Введение
В настоящее время существует ряд методов исследования микроциркуляторного русла. Среди них выделяют микроскопические техники, в частности офтальмоскопия, компьютерная ТV-микроскопия сосудов конъюнктивы глазного яблока, ногтевого ложа, сосудов кожи. Они позволяют оценить структуру и диаметр микрососудов, состояние их тонуса, выявить различные внутри и вне сосудистые изменения (замедление кровотока, стаз, липидные включения и т.д.). Ряд методов позволяет определить линейную скорость кровотока. Однако данные методы исследования не позволяют оценить тканевой кровоток в целом, выявить особенности его регуляции. Существуют методы оценки тканевого кровотока, в том числе окклюзионная плетизмография, вымывание радиоактивных изотопов, флюорисцентная микроангиография, введение меченых микросфер и т.д. Однако некоторые из них нашли применение лишь в экспериментальной медицине из-за сложности применения у человека, другие связаны с необходимостью использования дорогостоящей техники. Кроме того, вышеперечисленные методы исследования микрокровотока позволяют лишь косвенно оценить особенности регуляции периферической гемодинамики.
Использование приборов на основе доплеровского эффекта является наиболее распространенным и удобным неинвазивным методом исследования кровотока, который позволяет выявить особенности регуляции кровотока.
В данной дипломной работе необходимо разработать прибор для измерения кровотока на основе доплеровского эффекта, в котором применяется ультразвуковые волны.
Цель дипломной работы - разработать прибор для измерения кровотока, основанный на эффекте Доплера.
Исходя из цели основными задачами дипломной работы являются:
рассмотрение сущности доплеровского эффекта;
рассмотрение этапов развития доплеровских методов, а также основных принципов построения доплеровской аппаратуры;
рассмотрение электроакустических принципов построения доплеровских приборов;
литературный обзор возможных типов преобразователей для приборов измерения кровотока;
выбор функциональной схемы прибора;
разработка электрической принципиальной схемы прибора;
разработка конструкции измерительного преобразователя;
технико-экономическое обоснование разработки;
выявление отрицательных факторов при работе приборами, основанными на эффекте Доплера.
При написании дипломной работы использовался большой объем источников информации: учебники, справочная литература, нормативные документы, периодические и монографические издания специалистов.
Актуальность, цель и задачи, информационная база предопределили структуру дипломной работы. Она состоит из шести глав. Первая глава посвящена теоретическим аспектам доплерографии. Вторая глава включает выбор функциональной схемы прибора. Третья глава носит проектный характер и посвящена разработке схемы электрической принципиальной для прибора, а также расчету основных параметров схемы. В четвертой главе разрабатывается конструкция измерительного преобразователя. Пятая глава посвящена экономической стороне разработки - технико-экономическое обоснование разработки. В шестой главе рассматриваются вопросы безопасности жизнедеятельности и экологичности разработки.
Теоретическая часть
Сущность эффекта Доплера
Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.
Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.
Сущность эффекта Доплера, применяемого в медицинской практике, сводится к следующему. Ультразвуковые колебания, генерируемые пьезоэлементами с определенной заданной частотой, распространяются в исследуемом объекте в виде упругих волн. По достижении границы между 2 средами, характеризующимися различным акустическим сопротивлением, часть энергии переходит во вторую среду, а часть ее отражается от границы раздела сред. При этом частота колебаний, отраженных от неподвижного объекта, равна первоначальной частоте генерируемых ультразвуковых импульсов. Если объект движется с определенной скоростью по направлению к источнику ультразвуковых импульсов, то его отражающая поверхность соприкасается с ультразвуковыми импульсами чаще, чем при неподвижном положении объекта. В результате этого частота отраженных колебаний превышает частоту генерируемых ультразвуковых импульсов. Напротив, при движении отражающих поверхностей от источника излучения частота отраженных колебаний становится меньше испускаемых импульсов. Разница между частотой генерируемых и отраженных импульсов называется допплеровским сдвигом. Допплеровский сдвиг имеет положительные значения при движении объекта по направлению к источнику ультразвуковых колебаний и отрицательные - при движении от него.
