Глава 3. Результаты исследований и обсуждение
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

 

Говоря об общей опасности воздействия свободных радикалов на организм, нельзя обойти эту проблему и у беременных женщин, от здоровья которых зависит будущее целого поколении детей.

При неосложненной беременности в организме женщин происходит целый ряд адапционно-приспособительных процессов, направленных на обеспечение адекватного течения гестационного периода, роста и развития плода. Известно, что важными составляющими адаптивных перестроек являются показатели агрегатного состояния крови, иммунного статуса, эндокринной системы а так же перекисного окисления липидов. В их сбалансированном взаимодействии в ответ на регулирующее влияние гипоталамуса заложено качество адаптации организма [Гусак, 2006].

Физиологическая беременность может сопровождаться существенными изменениями в про/антиоксидантном статусе. Одними из параметров, которые позволяют оценить состояние свободнорадикальных процессов является диеновые коньюгаты и малоновый диальдигид. В нормальных условиях активность этих процессов находится на невысоком уровне, но при стрессовых ситуациях происходит усиленная активация процессов ПОЛ под действием АФК, что приводит к патологическому состоянию.

 

Содержание продуктов перекисного окисления липидов в плазме крови небеременных женщин .

 

В данной работе было определено содержание диеновых коньюгатов и малонового диальдегида у небеременных женщин (N=31), которые составили группу контроля. Согласно литературным данным содержание продуктов ПОЛ в частности МДА, являющегося одним из конечных продуктов данного процесса, с возрастом неуклонно возрастает [Банкова, Никанорова, 1988]. В группе небеременных женщин возраст значительно варьировал: от 18 до 39 лет. В связи с этим, мы разделили женщин контрольной группы по возрастному критерию на две подгруппы: в первую подгруппу вошли женщины в возрасте 18-28 лет (N=18), во вторую – 29-39 лет (N=13).

 

Содержание ДК и МДА в этих подгруппах приведены на рисунках 5 и 6.

Рис.5. Содержание диеновых коньюгатов в возрастных подгруппах

 

В возрастной подгруппе от 18 до 28 лет содержание ДК составило 0,28 ммоль/л, а в возрастной подгруппе от 29 до 39 лет концентрация увеличилась на 28%. Та же закономерность выявлена и в содержании МДА.

Концентрация МДА в первой подгруппе составила 0,85мкмоль/л, во второй подгруппе уровень МДА повысился на 31%.

Наблюдаемые изменения свидетельствуют о том, что с возрастом на фоне усиления процессов ПОЛ происходит угнетение антиоксидантной системы. Нарушения в системе перекисного окисления липидов и антиоксидантной активности являются одним из механизмов формирования антиоксидантной недостаточности вследствие чрезмерного усиления ПОЛ.


Рис.6. Содержание малонового диальдегида в возрастных подгруппах

 

В результате активации ПОЛ и накопления свободных радикалов происходит окислительная модификация липопротеинов плазмы крови, нарушение структурно-функциональной целостности клеточных мембран, освобождение лизосомальных ферментов, что в конечном итоге приводит к патологическим процессам в клетке и организме в целом.

При анализе содержания ДК и МДА между двумя возрастными подгруппами достоверных отличий не выявлено. Вследствие чего при сравнительном анализе содержания продуктов ПОЛ у беременных и небеременных женщин будут использованы данные по общей контрольной группе. Результаты исследования содержания ДК и МДА в общей контрольной группе приведены на рисунке 7.

Уровень ДК в контрольной группе женщин составил 0,35 ммоль/л, а МДА – 0,96 мкмоль/л. Наши данные по содержанию МДА в плазме крови согласуются с приведенными в литературе [Гусак, 2006]. Данных по содержанию ДК в плазме крови у относительно здоровых женщин мы в доступной литературе не встретили.

Анализ полученных результатов показал, что уровень ДК, являющихся первичными продуктами ПОЛ, существенно превышает таковой для конечного продукта – МДА.

