Курсовая работа
«Утилизация отработанных нефтепродуктов»
Введение
Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратились из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений [1].
Предотвращение загрязнения природной среды нефтью и продуктами ее переработки – одна из сложных и многоплановых проблем охраны природной среды. Ни один другой загрязнитель, как бы опасен он ни был, не может сравниться с нефтью по широте распространения, числу источников загрязнения, величине нагрузок на все компоненты природной среды [6].
В Московской области, как и в других регионах страны, до настоящего времени нет системы предупреждения и ликвидации последствий чрезвычайных ситуаций, связанных с аварийными разливами нефти и нефтепродуктов, также нет системы сбора, переработки и утилизации нефтесодержаших отходов, которая отвечала бы современным стандартам и требованиям охраны окружающей среды. Эта проблема требует незамедлительного решения, так как накопление нефтесодержащих отходов влияет не только на экологическое состояние природной среды, но и на санитарное благополучие жителей области [2].
Забота российских природопользователей о природоохранной деятельности часто рассматривается как роскошь, непозволительная при нынешнем состоянии экономики. Однако с деловых позиций только прямые выгоды от проведения экологических природоохранных мероприятий и функционирования системы экологического управления предприятием связаны с расширением рынка сбыта продукции, отсутствием дополнительных расходов, снижением издержек производства, экономией основных фондов, повышением потенциала в получении инвестиций.
Руководство предприятия или организации должно быть озабочено ответственностью за нанесенный экологический ущерб и соответственно дальнейшими расходами на ликвидацию последствий этого ущерба. Приводимый многими руководителями в девяностые годы довод «нет денег», к сожалению, еще иногда оказывает магическое действие на некоторых должностных лиц. Однако стоит лишь взглянуть на расчет стоимости продукции предприятия-природопользователя, как становится ясно, что экологическая природоохранная компонента заложена в расчет цены.
Более того, защита природоохранных интересов просто невозможна в автономном режиме, вне сферы производственных отношений, без определения разумных форм взаимного сочетания экологических и экономических интересов, при которых сохранение качества окружающей природной среды и ее объектов – цель единственная и конечная [2].
Создание и реализация в Московской области комплексной системы сбора, переработки и утилизации нефтесодержащих отходов, включающей предупреждение и ликвидацию последствий аварийных разливов нефти и нефтепродуктов, является одним из необходимых элементов обеспечения природной и техногенной безопасности региона.
Во многих регионах страны создалась чрезвычайная обстановка с хранением, переработкой и утилизацией нефтеотходов, отходов СОЖ. лаков, красок, гудронов и др. отходов. Так, например, в Курской области ежегодно образуется более 12 тыс. т нефтемаслоотходов, из которых используется на местные нужды или утилизируется только 1400 т. Более 10 тыс. т вывозится в места организованного хранения, в т.ч. на территории предприятий. Во многих регионах страны отсутствуют специализированные предприятия по приему, переработке и утилизации нефтеотходов и отработанных нефтепродуктов, а также ликвидации очагов загрязнения [7].
Утилизация нефтешламов
Суть электроогневой технологии сжигания любых веществ состоит в создании практически идеальных условий горения пламени сжигаемых любых токсичных отходов, в связи с чем, значительно облегчается задача окончательной очистки отходящих газов. Электрическое поле взаимодействует (на атомарно-молекулярном уровне) с радикалами любых углеводородных веществ и одновременно воздействует на любые углеводородные цепочки, в частности на бенз(а) пирен, таким образом, что они расщепляются на водород. сгораемый в пламени, и углерод, который быстро доокисляется в электрическом поле до безвредного углекислого газа.
Вначале необходимо откачать и переработать в полезные товарные продукты большую часть сырой нефти, отстоявшейся на поверхности нефтяных амбаров. Причем термическую ректификацию этой нефти целесообразно производить прямо в нефтяном амбаре с нефтешламами или непосредственно около него.
Затем необходимо откачать и обработать в центрифугах последующие слои нефтешламов, относительно маловязкие водонефтяные легкие эмульсии, превращая их в эффективное топливо для теплоэнергетики.
Далее необходимо последовательно или параллельно откачивать слой воды, которая присутствует во всех нефтяных амбарах.
Фракции нефтешламов, которые невозможно сразу откачивать из амбаров, необходимо размягчить прямо в амбарах, используя для этого теплоту, полученную от сжигания части нефтешламов. Для этого целесообразно часть сырой нефти оставлять в этих нефтешламовых амбарах и сжигать ее на поверхности амбаров для выработки теплоты.