В медицине эффект Допплера в основном применяется для измерения скорости движения крови. Причем отражающей поверхностью в данном случае являются в основном эритроциты.
Дуплексные системы
Простейшая техническая реализация дуплексного режима состоит в механическом креплении под фиксированным углом доплеровского датчика к корпусу двухмерного сканирующего датчика. При этом обеспечивается синхронное, независимое функционирование каждого из датчиков. Доплеровский датчик обеспечивает как непрерывный, так и импульсный режим работы. При этом направление излучения обозначается на экране выделенной линией, а зона интереса в импульсном режиме - двумя маркерами или стробом. Дуплексный режим может быть реализован за счет использования в разнесенные временные интервалы одного и того же пьезокерамического преобразователя двухмерного датчика, как в сканирующем, так и в доплеровском режиме.
При конструировании дуплексных датчиков необходимо учитывать и геометрические требования. Как известно, для получения двухмерного изображения сосуда, оптимальным углом между ультразвуковым лучом и сосудом является 90°.
Решение проблемы устранения наложения частот при работе в импульсном режиме с высокоскоростными потоками достигают за счет применения нескольких элементов в доплеровском излучателе. Конструктивно данную задачу реализуют путем использования матричных излучателей.
Рис.4. Варианты конструктивного исполнения дуплексных датчиков: а - секторный датчик с механическим креплением доплеровского канала; б - линейный датчик с механическим креплением доплеровского канала; в - электронный датчик со встроенным доплеровским каналом; г - электронный датчик с фазированной решеткой; д - совмещенный датчик с механическим сканированием; е - дуплексный датчик с водной задержкой. Штрихпунктиром показано направленное доплеровское излучение, пунктиром обозначена область сканирования.
Различные варианты конструктивного исполнения дуплексных датчиков приведены на рис.4.
На рис.4а приведен простейший вариант крепления на корпусе двухмерного механического датчика независимого доплеровского излучателя. Данная конструкция является оптимальной с точки зрения развязки электроакустических параметров датчиков, но имеет меньшие возможности по изменению геометрии доплеровского излучения и временной синхронизации работы излучателей, а также создает некоторые конструктивные неудобства для пользователя. Аналогичные преимущества и недостатки характерны для дуплексного датчика с электронным линейным сканированием.
Наиболее универсальной по областям применения является конструкция электронного датчика с фазированной решеткой. Каждый из элементов решетки может работать как в непрерывном, так и в импульсном режиме доплеровского излучения и в зависимости от временной последовательности управляющих импульсов изменять произвольно направление излучения.
Приборы с режимом дуплексного сканирования позволяют успешно решать задачи пространственной локализации исследуемого сосуда и получать результаты спектрального анализа доплеровских частот в объективно определенной зоне интереса. Определение размеров исследуемого сосуда по двухмерной эхограмме позволяет получить оценку объемных показателей кровотока.
Для решения задачи получения "реальных" доплеровских изображений - получения двухмерной картины распределения значений скоростей кровотока в выбранном сечении - используют методы ЦДК.
Требования к конструкции ультразвукового датчика
Согласно анализу технического задания датчик предназначен для генерирования ультразвуковых колебаний и приема отраженных от исследуемых объектов эхосигналов. Генерация ультразвуковых колебаний и приема эхосигналов в датчике будет осуществляться электроакустическим преобразователем. Благодаря своим достоинствам (большая эффективность, возможность изготовления элементов любой формы и возбуждения различных видов колебаний, широкий частотный диапазон) чаще всего на практике применяют пьезоэлектрические преобразователи.