 

 

Рис.7. Содержание продуктов перекисного окисления липидов в плазме крови небеременных женщин

 

Согласно данным литературы, у женщин показатели перекисного окисления липидов, а так же антиоксидантной системы изменяются в динамике репродуктивного цикла (1, 7, 14, 21 дни) [Гусак, 2006]. В первые дни менструального цикла происходит увеличение соотношения адреналин/серотонин, что свидетельствует о преобладании в функциональной активности гипоталамуса адренергических компонентов. Это приводит к депрессии противосвертывающей и антиокислительной систем крови, а так же активации клеточного и гуморального иммунитета, повышению неспецифической иммунной резистентности. Что проявляется увеличением концентрации диеновых коньюгатов и малонового диальдегида, активацией свертывающего потенциала крови.

К 21 дню цикла активность АОС прогрессивно увеличивается, на фоне этого снижается количество продуктов ПОЛ, в том числе ДК и МДА. Это необходимо для обеспечения процессов имплантации в слизистую матки, развития плаценты и создания оптимальных условий, которые позволят, с одной стороны – обеспечить надежную защиту организма женщины, а с другой – вынашивание беременности. Данная закономерность имеет глубокий биологический смысл и направлена на обеспечение условий для реализации репродуктивной функции человека.

В данной работе мы не учитывали возможность влияния динамики репродуктивного цикла женщин на уровень продуктов ПОЛ, хотя это явление могло отразиться на полученных результатах.

 



Содержание диеновых коньюгатов и малонового диальдегида и в плазме крови женщин в разные периоды беременности .

 

Во время гестации, начиная с момента зачатия и до завершения родов, в организме матери возникают интегративные процессы, которые необходимы для поддержания функционального единства организма матери и плода. Эти процессы позволяют выполнить главную задачу, то есть сохранение плода, и заключается в адаптации в I триместре беременности.

Несмотря на то, что в антигенном отношении мать и плод всегда несовместимы, в большинстве случаев после имплантации бластоцисты беременность развивается нормально и завершается родами в срок. Если бы взаимоотношения между матерью и плодом строились по варианту реципиент – аллотрансплантат, то беременность вряд ли продолжалась дольше срока, чем выживание обычного трансплантата. Следовательно, в системе "мать – плод" существуют механизмы, направленные на сопереживание двух антагонистически настроенных субъектов.

В данной работе было определено содержание ДК и МДА в плазме крови у беременных женщин (N=96), разделенных по триместрам, в возрасте от 20 до 28 лет.

Группу сравнения составили небеременные женщины. Результаты определения уровня ДК и МДА приведены на рисунках 8 и 9.


 

Рис. 8. Содержание диеновых коньюгатов в плазме крови женщин в динамике беременности

 

У женщин в I триместре беременности наблюдается достоверное повышение уровня продуктов ПОЛ по сравнению с контролем. Так, содержание ДК и МДА повысилось на 74 и 77% соответственно. Это можно объяснить тем, что сразу же после зачатия происходит значительная перестройка жизнедеятельности организма беременных женщин, которая сопряжена с изменениями в системах крови, гемостаза, эндокринной, иммунной системах и с изменением биохимического состояния организма в целом. «Не ожидая» подобных изменений, ткани и органы испытывают определенный стресс, в результате которого резко повышается количество свободных радикалов, атакующих, помимо прочего, клетки плаценты и эмбриона.

Увеличение количества свободных радикалов (СР) во время беременности связано с различными причинами. Одной из причин является их участие в синтезе прогестерона. СР активируют процесс перекисного окисления липидов, в результате которого образуются гидроперекиси холестерина, являющиеся предшественниками данного гормона.

