Реакторы идеального вытеснения
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Для получения достоверных данных о протекающем процессе требуется, очевидно, определить степень влияния различных факторов (гидродинамический режим, температура, давление и т.д.) на протекающий в данном аппарате химический процесс. Для описания непрерывных химических процессов используются модели химических реакторов идеального вытеснения (РИВ) и идеального смешения (РИС).

Модель идеального вытеснения характеризуется так называемым поршневым движением потока – продольное перемешивание в аппарате отсутствует, поперечное перемешивание в слоях полное. Такая модель удовлетворительно описывает, например, многие процессы в длинных трубах, особенно заполненных зернистыми слоями. В аппаратах РИВ в ходе процесса концентрация реагентов (а следовательно, и движущая сила) монотонно снижается; одновременно уменьшается скорость процесса, а также производительность аппарата. Соответственно, для реакций, протекающих в РИВ, математическое описание представляет собой систему обыкновенных дифференциальных уравнений. В общем виде уравнение материального баланса может быть записано следующим образом:

 

,   (17)


где ri – скорость реакции по j-му реагенту в данный момент времени.

Для нашего случая система уравнений материального баланса будет иметь вид:

 

 .  (18)

 

Поскольку в нашем случае протекает экзотермическая реакция, то систему необходимо дополнить уравнением теплового баланса, учитывающим изменение температуры во времени:

 

,  (19)

 

где - коэффициент адиабатического разогрева, К;

q – тепловой эффект реакции, ккал/кмоль;

Cp – мольная теплоемкость реакционной смеси, ккал/(кмоль*К).

Для решения данной системы необходимо определить начальные условия. В данном случае ими являются концентрации компонентов А,В и С, а также температура Т на входе в реактор (τ=0). Поскольку требуется определить концентрации компонентов и температуру на выходе из реактора, заранее определяется время нахождения реакционной смеси в реакторе (время контакта). Для РИВ время контакта в i-м реакторе определяется по формуле:

 

,  (20)


где Vi – объем i-го реактора, м³;

Wi – объемный расход реакционной смеси на входе в i-й реактор, м³/с.

В данной работе решение системы проводилось с помощью метода Рунге–Кутта (использовался программный продукт Mathcad 2001 Professional и стандартная функция rkfixed). Определялись концентрации компонентов и температура на выходе из реакторов, проводилась корректировка объемного расхода реакционной смеси после каждого реактора (поскольку в результате реакции объем смеси уменьшался). Расчеты реакторов велись совместно с расчетом абсорберов, поскольку значения расхода и концентраций компонентов на выходе из 3-го реактора были необходимы для расчета 1-го абсорбера, и т.д. Данные по реакторам, полученные в результате расчетов, сведены в таблицу 3.

 

Таблица 3. Результаты расчета РИВ

№ реактора

V,

м³

Объемный расход смеси на входе в реактор, м³/ч

Твх,

К

Концентрации компонентов, об.доли

Твых,

К

На входе в реактор

На выходе из реактора

А0 В0 С0 А В С
1 70 120000 688 0,08 0,09 0,0008 0,021 0,06 0,06 858
2 50 115800 733 0,021 0,06 0,06 0,007013 0,053 0,074 773,1
3 50 114900 693 0,007013 0,053 0,074 0,00373 0,051 0,077 702,4
4 60 106900 688 0,004 0,055 0,01 0,0002584 0,053 0,014 698,7
5 40 106700 678 0,0002584 0,053 0,014 0,0001597 0,053 0,014 678,3

 

Как видно из таблицы 3, смесь реагирует достаточно хорошо в 1-м и 2-м реакторах, а в 5-м реакторе почти не реагирует. Данный факт обуславливается чрезвычайно малой концентрацией компонента А в смеси, поступающей в аппарат. В то же время в конечной смеси, выходящей из 5 –го реактора, высока концентрация В, что указывает на недостаток компонента А в исходной смеси.

 



Абсорберы

В абсорберах происходит поглощение (абсорбция) компонента С из газовой смеси жидким поглотителем (абсорбентом). Процесс абсорбции может быть описан с помощью уравнений массообмена. Однако, поскольку в п. 1.1.2. была получена статистическая модель абсорберов и определены выходные параметры – Твых и степень поглощения y, в расчетах абсорберов 1 и 2 мы пользовались ею. Расчет абсорберов велся совместно с расчетом реакторов, что обусловлено причинами, приведенными выше. Результаты расчета абсорберов приведены в таблице 4.

 

Таблица 4. Результаты расчета абсорберов.

Параметр Абсорбер 1 Абсорбер 2
Vабс, м³ 25 26
Плотность орошения, м³/м² 18 18
Твх, °C 180 175
Объемный расход смеси на входе в абсорбер, м³/ч 114600 106700
Концентрации компонентов на входе в абсорбер, об.доли А В С     0,00373 0,051 0,077     0,0001597 0,053 0,014
Твых, °C 51,6 49,2
Степень абсорбции y 0,8757 0,9002
Концентрации компонентов на выходе из абсорбера, об. доли А В С     0,004 0,055 0,01     0,0001617 0,054 0,001415
Количество отделенного компонента С, кмоль/ч 344,97 60,014

 

Как видно из таблицы 4, абсорбер 1 работает достаточно хорошо, а для абсорбера 2 характерна низкая производительность. Отчасти это объясняется причинами, указанными в п. 1.2.2.

 

Дата: 2019-05-28, просмотров: 158.