В нашем случае будет использоваться совещенный пьезоэлектрический преобразователь - генерация ультразвуковых колебаний и приема эхосигналов в датчике осуществляется одной и той же пластиной. Пьезопластина работает на пьезоэлектрическом эффекте, который заключается в том, что под действием механических напряжений на поверхности пластины появляются электрические заряды, величина которых прямо пропорционально зависит от величины деформации пластины.
Для обеспечения возможности сканирования в определенном секторе в датчике используется механизм механического секторного сканирования, в который входят электромотор и механизм преобразования вращательного движения в обратно-поступательное, который соединяется с конструкцией преобразователя. В датчике используется датчик определения положения преобразователя, который определяет координаты положения преобразователя в зависимости от его угла наклона.
Область пространства, в котором колеблется пьезоэлемент, должна быть заполнена звукопрозрачной жидкостью, в которой скорость распространения ультразвуковой волны близка к скорости распространения в мягких тканях, для уменьшения потери энергии ультразвука при излучении в среду. Для защиты от повреждений движущегося пьезоэлемента, к корпусу должен прикрепляться защитный колпачок, сделанный из прочного звукопроницаемого материала.
Для безопасности использования корпус датчика должен быть изготовлен из пластмассы. Так же материал корпуса должен быть достаточно прочным для защиты внутренних элементов при ударах.
Для электромагнитной совместимости датчик необходимо экранировать, для этого внутреннюю сторону корпуса необходимо металлизировать и исключить возможность соединения корпуса с электродом пьезопластины.
Также должны быть выполнены общие требования, предъявляемые к материалам для изготовления медицинских приборов:
1) биологическая совместимость материала и среды, в которой он должен функционировать (отсутствие токсических реакций, аллергии);
2) стабильность функциональных свойств материала;
3) возможность стерилизационной обработки с целью соблюдения правил санитарии без изменения свойств и формы материала или изделия.
Исходные данные для расчетов
Для расчета основных параметров пьезоэлектрического преобразователя приведем основные параметры пьезокерамики ЦТС-19:
скорость звука - 3120 м/с;
добротность Qк - 50;
толщинный коэффициент электромеханической связи Kt - 0,54;
пьезомодуль d33 - 100×1012 Кл/Н;
упругий модуль Н/м2;
диэлектрическая проницаемость 1060;
тангенс угла диэлектрических потерь tg - 0,02;
плотность р - 6000 кг/м3.
Измерительный преобразователь будет работать на частоте 2МГц.
Экономическая часть
Разрабатываемый измеритель скорости кровотока предназначен для использования в медицинских учреждениях для диагностики, планирования хирургического вмешательства и контроля лечения таких заболеваний как: ишемическая болезнь мозга, патологическая извитость сонных артерий, стенозирующие поражения брахиоцефальных артерий и многих других, поэтому разработка прибора актуальна.
Заключение
Целью данного дипломного проекта являлась разработка прибора для измерения кровотока на основе доплеровского эффекта.
В соответствии с целью проекта бы проведен анализ литературных источников (как учебной литературы, так и периодических изданий), в ходе которого была составлена 1-ая глава диплома. В ней приведены причины необходимости измерения скорости кровотока; выявлены заболевания, которые могут быть выявлены в процессе исследования скорости кровотока. Также рассмотрена сущность эффекта Доплера. Проведен анализ методов и аппаратуры, основанных на доплеровском эффекте. Как выяснилось, в настоящее время широко применяются аппараты для измерения кровотока, основанные на эффекте Доплера. Причем существует несколько методов, применяемых в аппаратах. К тому же рассмотрены возможные типы датчиков для данных приборов.
Во второй главе дипломного проекта на основе исследованных схем существующих приборов осуществляется выбор функциональной схемы прибора, а также описание работы прибора на ее основе.
В третьей главе производиться разработка принципиально электрической схемы прибора. Для выбора элементной базы схемы производится расчет основных показателей. После этого рассчитывается надежность схемы, а также среднее время наработки прибора на отказ.
Четвертая глава дипломного проекта посвящена разработке ультразвукового датчика для прибора, в том числе и преобразователя для датчика.
