А) Какие способы решения систем уравнений вы знаете?
Б) Решить систему уравнений (любым способом)
1. 2. 3.
Решение системы №1:
Ответ (1,5;1,5)
Решение системы №2
Ответ (-3;2)
Решение системы 3 вызывает у учащихся затруднение. Известными способами эту систему не решить.
Постановка учебной задачи.
Учащиеся формулируют цель урока: “Научиться решать системы новым способом”
Вспоминаем недавно изученный графический способ решения уравнений. Нельзя ли его применить к решению систем. Вспомните определение графика уравнения с двумя переменными.
Работа устно:
С помощью каких преобразований можно построить графики данных элементарных функций.
А)
Б)
В)
Г)
Д)
Е)
Ж)
Построение проекта выхода из затруднений.
Совместное создание алгоритма решения систем:
1. выразить переменную У через Х (если возможно);
2. построить график каждого уравнения;
3. найти координаты точки пересечения графиков.
Координаты любой точки построенного графика являются решением уравнения, следовательно, координаты каждой точки пересечения являются решением системы уравнений.
На доске учащиеся решают систему №3
Первичное закрепление (работа у доски по учебнику)
Решить графически систему уравнений
№233
Решение:
С помощью графиков решите систему уравнений
№236 а
Решение:
Физ. Минутка.
(ведет физорг или валеолог класса).
Самостоятельная работа с самопроверкой. По вариантам. Упражнения взяты из “Сборника заданий для проведения экзамена по алгебре за курс основной школы”
1) Решите графически систему.
1 вар. №203 2 вар. №206
2) С помощью графиков определите: сколько решений имеет система уравнений
1 вар. 2 вар.
Решение №203 – 1 вариант.
Решение №206 вариант 1
№203 вариант 2
№206 вариант 2:
В конце работы выявляются причины ошибок или затруднений.
Работа творческого характера (по группам).
1. Решить систему
2. По готовому рисунку составить систему.
Учащиеся оценивают свое участие в работе групп.
Систематизация знаний:
1. Что нового вы узнали на уроке?
2. Достигли ли вы, поставленной в начале урока, цели?
3. Какую цель вы для себя ставите на следующем уроке?
В конце урока учащиеся сдают листы самооценки учителю.
Домашнее задание: № 302, № 304 или №305.
План-конспект №2. Компьютерные технологии на уроке математики в 9-м классе
Из классической педагогической литературы известно, что наиболее эффективной является такая организация учебного процесса, при которой максимально стимулируются творческие способности учащихся, и используются возможности новых информационных технологий обучения в организации внутреннего диалога учащихся на основе мультимодального взаимодействия.
Урок проходит в кабинете математики, оборудованном компьютерами, связанными локальной сетью в 9 классе с углубленным изучением математики, в котором учащиеся занимаются по подгруппам.
Тема: Метод замены переменной в уравнениях. Исследование структуры уравнений приводимых к квадратным. (2 часа).
1-й час – исследование уравнений высших степеней, имеющих более сложную структуру, чем те, которые изучались в восьмом классе.
2-й час – урок-практикум - решения задач.
Цели:
1) выработать умение учащихся видеть структуру уравнений и выбирать наиболее эффективно замену переменных для их решения на основе анализа коэффициентов уравнения;
2) расширить круг приемов решения уравнений, приводимых к квадратным;
3) углубить теоретические основы подхода к решению уравнений;
4) развить навыки работы с информационными технологиями;
5) активизировать интеллектуальную деятельность учащихся.
Задачи:
1) распознавание уравнений, приводимых к квадратным;
2) обоснование выбора подходящей замены переменных;
3) отработка навыков решения подобных уравнений;
4) повторение способов решения различных типов уравнений, сводящихся к квадратным;
5) развитие умения самостоятельно осуществлять небольшие исследования;
6) тренировка умения работы с электронными учебно-методическими материалами.
Схема урока.
I. Повторение пройденного материала и вопросов, подготавливающих к пониманию новых задач.
II.
1) Методы решения квадратных уравнений:
а) формула корней квадратного трехчлена;
б) выделение полного квадрата;
в) использование теоремы, обратной теореме Виета;
г) разложение на множители;
2) теоретические положения о количестве корней квадратного трехчлена;
3) теоремы о тождественных преобразованиях и равносильности уравнений;
4) метод замены переменной в биквадратных уравнениях.
Форма проведения урока – сочетание объяснения учителя с фронтальной коллективной работой учащихся.
III. Восприятие и первичное осознание нового материала, осмысление связей и отношений в объектах изучения.
Исследование структуры и решение уравнений, сводящихся к квадратным, на следующих примерах:
Объяснение учителя.