В процессе теплового разжижения густых, твердых фракций нефтешламов появляется возможность частичной перекачки их из амбаров и расфасовки в энергетические капсулы и брикеты из наиболее твердых смолистых фракций нефтешламов для последующего использования в качестве топлива. Изготовление таких горючих капсул и брикетов из густых и твердых, наиболее энергоемких фракций нефтешламов весьма перспективно и выгодно. Брикеты необходимо подсушивать, используя теплоту от сжигания части более легких фракций нефтешламовых эмульсий, а потом упаковывать и складировать.
Такие энергетические капсулы некоторых фракций нефтешламов можно использовать в котельных и при выполнении энергозатратных огневых технологий, например, при получении асфальтов, цементов в качестве высококалорийного «чистого» топлива. В этом случае их можно с пользой сжигать в специальных электрифицированных топках котельных установок (Пат. 2079786 РФ). Этот способ интенсификации горения позволяет использовать в качестве топлива любые горючие отходы. Эффективность использования котлов повышается за счет формирования теплового потока от факела по вектору электрического поля прямо на котел [1].
В основе электроогневой технологии лежит каталитическое воздействие электрического поля на процесс горения любых веществ и газов. В результате применения данной технологии можно утилизировать отходы, мусор и нефтешламы. Преимущества разработанной на основе этой технологии установки: экономичность в эксплуатации (расход топлива и электроэнергии снижен в несколько раз), дешевизна при производстве, высокая степень очистки отходящих газов. При сжигании нефтепродуктов, включая нефтешламы, резко снижается количество всех токсичных компонентов в отходящих газах на 70 – 80% первоначальной их концентрации. И что наиболее важно, в процессе электроогневого горения активно разрушаются любые отходы, включая нефтешламы. В пламени исчезают практически все токсичные компоненты, не только такие простые, как СО, СН, NO, но и такие сложные канцерогенные вещества типа бенз(а) пирена.
Технология позволяет быстро утилизировать практически все токсичные компоненты отходов, в т. ч. и нефтешламы.
При электроогневом послойном сжигании остатков конкретных нефтешламов можно регулировать параметры активизирующего горение электрического поля (напряженность, частоту высокого напряжения) в зависимости от состава и количества нефтешламов для обеспечения оптимальной скорости горения и достижения минимальной токсичности отходящих газов.
В ряде случаев для максимальной интенсификации процесса горения остатки нефтешламов сжигают в переменном электрическом поле определенной частоты, выбранной по критерию максимального чистого их сжигания.
А в некоторых случаях процесс сжигания нефтешламов необходимо проводить в постоянном электрическом поле с вектором напряженности поля, ориентированным в направлении, перпендикулярном к поверхности нефтешламов, с предельно высокой напряженностью, выбранной в зависимости от состава нефтешламов, по критерию максимальной интенсивности горения при минимуме токсичности отходящих газов [1].
Для утилизации нефтяной и водонефтеэмульсионной составляющих нефтешламов необходимо параллельно со сжиганием остатков нефтешламов осуществлять ректификацию собранной с поверхности нефтешламов нефти путем использования тепловой энергии от сжигания остатков нефтешламов для получения бензина, керосина и т.д.
С помощью установки электроогневого сжигания нефтешламов можно утилизировать их как непосредственно в амбаре, так и на производстве для обеспечения безотходной переработки нефти.
При безотходной технологии переработки нефти утилизацию нефтешламов осуществляют в специальных электрифицированных отходосжигающих печах, соединенных трубопроводами с ректификационными колоннами.
Устройство сжигания остатков нефтешламов выполнено в виде специальной электрифицированной печи, в которой предусмотрено устройство подачи нефтешламов в зону горения и выгрузки золы, а также чаша для сжигания нефтешламов, над которой размещен электроизолированный электрод с
коронирующими иглами, причем этот электрод присоединен электрически к одному из выходов высоковольтного блока напряжения, второй выход которого присоединен к чаше со сжигаемыми нефтешламами.
Для проведения комплексной утилизации нефтешламов в нефтяных амбарах, необходимо использовать комбинированное устройство с нефте-улавливающим приспособлением (рис. 1), состоящее из погружного насоса, губчатого валика, отжимного устройства, сепарационной емкости и ректификационной колонны, размещенной над печью сжигания остатков нефтешламов, а также содержащее само устройство электроогневого сжигания остатков нефтешламов.