Прогестерон является очень важным гормоном, необходимым для поддержания всего течения беременности. Он подготавливает эндометрий матки к имплантации оплодотворенной яйцеклетки, а затем способствует сохранению беременности: подавляет активность гладкой мускулатуры матки, поддерживает в центральной нервной системе доминанту беременности; стимулирует развитие концевых секреторных отделов молочных желез и рост матки, синтез стероидных гормонов; оказывает иммунодепрессивное действие, подавляя реакцию отторжения плодного яйца [Савченко с соавт., 2006].

 

Рис 9. Концентрация прогестерона при разных сроках беременности

 

Кроме того, прогестерон является предшественником стероидных гормонов плода, а так же эстрогенов, андрогенов, альдостерона и других гормонов коры надпочечников. Содержание прогестерона в крови беременной женщины увеличивается, повышаясь в 2 раза к 7-8 неделе, а затем более плавно возрастает к 34 недели (Рис 9). Следовательно, интенсификация процессов перекисного окисления липидов во время беременности является физиологически необходимым процессом.

Гормональные связи «пронизывают» все компоненты функциональной системы мать-плацента-плод. Так, в I триместре беременности происходит тесное взаимодействие материнско-плацентарной эндокринной системы, а во II и особенно в III триместрах плод и плацента выступают как общий орган синтеза эстрогенов.

 

Рис. 9. Содержание малонового диальдегида в плазме крови женщин в динамике беременности

 

Дальнейший анализ полученных нами данных показал, что уровень как МДА, так и ДК во II триместре беременности продолжает достоверно расти как по сравнению с группой контроля, так и c I триместром беременности.

Концентрация ДК во II триместре беременности увеличилась по сравнению с группой небеременных женщин и I триместром на 151 и 69% соответственно. Содержание МДА возросло на 97 и 11% так же по сравнению с контролем и I триместром беременности.

Сравнение уровней содержания первичных и вторичных продуктов ПОЛ во II триместре беременности по сравнению с I триместром показал более выраженный прирост концентрации диеновых коньюгатов по сравнению с малоновым диальдегидом. Этому явлению можно найти несколько объяснений.

Во-первых, из литературных данных известно, что МДА может метаболизироваться. В этом процессе принимает участие альдегиддегидрогеназа. Наличие такого фермента отмечено в плазме крови [Соловьева, 2007].

Во-вторых, МДА является чрезвычайно реакционноспособным соединением, способным вступать в образование шиффовых оснований с соединениями, содержащими NH2-группы. К такому роду соединений относятся аминокислоты, низкомолекулярные пептиды и прочие соединения. В этом случае часть МДА извлекается из пула свободного МДА, образуя так называемый «связанный» МДА, концентрация которого, как показали некоторые исследования, повышается при ряде патологических состояниях. Используемая нами методика позволяет определить только свободный МДА без учета связанного МДА.

В-третьих, нельзя исключить, что метаболизм продуктов липопероксидации во II триместре такой, что скорость превращения ДК в МДА снижена.

В III триместре содержание ДК в плазме крови беременных женщин достигает своего максимума и составляет 1,07 ммоль/л. Уровень МДА так же повышается по сравнению с контролем и вторым триместром на 160 и 31% соответственно.

Согласно литературным данным повышение продуктов ПОЛ в III триместре беременных обусловлено угнетением ферментативных и неферментативных механизмов антиперекисной защиты. Происходит снижение активности каталазы [Гусак, 2007] и церулоплазмина (ЦП) [Качалина, Морозова, 2003]. ЦП обладает ферроксидазной активностью, а так же ингибирует супероксидный анион-радикал, избыток которого приводит к усилению процесса ПОЛ.

Кроме того, в плазме крови церулоплазмин совместно с трансферрином образует антиоксидантную систему, регулирующую концентрацию восстановленных ионов железа, и суммарная антиокислительная активность плазмы крови в отношении Fe2+ -индуцированного ПОЛ в основном определяется содержанием в ней данных компонентов [Меньщикова, 2006].

