэфф.

вариации

Интервал

изменения

средн

Коэфф.

вариации

Интервал

изменения

min max min max
БС4-5 13 0,23 0,38 0,1 0,37 2,9 0,44 1 5
1БC4 13 0,74 0,172 0,33 1,0 1,46 0,42 1 3
2БC4 13 0,13 1,0 0,0 0,4 1,1 1,04 0 3
БC5 2 0,17 - 0,0 0,8 - - 1 2

 





Технологическая часть

 

Лабораторные исследования

 

Все образцы керна, пробы нефти, воды и газа, отобранные в процессе бурения и испытания скважин, должны подвергаться лабораторным исследованиям.

По образцам керна, взятым из интервалов залегания продуктивных пластов, определяются следующие параметры:

общая и открытая пористость,

проницаемость

остаточная водонасыщенность,

нефтенасыщенность,

карбонатность,

глинистость.

Образцы керна также подвергаются изучению на определение флоры, фауны и микрофауны, споропыльцевому анализу.

Производится также минералогический и гранулометрический анализы, как коллекторов, так и пород-покрышек.

Порядок отбора керна на лабораторные исследования таков - из одного, в смысле литологической изменчивости, слоя - через 0.25-0.30 м, из неоднородного слоя образцы отбираются через0.2 м и чаще.

По отборным пробам пластовых жидкостей и газа должны быть определены:

а) для нефти - фракционный и групповой составы, содержание селикагеливых смол, масел, асфальтенов, парафина, серы, а также вязкость и плотность (как в поверхностных - при температуре 20 градусов по Цельсию и давлении 0.1 Мпа, так и в пластов условиях), величина давления насыщения нефти газом, изменение объема и вязкости нефти при различных давлениях в пластовых и поверхностных условиях, коэффициенты упругости, при отборе глубинных проб-забойные давления и температуры, газовый фактор.

б) для пластовой воды - полный химический состав, включая определение ценных попутных компонентов (йода, брома, бора, лития и других элементов), количество и состав растворенного в воде газа, измерение температуры и электрического сопротивления вод.

в) для газа, растворенного в нефти, и свободного газа - плотность по воздуху, теплота сгорания, химический состав (объемные доли метана. Этана, пропана, бутанов, пентанов, гексанов и более тяжелых углеводородов в%, а также гели, сероводорода в граммах на 100 м3 газа, углекислоты и азота).

 

Таблица 3.3 - Перечень лабораторных исследований

Наименование исследования, анализа Интервал отбора Кол-во образцов (проб) Организация, выполняющая исследования
1 Определение общей пористости 0.1-0.5 30-150 СибНННП
2 Определение открытой пористости 0.1-0.5 30-150 СибНИИНП
3 Определение эффективной пористости 0.1-0.5 30-150 СибНИИНП
4 Определение проницаемости 0.1-0.5 30-150 СибНИИНП
5 Определение нефтенасыщенности 0.1-0.5 30-150 СибНИИНП
6 Определение коэффициента вытеснения 0.1-0.5 30-150 СибНИИНП
7 Определение остаточной водонасыщенности 0.1-0.5 30-150 СибНИИНП
8 Определение карбонатности 1-2 7-15 СибНИИНП
9 Определение глинистости 1-2 7-15 СибНИИНП
10 Минералогический анализ 5-10 2-3 СибНИИНП
11 Гранулометрический анализ 5-10 2-3 СибНИИНП
12 Микрофаунический анализ 1-2 7-15 СибНИИНП
13 Анализ шлама на содержание углеводородов 1-5 1-3 СибНИИНП
14 Анализы поверхностных проб нефти и газа 3/на объект 3 ЮНИПИН
15   Анализы глубинных проб нефти и газа 3/на объект 3 СибНИИНП ЮНИПИН
16 Анализы проб воды 2/ на объект 2 СибНИИНП

 

Заключение

 

При проверке испытания величина максимальной депрессии в начальный момент притока равнялась 170,8 ат. При средней депрессии 135,1ат из пласта получен приток флюида дебитом 28Ю8м3/сут, продуктивность -0,213м3/сут/ат. По данным акта в пробонакопителе 25% нефти и 75% воды. Проба нефти для анализа отобрана.

Возможность фонтанирования на исключается.

По результатам обработки КВД пластовое давление-239 атм., проницаемость околоствольной зоны пласта повышена.

Величина потенциальных гидродинамических ниже фактических.

Полный анализ нефти

Место отбора: интервал 2716-2735,4

2742-2753,6

Дата отбора: 17.11.95

Хлористые соли 172,0

Кинематическая вязкость: при 20%С 14,88ммсек

При 50%С 6,178ммсек

Плотность пикнометром 0,8586г/см3

Механические примеси 0,038%

Сера 0,84%

Начальная температура кипения 74 градусов по цельсию

 



Техническая часть

 

Выбор конструкции скважин

 

Конструкция скважин определяется диаметром эксплутационной колонны, гидрогеологическими условиями месторождения минимальным расходом материала.