1) ;
2) ;
3) .
Далее №№9.15(а); 9.16(а); 923(а) - решаются учащимися на доске.
Применение учащимися приобретенных знаний в самостоятельном выполнении задания по выбору подходящей замены переменной в решении уравнений, приводимые к квадратным.
Каждый ученик имеет свое рабочее место за персональным компьютером, на котором он получает свой вариант задания, сгенерированный компьютером по числу учеников по образцу подобранному учителем, решает и вводит с клавиатуры свой ответ.
Систематизация и обобщение знаний: После окончания выполнения задания компьютер проверяет ответ и выставляет оценку. В случае удовлетворительной (или неудовлетворительной) оценки ученик имеет возможность изучить правильное решение, запросив на компьютере соответствующую опцию, просмотреть правильное решение и выявить допущенные ошибки. Полученные оценки выставляются учителем в журнал.
IV. Образец вариант задания, получаемого учащимися на этом уроке:
1) ;
2) ;
3) .
Домашнее задание: №№ 9.14(в, г), 9.16(б, г), 9.23(в, г).
М.А. Галицкий, А.М. Гольдман, Л.И. Звавич “Сборник задач по алгебре” 8 – 9 класс.
2.3. Результаты эксперимента
Цель: Изучить уровень систематизации и обобщения полученных знаний на завершающем этапе эксперимента.
Для выявления влияния эксперимента, проведенного с детьми экспериментальной группы, мы провели эксперимент с учащимися систематизационной и экспериментальной групп. При этом использовались те же методики, что и в констатирующем эксперименте.
Таблица 1
Данные экспериментального изучения уровня систематизации и обобщения полученных знаний
Контрольная группа | Экспериментальная группа | ||
Учащийся, № | Количество правильных ответов | Учащийся, № | Количество правильных ответов |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 7 5 5 5 3 3 3 5 3 5 3 3 3 3 3 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 8 6 5 6 7 4 5 4 5 3 3 3 4 3 3 |
По данным таблицы мы получили следующие результаты:
· учащихся с высоким уровнем в контрольной группе 1 человек, в экспериментальной группе – 2 человека;
· количество учащихся со средним уровнем в контрольной группе 5 человек, в экспериментальной – 8 человек;
· учащихся с низким уровнем в контрольной группе 9 человек, в экспериментальной – 5 человек.
Контрольная группа:
F / N * 100%,
1/15*100% = 6,7%
5/15*100% = 33,3%
9/15*100% = 60%
Экспериментальная группа:
F / N * 100%,
2/15*100% = 13,3%
8/15*100% = 53,3%
5/15*100% = 33,4%
Результаты опроса представлены на рисунке 1.
«Алгебраические уравнения», 9 класс.
Из полученных данных мы видим, что высокий уровень составил в контрольной группе 6,7%, в экспериментальной – 13,3%. Средний уровень в контрольной группе – 33,3%, в экспериментальной – 53,3%, низкий уровень в контрольной группе 60%, в экспериментальной – 33,3%.
Таким образом, подводя итоги опроса, мы можем сделать вывод о том, что, говоря о систематизации и обобщении полученных математических знаний можно констатировать, что данный опрос показал, у учащихся 9 классов повысился уровень знаний по сравнению с итогами констатирующего эксперимента. Но, если сравнивать уровень знаний в контрольной и экспериментальной группах, то мы можем утверждать, что в экспериментальной группе уровень намного выше. Это было достигнуто благодаря использованию в нашем исследовании специализированных интегрированных уроков.
Таблица 2
Данные экспериментального изучения уровня сформированности знаний в контрольном эксперименте.
Контрольная группа | Экспериментальная группа | ||
Учащийся, № | Количество правильных ответов | Учащийся, № | Количество правильных ответов |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 6 4 3 4 4 7 5 2 3 4 2 2 3 1 2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | 7 6 5 7 5 3 5 8 5 3 3 3 5 4 4 |
По данным таблицы мы получили следующие результаты:
· учащихся с высоким уровнем в контрольной группе 1 человек, в экспериментальной группе – 3 человека;
· количество учащихся со средним уровнем в контрольной группе 6 человек, в экспериментальной – 8 человек;
· учащихся с низким уровнем в контрольной группе 8 человек, в экспериментальной – 4 человека.
Контрольная группа:
F / N * 100%,
1/15*100% = 6,7%
6/15*100% = 40%
8/15*100% = 53,3%
Экспериментальная группа:
F / N * 100%,
3/15*100% = 20%
8/15*100% = 53,3%
4/15*100% = 26,7%
Результаты опроса представлены на рисунке 2.