Так же в III триместре беременности происходит возбуждение адренергических структур гипоталамуса, что приводит к увеличению соотношения адреналин/серотонин, депрессии антиоксидантного потенциала плазмы крови и активации иммуногенеза [Гусак, 2007].

Усиление процессов перекисного окисления липидов в крови беременных женщин может быть связано с различными причинами.

Чрезмерное и бесконтрольное увлечение препаратами железа может стать причиной увеличения числа свободных радикалов, так как любой антиоксидант в определенных условиях может выступать прооксидантом, инициируя окислительные процессы [Меньщикова с соавт., 2006]. В то же время дефицит железа может способствовать развитию железодефицитной анемии (ЖДА), следствием которой является тканевая гипоксия [Мусаев, 2004].

По данным литературы длительная гипоксия приводит к истощению АОС, что влечет за собой неконтролируемый процесс липопероксидации и накопление продуктов свободно-радикального окисления, оказывающих неблагоприятное влияние на систему мать-плацента-плод [Евсюкова, Савельева, 2005].

Другой причиной является образование активных форм кислорода при применении лекарственных средств. Подвергаясь всевозможным ферментативным превращениям в организме, молекулы некоторых лекарств теряют свои электроны в этих химических реакциях, превращаясь в свободные радикалы.

Состояние стресса так же оказывает мощное влияние на активацию процессов ПОЛ. Гормоны стресса, адреналин и кортизол, при неблагоприятных жизненных ситуациях вырабатываются в повышенных количествах, нарушая питание и нормальное дыхание клетки, что моментально приводит к накоплению и распространению радикалов во всем организме.

Так же важно отметить, что беременные женщины подвергаются регулярному влиянию неблагоприятных факторов окружающей среды: загрязненный воздух, табачный дым, ультрафиолетовое излучение. Это усугубляет процесс физиологического течения беременности при условии дефицита антиокислителей. Кроме того данные литературы свидетельствуют о корреляции окислительного напряжения организма матери и неблагоприятным результатом беременности, в том числе выкидыше[Young-Ju Kim, Yun-Chul Hong, Kwan-Hee Lee, 2005].





Выводы .

 

1. Содержание диеновых коньюгатов в плазме крови небеременных женщин составило 0,26-0,54 ммоль/л.

2. Содержание малонового диальдегида в плазме крови небеременных женщин составило 0,64-1,28 мкмоль/л.

3. Уровень ДК в плазме крови в I и II триместрах беременности достоверно повышается на 74 и 151% соответственно по сравнению с группой контроля. В III триместре концентрация диеновых коньюгатов достигает своего максимума и составляет 1,07 ммоль/л.

4. Содержание МДА в плазме крови в I, II, III триместрах беременности прогрессивно увеличивается на 77, 97, 160% соответственно по сравнению с группой небеременных женщин.


Список литературы:

 

Банкова В.В. Деградация малонового диальдегида в эритроцитах и ее возрастные, сезонные и суточные изменения / В.В. Банкова, Т. М. Никанорова // Вопр. мед. Химии, 1988. - № 6. - С. 27-29.

Барабой В.А. Механизмы стресса и перекисное окисление липидов / В.А. Барабой // Успехи соврем. Биологии, 1991. - Т. 111. - № 6. - С. 923-931.

Барабой В.А. Перекисное окисление и стресс / В.А. Барабой, И.И. Брехман, В.Г. Голожин с соавт. - М.: Наука, 2004. - 148 с.

Бобырев В.Н. Специфичность систем антиоксидантной защиты органов и тканей – основа дифференцированной фармакотерапии антиоксидантами / В.Н. Бобырев, В.Ф. Почерняева, С.Г. Стародубцев // Экспериментальная и клиническая фармакология, 2005. – Т. 57. - №1. - С. 78-86.