Мобильное устройство электроогневого сжигания нефтешламов можно использовать как непосредственно в нефтяных амбарах, так и в местах разливов нефти на почве (рис. 2). Такое устройство размещается на транспортном средстве и имеет высоковольтный преобразователь напряжения, несколько электроизолированных выдвижных электродов, размещаемых по периметру площади предполагаемого сжигания нефтешламов (или амбара с нефтешламами). два поверхностных электрода в виде тонких металлических теплостойких сеток регулируемой площади, достаточной для покрытия части или всей площади поверхности нефтяного загрязнения или амбара с остаткми нефтешламов.
Первый сетчатый электрод размещают с нулевой плавучестью на поверхности нефтешламов и прикрепляют металлическими тросами к основаниям электроизолированных штанг, а второй сетчатый электрод натягивают поверх электроизолированных штанг. Сетчатые электроды соединяют с высоковольтным преобразователем напряжения [1].
Высоту электроизолированных электродов в мобильном устройстве выбирают из условия превышения высоты факела пламени сжигаемых отходов на величину расстояния, достаточную для устранения электрического разряда высоковольтного преобразователя напряжения через пламя сжигаемых остатков нефтешламов.
В установках установлены датчики уровня токсичности отходящих газов, которые связаны с устройством управления параметрами высоковольтного преобразователя напряжения.
Комбинированная установка (см. рис. 1) электроогневого сжигания нефтешламов работает следующим образом. С помощью насосов подают по трубопроводам нефть и тяжелые фракции нефтешламов в соответствующие резервуары, причем нефть отфильтровывают от воды в ротационном сепараторе. Устройство ректификации нефти крепится на специальных опорах с изоляторами. Остатки нефтешламов поступают в устройство сжигания, при этом одновременно создают электрическое поле для управления пламенем. В процессе реализации данного процесса подбирают напряженность поля по критерию оптимума интенсивности горения пламени и минимума токсичности отходящих газов. Полученную тепловую энергию используют для испарения и ректификации нефти.
Полезные фракции нефти (бензин, керосин) отводят из колонны по патрубкам. Остатки нефтешламов поступают по трубопроводу в нижнюю чашу с горящими нефтешламами [1].
Предложенная технология чистой интенсивной переработки и огневой утилизации нефтешламов позволяет на порядок удешевить процесс утилизации нефтешламов, повысить производительность устройств при реализации данного процесса, а главное, сделать его экологически чистым. Она может быть применима для быстрой и эффективной очистки любых нефтяных пятен.
Утилизация нефтеотходов
В процессе хранения отработанные масла расслаиваются. Верхний масляный слой – это трудноразделимая эмульсия нефтепродуктов с водой и механическими примесями (до 5%), средний слой – вода в виде масляной эмульсии, нижний слой – донный осадок (шлам), состоящий из твердой фазы (70%), пропитанной нефтепродуктами (до 10%) и водой (до 25%). Количество механических примесей с глубиной увеличивается.
Были исследованы маслоотходы нескольких цехов ОАО «Автодизель» г. Ярославля (цехов корпусных деталей, коробок перемены передач, вспомогательных). Отобранные пробы подвергались расслаиванию в течение суток.
Верхний слой направлялся на регенерацию с целью дальнейшего использования для приготовления смазочно-охлаждающий жидкостей типа «Аквол» [9].
Средний слой – сточная вода – очищался до соответствия предельно допустимым сбросам.
Нижний слой – отход, который до сих пор не утилизировался. При исследовании его химического состава было установлено, что низкая токсичность свидетельствует о незначительном содержании ионов тяжелых металлов, %: 27 – 44 железа; до 0,05 никеля; до 0,13 хрома; до 1 меди; 3 – 5 алюминия; до 20 кремния; 15 – 30 нефтепродуктов. Расчетный класс опасности (токсичности) – 3‑й или 4‑й в зависимости от типа шлама [5].
Также были исследованы нефтешламы Ярославской перевалочной нефтебазы, нефтешламы длительного хранения и текущей выработки установки «Альфа-Лаваль» (ОАО «Слазнефть-Ярославльнефтеоргсинтез» им. Д.И. Менделеева), (табл. 2).
Установлено, что исследованные нефтешламы содержат органические (18,6 – 28,6%) и неорганические (51,3 – 76,8%) вещества.