Под конструкцией обсадной колоны следует понимать: подбор труб который должен обеспечить безаварийную эксплуатацию скважин, при минимальных капитальных вложениях. При этом следует иметь в виду, что конструкция скважин должна обладать высокой герметичностью и плотностью обсадных колонн и иметь надёжное цементное кольцо за колоннами.

При проектировании конструкций скважин, необходимо учитывать следующие основные условия:

1. Для предупреждения возможного гидроразрыва пород давлением флюида, обсадная колонна должна полностью перекрывать незакреплённую часть высоконапорного пласта.

2. С целью проведения возможных аварийных работ в скважине обсадные трубы должны обладать такой прочностью, при которой обеспечиваются достаточное сопротивление сминающим усилием при повышении давления в колонне.

3. Для предупреждения поглощений в скважинах месторождениях с аномально высоким давлением и большим этажом газоносности, следует цементировать поглощающие пласты, или перекрывать их обсадными колоннами до вскрытия продуктивного горизонта.

При проектировании оптимальных конструкций скважин наряду со сказанным, необходимо определить р нагнетания промывочной скважины в нефтеносные пласты по методике М.И. Потюкаева (в Дюкове-68). Сущность этой методики заключается в следующем. После обвязки устья в скважину закачивают промывочную жидкость с заданными парамитрами до тех пор пока не нагреется ее поглощение в исследуемый пласт. В это время определяют р при котором начинается поглощение, и подачу насосов. Отношение величины гидростатического р к пластовому позволяет определить критическую величину давления нагнетания.

Конструкции скважин предлагается также проектированию также с учетом того чтобы в процессе бурения давление на продуктивные пласты не превышало определенной критической величины. Повышенный перепад давления создает условия для засорения продуктивных горизонтов промывочной жидкостью и тампонажными материалами, в результате чего снижается дебит скважин, могут возникнуть нефтегазопроявления. В связи с этим следует особое внимание уделять качественному вскрытию продуктивных горизонтов. Допустимое углубление скважины в продуктивную. часть разреза (5) определяют по формуле:


 (4.1)

 

L-максимально допустимый интервал углубления в массовую залежь без перекрытия продуктивных пластов промежуточными колонами

Kkp - коэффициент характеризует критическую величину отношения гидростатического p промывочной жидкости к пластиковому давлению,

Выше который начинается поглощение;

K-коэффициент характеризующий превышение гидростат P промывочной жидкости

Над пластиковым в кровле газового пласта;

H-глубина кровли пласта в точке вскрытия

h - толщина пласта в точке вскрытия;

pb и pr - плотности соответственно пластовой воды и газа, кг/м³

Плотность бурового р-ра для вскрытия нефтяных пласта можно опр-ть по Ф-ле (3.1)

П. о проектирования конструкций газ. скважин с учетом p нагнетания бурового р-ра дает возможность определить max допустимую глубину вскрытия пласта и значительно сократить расходы на ликвидацию возможных осложнений.

Для нефтяных месторождений, имеющих высокие забойные температуры (на Приразломном месторождении температура пласта БС4-5 достигает 115 град. С) проектировании конструкций скважин необходимо использовать спец.

Цементные растворы, способные при твердении обеспечивать целостность

Кольца в затрубном пространстве. При расчете конструкций высокотемпературных скважин с резким колебанием температур следует

Учитывать склонность цементного камня к деформациям усадки и ползучести.

При проектировании конструкций скважин необходимо запланировать и диаметр эксплутационной колоны.

 


Специальная часть

 

Вторичное вскрытие пластов и его влияние на коэффициент продуктивности скважины и разработку месторождения

 

Состояния вскрытия пластов

 

Процесс вскрытия пласта является важнейшим этапом разработки нефтегазовых месторождений.

Высококачественное вскрытие горизонтов обуславливает повышение эффективности геологоразведочных работ и производительности скважин, улучшает приток нефти и газа из мало пронизываемых пропластов, что в конечном итоге способствует росту нефтегазоотдачи пластов.

Одним из основных условий повышения эффективности геологоразведочных работ является применение таких методов вскрытия и опробования, которые обеспечили бы сохранения естественного состояния коллектора, и следовательно, остаточную надежность результатов опробования на промышленную нефтегазоносность.

Очевидно, что только такие данные, которые отражают фактическое состояние коллектора, могут явиться основой для оценки общих и извлекаемых запасов нефти и газа.

В нефтегазопромысловой практике встречается немало случаев, когда скважины, которые при бурении показывали хорошие признаки нефтеносности и бурно проявляли себя после ввода их в эксплуатацию или вовсе не показывали признаков нефтегазоносности, или работали с малой производительностью.

Следовательно, возникает необходимость создания высоких депрессий при освоении и эксплуатации скважин, что отрицательно сказывается на эксплуатации залежей, коллекторы которых сложены несцементированными или слабосцементированы песками, а так же при наличии пластовых вод. Повышение депрессии при неустойчивых коллекторах приводят к нарушению ПЗ, что может вызвать слом эксплуатационной колоны и преждевременный выход скважины из строя; при наличии же подошвенных вод происходит преждевременное обводнение скважины.