Бондарь Т.Н. Восстановление органических гидроперекисей глутатионпероксидазой и глутатион-S-трансферазой: влияние структуры субстрата / Т.Н. Бондарь, В.З. Ланкин, В.А. Антоновский // Докл. АН СССР, 1989. - T. 304. - №1. – С. 217-220.

Булгакова Е.Б. Перекисное окисление липидов мембран и природные антиоксиданты / Булгакова Е.Б. // Успехи химии, 2006. - № 9. – 250 c.

Бурлакова Е.Б. Перекисное окисление липидов мембран / Е.Б. Бурлакова, Н.Г. Храпова // Успехи химии, 2004. - Т. 54. - C. 1540-1558.

Бурлакова Е.Б. Роль токоферолов в пероксидном окислении липидов биомембран / Е.Б. Бурлакова, С.А. Крашков, Н.Г. Храпова // Биологические мембраны, 1998. - Т. 15, № 2. - С. 137-167.

Василец И.М. Церулоплазимины. Их молекулярная структура и биологические функции / И.М. Василец // Успехи биол. Химии, 2004. - № 14. - С. 172-200.

Владимиров Ю.А. Перекисное окисление липидов в биомембранах / Ю.А. Владимиров, А.И. Арчаков. - М.: Наука, 2003. – С. 230-272.

Владимиров Ю.А. Свободные радикалы в живых системах / Ю.А. Владимиров, О.А. Азизова, А.И. Деев с соавт. // Итоги науки и техники, 2000. – Т. 29. - С. 151-167.

Владимиров Ю.А. Свободные радикалы и антиоксиданты / Ю.А. Владимиров // Вестн. РАМН, 1998. - № 7. - С. 43-51.

Воейков В.Л. Благотворная роль активных форм кислорода / В.Л. Воейков // Биохимия, 2004. - № 1 - С. 27-38.

Воскресенский О.Н. Перекиси липидов в живом организме / О.Н. Воскресенский, А.П. Левицкий // Вопр. мед. Химии, 2003. - Т. 16. - № 6. – С. 563-583.

Воскресенский С.К. Антиоксидантная система, онтогенез и старение / С.К. Воскресенский, И.А. Жутаев, В.Н. Бобырев с соавт. // Вопр. мед. Химии, 2004. - № 1. - C. 14-27.

Гусак Ю.К. Психонейроиммунологические особенности адаптивных механизмов нормального репродуктивного цикла у женщин [Электронный ресурс] / Ю.К. Гусак, Ю.В. Лазарева, В.Н. Морозов, 2006. – Режим доступа: http:www.mednet.сom

Гусак Ю.К. Психонейроиммунологические особенности адаптивных механизмов при нормально протекающей беременности [Электронный ресурс] / Ю.К. Гусак, Ю.В. Лазарева, В.Н. Морозов, 2007. - Режим доступа: http:www.mednet.сom

Дубина Е.Е. Некоторые особенности функционирования ферментной антиоксидантной защиты плазмы крови человека / Е.Е. Дубина // Биохимия, 2005. - Вып. 2. – С. 3-18.

Дубинина Е.Е. Биологическая роль супероксидного анион-радикала и супероксиддисмутазы в тканях организма / Е.Е. Дубинина // Успехи современной биологии, 2004. - Т. 108. - №1. – C. 3-17.

Евстигнеева Р.П. Витамин Е как универсальный антиоксидант и стабилизатор биологических мембран / Р.П. Евстигнеева, И.М. Волков, В.В. Чудинова // Биол. Мембраны, 2003. - № 2. С. 119-137.

Евсюкова И.И. Свободнорадикальное окисление у доношенных новорожденных детей с различной патологией / И.И. Евсюкова, Т.В. Савельева // Педиатрия, 2005. - №1. – С. 13-16.

Журавлев А.И. Биоантиокислители в живом организме / А.И. Журавлев. - М.: Наука, 2003. - C. 19-30.