Основным компонентом неорганической части являются оксиды железа. Хотя их содержание невелико, но после прокаливания при температуре 600 °С эта часть приобретает магнитные свойства. Наличие большого количества веществ, нерастворимых в концентрированной соляной кислоте, очевидно, обусловлено присутствием в минеральной части алюмосиликатов.
Содержание органических веществ, определенное прокаливанием и экстракцией хлороформом, различно [5]. Это можно объяснить тем, что в неорганической части присутствует кристаллизационная вода, которая удаляется при температуре 600 °С.
По составу минеральной части нефтешламы (как и маслошламы) близки к компонентам шихты для производства керамзита, а по фракционному составу органической части – к соляровым дистиллятам. Это позволяет предположить, что исследуемые масло- и нефтешламы можно использовать в качестве вспучивающей добавки при производстве керамзита
Таблица 2
Вещества | Нефтешламы | ||||
с установки «Альфа-Лаваль» | нефтеперевалочной базы | ||||
длительного хранения | текущей выработки | ||||
вода | 14,4–10,6 | 22,5 | 10,0 | ||
органические вещества: |
|
| |||
при прокаливании | 32,9–21,7 | 43,5 | 48,5 | ||
при экстракции хлороформом | 16,0–12,6 | 18,4 | 28,6 | ||
вещества, нерастворимые в HCl | 41,3–88,6 | 35,5 | 16,8 | ||
ионы металлов* |
|
| |||
Feобщ | 9,5–12,5 | 14,9 | 2,02 | ||
Сu2+ | 0,02 | 0,03 | 0,008 | ||
Ca2+ | 2,8–4,8 | 5,6 | 14,12 | ||
Cr3+ | 0,019–0,033 | 0,03 | - | ||
Zn2+ | 0,13–0,18 | 0,2 | - | ||
* – В сухом остатке | |||||
Были проведены испытания смеси «глина-нефтешлам». Количество шлама составляло 1 – 6% по массе. Вспучивание гранул проводилось в двуступенчатом режиме, интервал термоподотовки 250–280 °С, температурный интервал вспучивания образцов 1130–1150 °С. В результате испытаний установлено, что полученный материал соответствует ТУ 21–1284739–12–90.
Проведенные на АО «Керамзит» производственные испытания показали, что указанные выше нефте- и маслошламы можно использовать в качестве вспучивающей добавки при производстве керамзита (объемная насыпная плотность 420–600 кг/м3), показатели прочности которого соответствуют ГОСТ 9757–80.
В ЯГТУ разработана технология утилизации нефтеотходов с установки «Альфа – Лаваль». Была предпринята попытка заменить наполнитель и мягчитель в рецептуре резиновых смесей для амортизаторов на основе каучуков СКИ -3 и СКД этими отходами.
Наилучшие результаты получили при замене 5 массовых частей технического углерода П‑324 на 5 массовых частей отхода. Пластичность смеси практически не изменилась, а прочность при растяжении и относительное удлинение увеличились. Замена 10 массовых частей технического углерода П‑324 и 5 массовых частей вазелинового масла на 10 массовых частей отхода позволила несколько увеличить пластичность и прочность при растяжении, а также относительное удлинение при разрыве по сравнению с контрольной пробой.
Производственные испытания опытной резины, полученной с использованием отхода с установки «Альфа – Лаваль» на заводе РТИ, показали, что ее характеристики соответствуют характеристикам серийной резины, т.е. требованиям нормативной документации.
Утилизация кислых гудронов
Другим крупнотоннажным отходом нефтехимии являются кислые гудроны. Они образуются при очистке смазочных и медицинских масел, светлых нефтепродуктов, производстве флотореагентов и сульфонатных присадок. Очистку нефтепродуктов серной кислотой проводят с целью удаления непредельных, серо-, азотосодержащих и смолистых соединений, которые обусловливают малую стабильность топлив при хранении, нестабильность цвета и ухудшают некоторые эксплуатационные свойства.
Кислые гудроны представляют собой смолообразные высоковязкие массы различной степени подвижности, содержащие разнообразные органические соединения, свободную серную кислоту и воду. Несмотря на сокращение применения серной кислоты для очистки масел и парафинов и прекращение ее использования для очистки керосинов и бензинов, количество сернокислотных отходов весьма значительно. Только в заводских прудах-накопителях ОАО «Славнефть-Ярославльнефтеоргсинтез им. Д.И. Менделеева» хранится около;500 тыс. т кислого гудрона [4].