Рис. 2. Выявление уровня математических знаний учащихся на стадии контрольного эксперимента
Из полученных данных мы видим, что высокий уровень составил в контрольной группе 6,7%, в экспериментальной – 20%. Средний уровень в контрольной группе – 40%, в экспериментальной – 53,3%, низкий уровень в контрольной группе 53,3%, в экспериментальной – 26,7%.
Итак, анализ данных контрольного эксперимента показал, что уровень знаний возрос в обеих группах по сравнению с результатами констатирующего эксперимента. Но, если сравнивать показатели знаний в контрольной и экспериментальной группах, то уровень знаний в экспериментальной группе намного выше уровня знаний контрольной группы. Это стало возможным при использовании интегрированного урока.
Таким образом, проведенные нами исследования свидетельствуют о том, что, если систематически использовать такие формы систематизации и обобщения на уроках математики, как математический диктант, контрольные работы, а также проводить специализированные уроки, то:
· расширяются и систематизируются представления школьников по предмету;
· формируются навыки самосистематизации и обобщения знаний.
Заключение
Систематизация и обобщение знаний и умений учащихся – одно из основных условий повышения качества обучения. Учитель математики в своей работе должен использовать не только общепринятые формы систематизации (самостоятельная и систематизационная работы, устный опрос у доски и т.д.), но и постоянно изобретать, внедрять свои средства систематизации. Умелое владение учителем различными формами систематизации знаний и умений способствует повышению заинтересованности учащихся в изучении предмета, предупреждает отставание, обеспечивает активную работу каждого ученика. Систематизация для учащихся должна быть обучающей.
В результате проведения нетрадиционных форм систематизации знаний и умений раскрываются индивидуальные особенности детей, повышается уровень подготовки к уроку, что позволяет своевременно устранять недостатки и пробелы в знаниях учащихся.
Список литературы
1. Амонашвили Ш. А. Обучение. Оценка. Отметки. – М.: Знание, 2004.
2. Баймуханов Б. Б. Тематический контроль и учет знаний // Математика в школе, 2006. - №5.
3. Борода Л.Я. Некоторые формы систематизации знаний на уроке // Математика в школе, 2005. - №4.
4. Вахламова А. П., Рабунский Е. С. О систематической взаимопроверке знаний учащихся на уроках // Математика в школе, 2004. - №1.
5. Груденов Я. И. Совершенствование методики работы учителя математики – М: Просвещение, 2005.
6. Дакацьян У. В. Проверка знаний учащихся по математике – М.: Академия, 2005.
7. Денищева Л. О., Кузнецова Л. В., Лурье И.А. и др. Зачеты в системе дифференцированного обучения математики – М: Просвещение, 2003.
9. Зив Б. Г. Задачи к урокам алгебры: 7-11 кл. – М.: Русское слово, 2003.
10. Ильина Т. А. Педагогика: курс лекций: учебное пособие для студентов пед. ин-тов.– М: Просвещение, 2004.
11. Калинина М.И. К вопросу о систематизации знаний учащихся/ сб. статей, сост. Борчугова З. Г., Батий Ю. Ю. – М.: Просвещение, 2004.
12. Колобова Е. В. Использование зачетной системы для контроля и оценки знаний учащихся // Математика в школе , 2004. - №3.
13. Качество знаний учащихся и пути его совершенствования / Под ред. Скаткина М.Н., Краевского М.Н. – М.: Педагогика, 2003.
14. О совершенствовании методов обучения математики / Сб. статей сост. Крамор В. С. – М.: Просвещение, 2004.
15. МПМ в средней школе. Частная методика / Сост. Мишин В. И. – М: Просвещение, 2003.
16. Петровский Е. И. Проверка и оценка знаний учащихся – М.: АПН РФ, 2005.
18. Планирование обязательных результатов обучения математике / сост. В. В. Фирсов – М.: Просвещение, 2002.
19. Программы общеобразовательных учреждений. Математика – М: Просвещение, 2006.
21. Скобелев Г. Н. Систематизация знаний на уроках математики – Минск, 2006.
22. Современные основы школьного курса математики. / Н. Я. Виленкин, К. И. Дудничев, Л. А. Калужнин, А. А. Столяр. – М.: Просвещение, 2004.
23. Утеева Р. А. Групповая работа как одна из форм деятельности учащихся на уроке // Математика в школе, 2005. - №2.
24. Харламов И. Ф. Педагогика. Курс лекций. – Минск, 2005.
25. Шаталов В. Ф. Куда и как исчезли тройки – М.: Педагогика, 2004.
Дата: 2019-05-28, просмотров: 227.