Практика применения промывочной жесткости на водной основе показала, что проникновение в пласт фильтрата и твердой фазы промысловой жесткости в период вскрытия является основной причиной ухудшения коллекторских свойств пласта. Лабораторными исследованиями установлено, что вода снижает естественную проницаемость коллектора на 50% и более.

Глинистый раствор относительно в меньшей мере ухудшает фильтрационную характеристику коллектора, чем вода.

Отрицательное влияние низкого качества вскрытия пласта наиболее значительно сказывается в случаях, когда пластовое давление ниже гидростатического. Аномально низкое пластовое давление встречается в процессе доразработки.

Проницаемость ПЗ в немалой степени снижается также и в процессе вскрытия пласта перфораций. Это объясняется тем, что качество жесткости, заполняющей ствол скважины перед перфорацией обычно бывает низким и не обеспечивает сохранения естественной проницаемости коллектора после перфорации.

Так обычно, продуктивный пласт в процессе его вскрытия многократно подвергается воздействию промывочной жесткости. В результате этого существенно ухудшается фильтрационная характеристика ПЗП.

При вскрытии пластов в глубоких скважинах высокие температуры оказывают существенное влияние на водоотдачу глинистого раствора. С повышением температуры усиливается коагуляция и образуется легко размываемые рыхлые корки. При t 150С водоотдача возрастает в 6-8 раз.



Введение

 

Нефтегазодобывающая промышленность занимает важное место в экономике России: она обеспечивает основной прирост добычи топлива в топливно-энергетическом балансе.

Наибольший прирост добычи нефти получен за счёт ускоренного освоения и ввода в разработку новых нефтяных месторождений Западной Сибири.

Рост добычи в Западной Сибири определяет, внедрение новейшей техники, технологий, эффективных методов разработки с применением блочно-индустриальных методов обустройства месторождений.

Вместе с тем нефтегазодобывающий район характеризуется крайне трудными географо-экономическими и природно-климатическими условиями, обуславливающими высокую стоимость капитального строительства.

Естественно, что в столь специфических условиях, при ускоренном развитии нефтедобывающей отросли Западной Сибири, когда решаются не только вопросы темпов, но и полнота извлечения нефти из недр, проблема научно обоснованной комплексной оценки проектирования разработки нефтяных месторождений должна найти правильное решение с учётом требований хозяйственной реформы.

Исследованиями в этом направлении занимаются институты страны. В настоящие время очевидно, что дальнейший быстрый рост добычи должен обеспечиваться не только за счёт новых запасов, но и за счёт новых прогрессивных методов.

Наметились два направления в решении этого вопроса. Первое - отыскание наилучших вытесняющих агентов. Второе направление - отыскание наилучших пространственно-временных систем воздействия и отбора. Сюда входят количественное соотношения между эксплуатационными и нагнетательными скважинами, характеризующими размещение тех и других по площади, временные характеристики их ввода. Цель этого направления улучшать охват залежи процессом разработки и в конечном счёте динамику и итоговые характеристики отбора нефти.

В настоящие время Приразломное месторождение является полигоном испытания различных технологий разработки низко-проницаемых коллекторов (НПК). Здесь в массовом порядке производится гидроразрыв пласта Б4-5.

В широком объёме применяются химические методы обработки призабойной зоны пласта, такие как: использование импульсно-волнового метода, пенообработки, соляно-кислотные обработки, комплексные глинокислотные обработки.



Общая часть

 

Общие географо-экономические сведенья

 

В административном отношении Приразломное нефтяное месторождение входит в состав Нефтеюганского района Ханты-Мансийского национального округа Тюменской области и расположено в центральной части Западно-Сибирской низменности в относительной близости от разрабатываемых крупных нефтяных месторождений - Правдинского. Мамонтовского, Усть-Балыкского и др. (рис.1.1). Центр национального округа г. Ханты-Мансийск расположен в 90 км западнее месторождения, а г. Нефтеюганск - в 70 км восточнее. Из относительно крупных населенных пунктов упомянем п. Лемпино и пос. Пойковский, расположенные от месторождения соответственно 15км и 50км восточнее. Юго-восточнее и южнее от объекта исследований проходит нефтепровод Усть-Балык - Омск и газопровод Уренгой - Новополоцк, от которых построены нефтесборный и газосборный коллекторы, пролегающие через месторождения Правдинское - Северо-Салымское - Приразломное - Приобское. Энергоснабжение осуществляется Сургутской ГРЭС. Железная Дорога Тюмень - Сургут проходит юго-восточнее и южнее месторождения, железнодорожные станции Салым и Куть-Ях расположены соответственно в 56 км к югу и 53 км к юго-востоку от месторождения. Город Нефтеюганск имеет крупный аэропорт и связан воздушными линиями со многими городами Российской Федерации, в том числе со столицей Москвой. До освоения нефтегазовых ресурсов края и создания мощной нефтегазовой индустрии, немногочисленное коренное население состоящее из народностей ханты и манси, занималось охотой, рыболовством и оленеводством, а отдельные группы населения других вне зоны подпора, половодье начинается в первой декаде мая и длится 2-3 недели.



Дата: 2019-05-28, просмотров: 233.