Свежий кислый гудрон (текущей выработки), содержащий серную кислоту, очень нестабильный продукт. В процессе хранения в нем протекают реакции сульфирования, полимеризации, поликонденсации и др. Кислые гудроны в прудах-накопителях по своему химическому составу значительно отличаются от кислых гудронов текущей выработки. Кроме того, вследствие вымывания кислоты атмосферными и грунтовыми водами кислотное число гудрона в пруду-накопителе значительно ниже, чем свежего.
В процессе хранения из-за воздействия атмосферных осадков (снег, дождь) содержимое прудов-накопителей разделяется на три слоя:
• верхний – кислое масло (легкая масляная часть кислого нефтепродукта);
• средний – кислая вода, состоящая из атмосферных осадков и серной кислоты;
• нижний – донный кислый гудрон в пастообразном состоянии и концентрированная серная кислота.
Физико-химические характеристики слоев различны и определяются глубиной отбора проб (табл. 3).
В ЯГТУ разработан способ получения дорожного битума на основе верхнего слоя прудового кислого гудрона. Для гудрона глубинных слоев пока не предложено практически целесообразной технологии.
Из табл. 4 видно, что в нижних слоях происходит некоторое осмо-ление продукта, в маслах появляются более высокомолекулярные соединения.
Таблица 3. Физико-химические характеристики кислого гудрона
Характеристика | Свежий гудрон | Гудрон из пруда-накопителя | |||
Верхний слой | 0,5 м | 2,5 м | 3–3,5 м | ||
Содержание веществ, % по массе: | |||||
свободной серной кислоты | 40–52 | 0,016–0,036 | 0,22 | 3–7 | 3–3,5 |
органической массы с минеральными маслами | 37,5–45 | 75–86,9 | 54 | 42 | 41–51,3 |
минеральных масел | 12,8–15 | 64–76,3 | 45 | 20 | 20–26 |
Воды | 8 | 11 | 40 | 28 | 18–20 |
Смол | - | 9,4–14,8 | 9 | 22 | 21–25,5 |
Золы | 0,076 | 0,6–1,26 | 0,47 | 5,9 | 7–10 |
водорастворимых соединений | - | - | - | - | 1,6–6 |
Плотность, г/см3 | 1,16–1,43 | 0,9–0,98 | 0,9–0,98 | 1–1,05 | 1,05–1,2 |
Вязкость, В10/60, с | - | 5 | 8 | 20 | 32 |
По свойствам кислые гудроны на глубине 3 – 3.5 м отличаются от гудронов верхнего слоя, поэтому была, проверена возможность переработки глубинных гудронов по технологии, разработанной для кислых гудронов верхних слоев.
Технологический процесс переработки этих кислых гудронов включает следующие стадии.
1. Нейтрализация. Она происходит в результате взаимодействия кислых продуктов (свободная серная кислота, сульфокислота, асфальтогенные кислоты) с гидроксидом кальция по обычному механизму с получением сульфата кальция и воды в качестве конечных продуктов. Температура реакционной массы возрастает до 80 °С при атмосферном давлении и перемешивании.
Нейтрализация глубинных проб кислых гудронов происходит аналогично нейтрализации кислых гудронов верхних слоев, при этом полная нейтрализация происходит медленней (обычно за 3 ч вместо 1,5–2 ч). Следует отметить, что при проведении нейтрализации глубинных кислых гудронов наблюдается более интенсивное пенообразование, процесс сопровождается более значительным выделением теплоты. Все это вызывает необходимость ведения процесса с применением пеногасителей, позволяющих уменьшить или даже полностью исключить пенообразование. Подобные различия обусловлены более высокой кислотностью глубинных проб.
2. Окисление кислородом воздуха. Окисление 1 кг нейтрализованного кислого гудрона после отгонки воды проводилось при подаче воздуха от компрессора через барботёр в количестве 2 л в минуту при температуре 190 – 200 °С в течение 2 – 4 ч.
