Для получения достоверных данных о протекающем процессе требуется, очевидно, определить степень влияния различных факторов (гидродинамический режим, температура, давление и т.д.) на протекающий в данном аппарате химический процесс. Для описания непрерывных химических процессов используются модели химических реакторов идеального вытеснения (РИВ) и идеального смешения (РИС).
Модель идеального вытеснения характеризуется так называемым поршневым движением потока – продольное перемешивание в аппарате отсутствует, поперечное перемешивание в слоях полное. Такая модель удовлетворительно описывает, например, многие процессы в длинных трубах, особенно заполненных зернистыми слоями. В аппаратах РИВ в ходе процесса концентрация реагентов (а следовательно, и движущая сила) монотонно снижается; одновременно уменьшается скорость процесса, а также производительность аппарата. Соответственно, для реакций, протекающих в РИВ, математическое описание представляет собой систему обыкновенных дифференциальных уравнений. В общем виде уравнение материального баланса может быть записано следующим образом:
, (17)
где ri – скорость реакции по j-му реагенту в данный момент времени.
Для нашего случая система уравнений материального баланса будет иметь вид:
. (18)
Поскольку в нашем случае протекает экзотермическая реакция, то систему необходимо дополнить уравнением теплового баланса, учитывающим изменение температуры во времени:
, (19)
где - коэффициент адиабатического разогрева, К;
q – тепловой эффект реакции, ккал/кмоль;
Cp – мольная теплоемкость реакционной смеси, ккал/(кмоль*К).
Для решения данной системы необходимо определить начальные условия. В данном случае ими являются концентрации компонентов А,В и С, а также температура Т на входе в реактор (τ=0). Поскольку требуется определить концентрации компонентов и температуру на выходе из реактора, заранее определяется время нахождения реакционной смеси в реакторе (время контакта). Для РИВ время контакта в i-м реакторе определяется по формуле:
, (20)
где Vi – объем i-го реактора, м³;
Wi – объемный расход реакционной смеси на входе в i-й реактор, м³/с.
В данной работе решение системы проводилось с помощью метода Рунге–Кутта (использовался программный продукт Mathcad 2001 Professional и стандартная функция rkfixed). Определялись концентрации компонентов и температура на выходе из реакторов, проводилась корректировка объемного расхода реакционной смеси после каждого реактора (поскольку в результате реакции объем смеси уменьшался). Расчеты реакторов велись совместно с расчетом абсорберов, поскольку значения расхода и концентраций компонентов на выходе из 3-го реактора были необходимы для расчета 1-го абсорбера, и т.д. Данные по реакторам, полученные в результате расчетов, сведены в таблицу 3.
Таблица 3. Результаты расчета РИВ
№ реактора | V, м³ | Объемный расход смеси на входе в реактор, м³/ч | Твх, К | Концентрации компонентов, об.доли | Твых, К | |||||
На входе в реактор | На выходе из реактора | |||||||||
А0 | В0 | С0 | А | В | С | |||||
1 | 70 | 120000 | 688 | 0,08 | 0,09 | 0,0008 | 0,021 | 0,06 | 0,06 | 858 |
2 | 50 | 115800 | 733 | 0,021 | 0,06 | 0,06 | 0,007013 | 0,053 | 0,074 | 773,1 |
3 | 50 | 114900 | 693 | 0,007013 | 0,053 | 0,074 | 0,00373 | 0,051 | 0,077 | 702,4 |
4 | 60 | 106900 | 688 | 0,004 | 0,055 | 0,01 | 0,0002584 | 0,053 | 0,014 | 698,7 |
5 | 40 | 106700 | 678 | 0,0002584 | 0,053 | 0,014 | 0,0001597 | 0,053 | 0,014 | 678,3 |
Как видно из таблицы 3, смесь реагирует достаточно хорошо в 1-м и 2-м реакторах, а в 5-м реакторе почти не реагирует. Данный факт обуславливается чрезвычайно малой концентрацией компонента А в смеси, поступающей в аппарат. В то же время в конечной смеси, выходящей из 5 –го реактора, высока концентрация В, что указывает на недостаток компонента А в исходной смеси.
Абсорберы
В абсорберах происходит поглощение (абсорбция) компонента С из газовой смеси жидким поглотителем (абсорбентом). Процесс абсорбции может быть описан с помощью уравнений массообмена. Однако, поскольку в п. 1.1.2. была получена статистическая модель абсорберов и определены выходные параметры – Твых и степень поглощения y, в расчетах абсорберов 1 и 2 мы пользовались ею. Расчет абсорберов велся совместно с расчетом реакторов, что обусловлено причинами, приведенными выше. Результаты расчета абсорберов приведены в таблице 4.
Таблица 4. Результаты расчета абсорберов.
Параметр | Абсорбер 1 | Абсорбер 2 |
Vабс, м³ | 25 | 26 |
Плотность орошения, м³/м² | 18 | 18 |
Твх, °C | 180 | 175 |
Объемный расход смеси на входе в абсорбер, м³/ч | 114600 | 106700 |
Концентрации компонентов на входе в абсорбер, об.доли А В С | 0,00373 0,051 0,077 | 0,0001597 0,053 0,014 |
Твых, °C | 51,6 | 49,2 |
Степень абсорбции y | 0,8757 | 0,9002 |
Концентрации компонентов на выходе из абсорбера, об. доли А В С | 0,004 0,055 0,01 | 0,0001617 0,054 0,001415 |
Количество отделенного компонента С, кмоль/ч | 344,97 | 60,014 |
Как видно из таблицы 4, абсорбер 1 работает достаточно хорошо, а для абсорбера 2 характерна низкая производительность. Отчасти это объясняется причинами, указанными в п. 1.2.2.
Дата: 2019-05-28, просмотров: 198.