Журавлева Т.Д. Возрастные особенности свободнорадикального окисления липидов и антиоксидантной защиты в эритрацитах здоровых людей / Т.Д. Журавлева, С.Н. Суплотов, Н.С. Киянюк с соавт. // Вопр. мед химии, 2003. - № 5. - C. 17-18.

Зборовская В.А. Антиоксидантная система организма, ее значение в метаболизме / В.А. Зборовская, М.В. Банникова // Вестник РАМН, 2000. - № 6. - С. 53-63.

Зенков Н.К. Окислительный стресс / Н.К. Зенков, В.З. Ланкин, Е.Б. Меньщикова. - М.: Наука, 2004. - 343с.

Качалина Т.С. Прогностическая значимость определения церулоплазмина в третьем триместре беременности [Электронный ресурс] / Т.С. Качалина, Т.А. Морозова, 2006. – Режим доступа: http: www.iprit.ru/ chemical agents action=1179

Кения М.П. Роль низкомолекулярных антиоксидантов при окислительном стрессе / М.П. Кения, А.И. Лукаш, Е.П. Гуськов // Успехи современной биологии, 1993. - Т. 113. - № 4. - С. 456-468.

Колесниченко Л.С. Глутатионтрансферазы / Л.С. Колесниченко, В.И. Кулинский // Успехи совр. Биологии, 2004. - Т. 107. - вып. 2. - С. 179-193.

Лакин Г.Ф. Биометрия / Г.Ф. Лакин. - М.: Высш. школа, 1998. - 293с.

Меньщикова Е.Б. Антиоксиданты и ингибиторы радикальных окислительных процессов / Е.Б. Меньщикова, Н.К. Зенков // Успехи соврем. Биологии, 1993. - Т. 113. - №4. - C. 442-453.

Меньщикова Е.Б. Окислительный стресс. Прооксиданты и антиоксиданты. / Е.Б. Меньщикова, В.З. Ланкин, Н.К. Зенков с соавт. - М.: «Слово», 2006. – 553 с.

Мусаев А.Т. Диагностика гипоксии плода по данным показателей перекисного окисления липидов и антиокислительной активности / А.Т. Мусаев // Педиатрия, 2004. - № 12. – С. 88-96.

Осипов А.Н. Активные формы кислорода и их роль в организме / А.Н. Осипов, О.А. Азизова, Ю.А. Владимиров // Успехи соврем. биологии, 2003. - Т. 31. - C. 180-208.

Осипов А.Н. Образование гидроксильных радикалов при взаимодействии гипохлорита с ионами железа / А.Н. Осипов, Э.Ш. Якутова, Ю.А. Владимиров // Биофизика, 2003. – Т. 38. - вып 3. – С. 390-396.

Петрович Ю.А. Свободнорадикальное окисление и его роль в патогенезе воспаления, ишемии и стресса / Ю.А. Петрович, Д.В. Гуткин // Патол. физиол. и экперим. Терапия, 2005. - № 5. - С. 85-92.

Савченко А.А. Система мать-плацента-плод. Вопросы функциональной диагностики / А.А. Савченко, Н.М. Титова, Л.А. Новикова с соавт. - Красноярск: РИО КрасГУ, 2006. – 129 с

Соловьева А.Г. Активность альдегиддегидрогеназы в эритроцитах, тромбоцитах и плазме крови крыс в норме и при ожоге / А.Г. Соловьева // Успехи соврем. Естествознания, 2007. - № 12. – С. 12-15.

Стальная И.Д. Метод определения диеновой коньюгации ненасыщенных высших жирных кислот / И.Д. Стальная // Современные методы в биохимии под ред. Ореховича В.Н., 1997. - С. 63-64.

Стальная И.Д. Метод определения малонового диальдегида / И.Д. Стальная, Т.Г. Гаришвили // Современные методы в биохимии под ред. Ореховича В.Н., 1997. - C. 66-68.