Существенных отличий процессов окисления глубинных проб и проб верхних слоев не выявлено. Следует отметить, что глубинные кислые гудроны (3 – 3.5 м) окисляются с большей скоростью, что можно объяснить большим содержанием в них высокомолекулярных сернистых соединений по сравнению с кислыми гудронами верхних слоев, Таким образом, процесс обработки кислых гудронов нижних слоев лишь незначительно отличается от процесса переработки гудронов верхних слоев. Изменяя время окисления, можно, получить битумы с характеристиками, соответствующими характеристикам строительного и кровельного битумов (табл. 5). После оптимизации технологических параметров их можно использовать для производства мягкой кровли и гидроизоляционных материалов.
Битумы из кислых гудронов имеют следующий состав, % по массе: 17 – 27 смол; 12 – 22 асфальтов; 56 – 60 масел (из них 46 – 52 парафинонафтеновых углеводородов; 1,6 – 4.8 моноциклических ароматических; 1,4 – 2,3 бициклических ароматических; 1,1 – 7,2 полициклических ароматических).
В связи с разнообразием нефте- и маслошламов области их применения не ограничиваются описанными ниже.
Таблица 5. Основные характеристики битумов
Характеристика | Из кислых гудронов | Строительные ГОСТ 5617–76 | Кровельные ГОСТ 9548–74 |
Глубина проникновения иглы при температуре 25 °С, мм, не менее | 4,2–13,8 | 2,1–4,0 | 14–20 |
Температура размягчения по кольцу и шару, °С | 72–85 | 70–90 | 40–90 |
Заключение
Очистка территорий от загрязненных нефтью и нефтепродуктами почв и водных поверхностей в районах нефтедобычи и ее транспорта является исключительно серьезной экологической проблемой, актуальность которой не вызывает никаких сомнений. Так, например, только в республике Коми существует 358 озер, полностью загрязненных нефтью, а территория ее разлива превышает площадь более чем в 450 кв. километров. В последнее время все большее внимание уделяется методам микробиологической утилизации нефти с применением сорбентов, обладающих в отношении нее высокой сорбционной емкостью.
В соответствии с законами Российской Федерации «Об охране окружающей природной среды», «О санитарно-эпидемиологическом благополучии населения», «Об отходах производства и потребления». Постановления Правительства РФ №613 от 21.08.2000 г. «О неотложных мерах по предупреждению и ликвидации аварийных разливов нефти и нефтепродуктов», в целях защиты населения и окружающей среды от их вредного воздействия предусмотрена разработка ряда мероприятий, направленных на поддерживание в состоянии постоянной готовности организаций к ликвидации последствий нефтезагрязнений. Поэтому особое место в принятых программах предотвращения загрязнения окружающей среды нефтяных компаний, предприятий ТЭК, железнодорожного транспорта и предприятий различных видов промышленности и агроперерабатывающего комплекса уделяется вопросам ликвидации последствий нефтяных загрязнений [2]. Основными направлениями этих мероприятий являются:
• разработка и внедрение современных технологий переработки и утилизации нефтемаслоотходов и использование продуктов утилизации в экономике регионов;
• создание специализированных предприятий по переработке, утилизации нефтемаслоотходов и ликвидации очагов загрязнения;
• ликвидация последствий загрязнения почво-грунтов и подземных вод нефтемаслоотходами, восстановление и сохранение устойчивой экологической обстановки на загрязненных территориях. Особое внимание при этом должно уделяться ликвидации локальных загрязнений и утилизации нефтемаслоотходов, хранящихся на территории предприятий.
Комплексная система предполагает создание сети специализированных стационарных полигонов (площадок) по перевалке, хранению и переработке нефтесодержащих отходов, а также системы учета объектов, образующих и накапливающих нефтесодержащие отходы.
Обоснование экономической целесообразности создания и реализации комплексной системы сбора, переработки и утилизации нефтесодержащих отходов выполнено в 2001 г. на основе анализа проведенных расчетов. В соответствии с указанными расчетами при вывозе нефтесодержащих отходов на полигон (площадку) предприятие-природопользователь должно возместить стоимость приемки, переработки и утилизации отходов, которая составляет 3 – 5 тыс. руб. за 1 м3 в зависимости от вида нефтепродукта. Например, стоимость переработки 100 м3 таких отходов составит 300 – 500 тыс. руб., а в случае невывоза отходов или загрязненных в результате аварийного разлива нефти и нефтепродуктов почв и грунтов размер возмещения ущерба только от загрязнения территорий несанкционированной свалкой, а также расходы на проведение полного объема работ по очистке и рекультивации загрязненных при этом земель составят около 36 млн. руб.