Пятая глава содержит экономическое обоснование разработки нового прибора для измерения кровотока.
Шестая глава направлена на выявление опасных факторов при работе с прибором, а также на разработку мероприятий, которые снижают опасность данных факторов.
Список литературы
1. Энергетическая допплерография - новая диагностическая технология визуализации кровотока. // В сб.: Новые диагностические технологии. Организация службы функциональной диагностики. - Москва. - 1996. - С.32 (соавт.В.П. Куликов).
2. Дуплексное сканирование сосудов с цветным картированием кровотока. // Методические рекомендации для врачей и студентов медицинских ВУЗов. Тип. АОЗТ “Диалог-Сибирь". - г. Барнаул. - 1996. - С.84 (соавт. В.П. Куликов, А.В. Могозов, А.Н. Панов, С.О. Ромашин, Н.В. Устьянцева-Бородихина, Р.В. Янаков).
3. Сравнительная информативность ЦДК и ЭДК. // Новые методы функциональной диагностики (сборник научных трудов) - Барнаул. - 1997. - С.8 (соавт. Е.В. Граф, А.В. Могозов).
4. Диагностика патологии позвоночных артерий при помощи цветного допплеровского картирования и энергетической допплерографии. // В сб.: Новые методы функциональной диагностики. - Барнаул, 1997. - С.13-14 (соавт. А.В. Могозов, Н.Г. Хорев).
5. Шарапов А.А. Построение аппаратуры обработки данных на основе ЦПОС для доплеровского индикатора скорости кровотока. Микроэлектроника и информатика - 97: Часть 1. М.: МГИЭТ (ТУ). 1997. - с.127.
6. Шарапов А.А. Применение "высокочастотных" датчиков в УЗ допплерографии. // "Электроника и информатика - 97". В 2ч. Тезисы докладов.4.1 - М.: МГИЭТ (ТУ), 1997. - с.217, информатизации - 99. Доклады международной конференции Информационные средства и технологии, 19-21 октября 1999г. В 3-х т. т. т.1, с.45 - 49.
7. .П. Хоровиц, У. Хилл. Искусство схемотехники, т 2., Москва, "Мир" 1986. (RS232)
8.Р. Кофлин, Ф. Дрискол. Оперционные усилители и линейные интегральные схемы. Москва, "Мир", 1979.
9. Киясбейли А.Ш. "Частотно временные ультразвуковые расходомеры и счетчики" Москва, "Машиностроение", 1984
10. Макс Ж., "Методы и техника обработки сигналов при физических измерениях" В 2-х томах. Пер. с франц. - М.: Мир, 1983
11. Сотсков Б.С. "Расчет надежности" Москва, "Машиностроение", 1984
13. Ультразвуковая допплеровская диагностика в клинике/ Под. Ред. Никитина Ю.М., Труханова А.И. - Иваново: Издательство МИК, 2004.496 с.: ил.
14. Методическое пособие № 3077 "В помощь дипломнику" на тему: "Безопасность и экологичность". Бакаева Т.Н. Непомнящий, Ткачев И.И., ТРТУ, 2001 г.
Введение
В настоящее время существует ряд методов исследования микроциркуляторного русла. Среди них выделяют микроскопические техники, в частности офтальмоскопия, компьютерная ТV-микроскопия сосудов конъюнктивы глазного яблока, ногтевого ложа, сосудов кожи. Они позволяют оценить структуру и диаметр микрососудов, состояние их тонуса, выявить различные внутри и вне сосудистые изменения (замедление кровотока, стаз, липидные включения и т.д.). Ряд методов позволяет определить линейную скорость кровотока. Однако данные методы исследования не позволяют оценить тканевой кровоток в целом, выявить особенности его регуляции. Существуют методы оценки тканевого кровотока, в том числе окклюзионная плетизмография, вымывание радиоактивных изотопов, флюорисцентная микроангиография, введение меченых микросфер и т.д. Однако некоторые из них нашли применение лишь в экспериментальной медицине из-за сложности применения у человека, другие связаны с необходимостью использования дорогостоящей техники. Кроме того, вышеперечисленные методы исследования микрокровотока позволяют лишь косвенно оценить особенности регуляции периферической гемодинамики.