Суханова Т.А Патохимия клетки / Т.А. Суханова // Успехи соврем. биологии, 2004. – Т. 40. – С. 82-104.

Тиунов Л.А. Механизмы естественной детоксикации и антиоксидантной защиты / Л.А. Тиунов // Вестн. РАМН, 1995. - № 3. - C. 9-13.

Хавинсон В.Х. Свободнорадикальное окисление и старение / В.Х. Хавинсон, В.А. Баринов, А.В. Арутюнян с соавт. - СПб.: Наука, 2003. - С. 10-122.

Шепелев А.П. Роль процессов свободнорадикального окисления в патогенезе инфекционных болезней / А.П. Шепелев, И.В. Корниенко, А.В. Шестопалов с соавт. // Вопр. мед. Химии, 2004. - № 2. - С. 15-17.

Якутова Э.Ш. Образование свободных радикалов при взаимодействии гипохлорита с ионами железа / Э.Ш. Якутова, Е.С. Дремина, С.А. Евгина с соавт. // Биофизика, 2004. – Т. 39. - вып. 2. – С. 275-279.

Abiaka C. Effect of Prolonged Storage on the Activities of Superoxide Dismutase, Glutathione Reductase, and Glutathione Peroxidase / C. Abiaka, F. Al-Awadi, S. Olusi // Clinical Chemistry, 2003. - Vol. 46. - Issue 4 - P. 560-576.

Auchere F. What is the ultimate fate of superoxide anion in vivo? / F. Auchere, F. Rusnak // J. Biol. Inord. Chem., 2005. - Vol. 7 - P. 664-667.

Beyer R. E. The participation of coenzim Q in free radical production and antioxidation / R. E Beyer // Free Radic. Biol. Med., 2004. – Vol. 8. – P. 545-565.

Birringer M. Vitamin E analogues as inducers of apoptosis: structure-function relation / M. Birringer, J. H. EyTina, B A. Salvatore // Br. J. Cancer., 2003. – Vol. 88. – P. 1948-1955.

Carole B. Rudra A prospective study of early-pregnancy plasma malondialdehyde concentration and risk of preeclampsia / Carole B. Rudra, Chunfang Qiu, Robert M. David at аl. // Clinical Biochemistry, 2006. – Vol. 39. – P. 722-726.

Chen R. Microdialysis sampling combined with electron spin resonance for superoxide radical detection in microliter samples / R. Chen, J. T. Warden, J. A. Stonken // Anal. Chem., 2004. - Vol. 76. - P. 4734-4740.

Cord J.M. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein) / J. M. Cord, I. Fridovich // J. Biol. Chem., 2000. - Vol. 244. - Issue 22. - P. 6049-6055.

Dix T.A. Mechanisms and biological significance of lipid peroxidation initiation / T.A. Dix, J. Aikens // Chem. Res. Toxicol., 2005. - Vol. 6. - Р. 2-18.

Eisenberg W. C. Cytogenetic effects of singlet oxygen / W. C. Eisenberg, K. Taylor, R. R. Guerrero // J Photochem. Photobiol., 2002. – Vol. 16. – P. 381-384.

Galeotti T. Oxy-radical metabolism and control of tumour growth / T. Galeotti, L. Masotti, S. Borello // Xenobiotika, 2003. – Vol. 21. – P. 1041-1052.

Gutteridge J. M. C. Lipid peroxidation and antioxidation as biomarkers of tissues damage / J. M. C. Gutteridge // Clinikal Chemistry, 2005. - Vol. 41. - №12. - P. 1819-1828.

Halliwell B. Oxygen toxiciti, oxygen radicals, transition metals and disease / B. Halliwell, J. M. C Gutteridge // Biochem., 2004. – Vol .215. - P. 1-14.

Kira, Y. Association of Cu-Zn-type superoxide dismutase with mitochondria and peroxisomes / Y.Kira, E. F. Sato, M. Inoue // Arsh. Biochem. Biophys., 2003. – Vol. 399. – P. 96-102.