В экономическом плане реализация комплексной системы сбора, переработки и утилизации нефтесодержащих отходов позволяет существенно уменьшить отчисления природопользователей за размещение отходов и затраты на проведение работ по очистке и реабилитации загрязненных земель, снизить расходы на транспортировку отходов.
Литература
1. Журнал «Экология и промышленность России». май, 2002, с. 7–9, 20–23
2. Журнал «Экология и промышленность России». март, 2003, с. 20–22
3. Журнал «Экология и промышленность России». июль, 2002, с. 17–18
4. Журнал «Экология и промышленность России». октябрь, 2001, с. 13–15
5. Журнал «Экология и промышленность России». февраль, 2002, с. 8–11
Курсовая работа
«Утилизация отработанных нефтепродуктов»
Введение
Основными источниками загрязнений нефтью и нефтепродуктами являются добывающие предприятия, системы перекачки и транспортировки, нефтяные терминалы и нефтебазы, хранилища нефтепродуктов, железнодорожный транспорт, речные и морские нефтеналивные танкеры, автозаправочные комплексы и станции. Объемы отходов нефтепродуктов и нефтезагрязнений, скопившиеся на отдельных объектах, составляют десятки и сотни тысяч кубометров. Значительное число хранилищ нефтешламов и отходов, построенных с начала 50-х годов, превратились из средства предотвращения нефтезагрязнений в постоянно действующий источник таких загрязнений [1].
Предотвращение загрязнения природной среды нефтью и продуктами ее переработки – одна из сложных и многоплановых проблем охраны природной среды. Ни один другой загрязнитель, как бы опасен он ни был, не может сравниться с нефтью по широте распространения, числу источников загрязнения, величине нагрузок на все компоненты природной среды [6].
В Московской области, как и в других регионах страны, до настоящего времени нет системы предупреждения и ликвидации последствий чрезвычайных ситуаций, связанных с аварийными разливами нефти и нефтепродуктов, также нет системы сбора, переработки и утилизации нефтесодержаших отходов, которая отвечала бы современным стандартам и требованиям охраны окружающей среды. Эта проблема требует незамедлительного решения, так как накопление нефтесодержащих отходов влияет не только на экологическое состояние природной среды, но и на санитарное благополучие жителей области [2].
Забота российских природопользователей о природоохранной деятельности часто рассматривается как роскошь, непозволительная при нынешнем состоянии экономики. Однако с деловых позиций только прямые выгоды от проведения экологических природоохранных мероприятий и функционирования системы экологического управления предприятием связаны с расширением рынка сбыта продукции, отсутствием дополнительных расходов, снижением издержек производства, экономией основных фондов, повышением потенциала в получении инвестиций.
Руководство предприятия или организации должно быть озабочено ответственностью за нанесенный экологический ущерб и соответственно дальнейшими расходами на ликвидацию последствий этого ущерба. Приводимый многими руководителями в девяностые годы довод «нет денег», к сожалению, еще иногда оказывает магическое действие на некоторых должностных лиц. Однако стоит лишь взглянуть на расчет стоимости продукции предприятия-природопользователя, как становится ясно, что экологическая природоохранная компонента заложена в расчет цены.
Более того, защита природоохранных интересов просто невозможна в автономном режиме, вне сферы производственных отношений, без определения разумных форм взаимного сочетания экологических и экономических интересов, при которых сохранение качества окружающей природной среды и ее объектов – цель единственная и конечная [2].
Создание и реализация в Московской области комплексной системы сбора, переработки и утилизации нефтесодержащих отходов, включающей предупреждение и ликвидацию последствий аварийных разливов нефти и нефтепродуктов, является одним из необходимых элементов обеспечения природной и техногенной безопасности региона.
Во многих регионах страны создалась чрезвычайная обстановка с хранением, переработкой и утилизацией нефтеотходов, отходов СОЖ. лаков, красок, гудронов и др. отходов. Так, например, в Курской области ежегодно образуется более 12 тыс. т нефтемаслоотходов, из которых используется на местные нужды или утилизируется только 1400 т. Более 10 тыс. т вывозится в места организованного хранения, в т.ч. на территории предприятий. Во многих регионах страны отсутствуют специализированные предприятия по приему, переработке и утилизации нефтеотходов и отработанных нефтепродуктов, а также ликвидации очагов загрязнения [7].
Очистка средств хранения и транспортировки нефтепродуктов от нефтянных загрязнений
Дата: 2019-05-28, просмотров: 229.