Использование приборов на основе доплеровского эффекта является наиболее распространенным и удобным неинвазивным методом исследования кровотока, который позволяет выявить особенности регуляции кровотока.
В данной дипломной работе необходимо разработать прибор для измерения кровотока на основе доплеровского эффекта, в котором применяется ультразвуковые волны.
Цель дипломной работы - разработать прибор для измерения кровотока, основанный на эффекте Доплера.
Исходя из цели основными задачами дипломной работы являются:
рассмотрение сущности доплеровского эффекта;
рассмотрение этапов развития доплеровских методов, а также основных принципов построения доплеровской аппаратуры;
рассмотрение электроакустических принципов построения доплеровских приборов;
литературный обзор возможных типов преобразователей для приборов измерения кровотока;
выбор функциональной схемы прибора;
разработка электрической принципиальной схемы прибора;
разработка конструкции измерительного преобразователя;
технико-экономическое обоснование разработки;
выявление отрицательных факторов при работе приборами, основанными на эффекте Доплера.
При написании дипломной работы использовался большой объем источников информации: учебники, справочная литература, нормативные документы, периодические и монографические издания специалистов.
Актуальность, цель и задачи, информационная база предопределили структуру дипломной работы. Она состоит из шести глав. Первая глава посвящена теоретическим аспектам доплерографии. Вторая глава включает выбор функциональной схемы прибора. Третья глава носит проектный характер и посвящена разработке схемы электрической принципиальной для прибора, а также расчету основных параметров схемы. В четвертой главе разрабатывается конструкция измерительного преобразователя. Пятая глава посвящена экономической стороне разработки - технико-экономическое обоснование разработки. В шестой главе рассматриваются вопросы безопасности жизнедеятельности и экологичности разработки.
Теоретическая часть
Необходимость измерения скорости и направления кровотока
Сердечно-сосудистая система состоит из сердца и сосудов - артерий, капилляров и вен. Транспортная функция сердечно-сосудистой системы заключается в том, что сердце (насос) обеспечивает передвижение крови (транспортируемой среды) по замкнутой цепи сосудов (эластических трубок).
В физиологических условиях почти во всех отделах кровеносной системы наблюдается ламинарное, или слоистое течение крови. При таком типе течения жидкость движется вдоль сосуда, причем, все ее частицы перемещаются только параллельно оси сосуда. Линейная скорость кровотока ламинарного типа связана с длиной сосуда, градиентом давления, вязкостью крови, но, главным образом, зависит от диаметра сосуда.
При сокращении сердца кровь поступает из левого желудочка в выходящий тракт (аорту) только во время периода изгнания. В ходе пульсовых колебаний скорость кровотока меняется следующим образом: после открытия аортальных клапанов она резко возрастает, затем к концу периода изгнания падает почти до нуля.
От начала периода расслабления и до закрытия сворок аортального клапана наблюдается кратковременный обратный ток крови в левый желудочек.
Различают объемную и линейную скорости кровотока.
Объемной скоростью Q называют величину, численно равную объему жидкости, протекающему в единицу времени через данное сечение трубы:
(1)
Линейная скорость - представляет путь, пройденный частицами крови в единицу времени:
(2)
Поскольку линейная скорость неодинакова, но сечению трубы, то в дальнейшем речь будет идти только о линейной скорости, средней по сечению.
В покое максимальная скорость кровотока в аорте превышает 100 см/сек, средняя скорость в течение всего периода изгнания около 70 см/сек. Поскольку средняя скорость кровотока обратно пропорциональна поперечному сечению сосудов, она значительно ниже в периферических артериях, и особенно в концевых артериях и артериолах (2 - 10 см/сек). Медленнее всего кровь течет в капиллярах - линейная скорость кровотока в них составляет 0,03 см/сек.