Klebanoff, S. J.Myeloperoxidase: role in neutrophil – mediated toxicity / S. J. Klebanoff // Molecular Biologi and Infectious Diseases., 2006. – Vol. 24. - P. 283-289.

Krsek-Staples, J.A. Ceruloplasmin inhibits carbonyl formation in endogenous cell proteins / J. A. Krsek-Staples, R. O. Wbster // Free Radic Biol. Med., 2004. - Vol. 14. - Р. 115-25.

Maiorino, M. Prooxidant role of vitamin E in copper induced lipid peroxidation / M. Maiorino, A. Zamburlini, A. Roveri // FEBS Lett., 2005. – Vol. 330. – P. 174-176.

Melov, S. Animal models of oxidative stress, aging and therapeutic antioxidant interventions / S. Melov // Int. J. Biochem. Cell Biol., 2003. – Vol. 34. – P. 1395-1400.

Meral, A. Lipid peroxidation and antioxidant status in beta-thalassemia / A. Meral, P. Tuncel, E. Surmen-Gur // Pediatr. Hematol. Oncol., 2000. - Vol. 17. - P. 687-693.

Michiels, C. Cytotoxicity of linoleic acid peroxide, malondialdehyde and 4-hydroxynonenal towards human fibroblast / C. Michiels, J. Remacle // Toxicology, 2004. - Vol. 66. - №2. - P. 225-234.

Okado-Matsumoto, A. Subcellular distribution of superoxide dismutases in rat liver: Cu,Zn-SOD in mitochondria / A. Okado-Matsumoto, I. Fridovich // J. Biol. Chem., 2003. - Vol. 276. - P. 38388-38393.

Padayatty, S. J. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention / S. J. Padayatty, A. Katz, Y. Wang // Journal of the American College of Nutrition, 2003. - Vol. 22. - Р. 18-35.

Thomas, J. P. Enzymatic reduction of phospholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins / J. P. Thomas, P. G. Geiger, M. Maiorino et al. // Biochim. Biophys. Acta., 2006. – Vol. 1045. – P. 252-260.

Tohoku, J. Nitric Oxide, Lipid Peroxides, and Uric Acid Levels in Pre-Eclampsia and Eclampsia / J Tohoku // Biochem., 2004. – Vol. 15. - P. 87-92.

Ursini, F. The role of selenium peroxidases in the protection against oxidative damage of membranes / F. Ursini, A. Bindoli // Chem. Phys. Lipids., 2005. – Vol. 44. – P. 255-276.

Wendel, T. Enzimes acting against reactive oxygen / A Wendel // Enzymes, 2004. – Vol. 34. – P. 161-167.

Young-Ju Kim Oxidative stress in pregnant women and birth weight reduction / Young-Ju Kim, Yun-Chul Hong, Kwan-Hee Lee // Reproductive Toxicologi, 2005. – Vol. 19. – P. 487-492.


SUMMARY

The present work is devoted to the mechanisms of lipid peroxidation and antioxidant defence. A special attention is paid to the experimental research of the products of lipid peroxidation.

The purpose of this work is measuring of the level of MDA and DС in blood plasma of women in different stages of pregnancy.

The maintenance of a recreation center DС and MDA in plasma of blood of not pregnant women has made 0,26 - 0,54 mmol/l and 0,64-1,28 µmol/l accordingly.

The level of a recreation center in plasma of blood in I and II trimesters of pregnancy authentically raises on 74 and 151 % accordingly in comparison with group of the control. In III trimester concentration DС reaches the maximum and makes 1,07 mmol/l.

Maintenance MDA in plasma of blood in I, II, III trimesters of pregnancy progressively increases for 77, 97, 160 % accordingly in comparison with group of not pregnant women.

 



Дата: 2019-05-28, просмотров: 219.