Измерение скорости кровотока в магистральных артериях и венах имеет большое диагностическое значение, поскольку косвенно свидетельствует о патологическом изменении геометрии сосуда и упругих свойствах стенки сосудов. В связи с этим, в клинической практике широко применяются методы для регистрации кровотока в крупных сосудах, а также структурах сердца.
Возможность неинвазивной, объективной и динамической оценки кровотока по сосудам малого калибра остается одной из актуальных задач современной ангиологии и смежных специальностей. От ее решения зависит успех ранней диагностики таких заболеваний, как облитерирующий эндартериит, диабетическая микроангеопатия, синдром и болезнь Рейно. Не менее важным аспектом проблемы эхолокации низкоскоростных потоков крови является мониторинг проходимости микрососудистых анастомозов при реимплантации сегментов конечностей, трансплантации тканевых лоскутов и органов.
Нарушения мозгового кровообращения являются одной из основных причин смертности населения развитых стран. Ишемическая болезнь мозга по распространенности практически соответствует ишемической болезни сердца и составляет около 36% в структуре сердечно-сосудистых заболеваний. Особое место среди причин, приводящих к нарушениям мозгового кровообращения, занимает патологическая извитость сонных артерий. С одной стороны, это связано с ее высокой распространенностью в качестве причины недостаточности мозгового кровообращения, уступающей только распространенности атеросклеротического поражения каротидных артерий. С другой стороны, до сих пор нет единого мнения о гемодинамической значимости деформации сонных артерий и целесообразности ее хирургической коррекции.
Стенозирующие поражения брахиоцефальных артерий в настоящее время занимают второе место по частоте летальных осложнений. Отмечается увеличение количества больных с атеросклеротическим поражением внутренних сонных артерий (ВСА).
Следовательно, успешное предупреждение и эффективное лечение нарушений мозгового кровообращения во многом зависит от диагностики параметров кровотока.
Для измерения скорости и направления кровотока в медицине принято применять приборы и аппараты, которые основаны на эффекте Доплера, который используется как с ультразвуком, так и с лазерным излучением. В нашем дипломном проекте рассматривается применение эффекта Доплера с ультразвуком, который получил значительно более широкое распространение.
Сущность эффекта Доплера рассматривается в следующем пункте теоретической главы.
Сущность эффекта Доплера
Эффект Доплера - изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.
Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемые им волны, то длина волны уменьшается. Если удаляется - длина волны увеличивается.
Сущность эффекта Доплера, применяемого в медицинской практике, сводится к следующему. Ультразвуковые колебания, генерируемые пьезоэлементами с определенной заданной частотой, распространяются в исследуемом объекте в виде упругих волн. По достижении границы между 2 средами, характеризующимися различным акустическим сопротивлением, часть энергии переходит во вторую среду, а часть ее отражается от границы раздела сред. При этом частота колебаний, отраженных от неподвижного объекта, равна первоначальной частоте генерируемых ультразвуковых импульсов. Если объект движется с определенной скоростью по направлению к источнику ультразвуковых импульсов, то его отражающая поверхность соприкасается с ультразвуковыми импульсами чаще, чем при неподвижном положении объекта. В результате этого частота отраженных колебаний превышает частоту генерируемых ультразвуковых импульсов. Напротив, при движении отражающих поверхностей от источника излучения частота отраженных колебаний становится меньше испускаемых импульсов. Разница между частотой генерируемых и отраженных импульсов называется допплеровским сдвигом. Допплеровский сдвиг имеет положительные значения при движении объекта по направлению к источнику ультразвуковых колебаний и отрицательные - при движении от него.
В медицине эффект Допплера в основном применяется для измерения скорости движения крови. Причем отражающей поверхностью в данном случае являются в основном эритроциты.
Дата: 2019-05-28, просмотров: 274.