Регуляторы — это чаще всего логические устройства, воспроизводящие заданную логику управления (алгоритмы управления), а исполнительные механизмы - это силовые устройства, реализующие воздействие на элементы экспериментальной установки или непосредственно на объект изучения в соответствии с заданным алгоритмом.
Иногда эти понятия объединяют и говорят, например, "регулятор напряжения", понимая под этим и логику управления, и силовой элемент, например, в виде силового транзистора или реле (релейный регулятор напряжения).
Существует несколько общепринятых типов регуляторов, которые предназначены для решения различных задач управления:
· релейный (Р) - простейший тип дискретного регулятора, у которого амплитуда выходного сигнала дискретно изменяется только на двух уровнях: Uвых(t) = 0 или Uвых(t) = Uвых(max);
· основанный на широтно-импульсной модуляции (ШИМ) сигналов - это более сложный тип дискретного регулятора, у которого амплитуда выходного сигнала управления также дискретно изменяется только на двух уровнях: Uвыx(t) = 0 или Uвых(t) = Uвых(max), но имеется возможность управления длительностью дискретного состояния, что обеспечивает более высокое качество управления;
· частотный (Ч) - это тип регулятора, у которого выходной сигнал представляет собою изменение частоты в функции входного сигнала, что удобно и необходимо для целого ряда задач управления, например, в области электроники и электротехники;
· пропорциональный (П) - простейший тип аналогового регулятора, у которого выходной сигнал управления пропорционален с заданным коэффициентом входному сигналу Uвых(t) = kUBX(t);
· интегральный (И) - тип аналогового регулятора, у которого выходной сигнал управления пропорционален интегралу входного сигнала UBblx(t) = k2 J UBX(t)dt;
· дифференциальный (Д) — тип аналогового регулятора, у которого выходной сигнал управления пропорционален производной входного сигнала UBblx(t) = k3dUBX(t)/dt;
· пропорционально-интегральный (ПИ) — тип аналогового регулятора, у которого выходной сигнал управления пропорционален с заданным коэффициентом входному сигналу и его интегралу U.ux(t) = k,Ulx(t) + k2 J UBX(t) dt;
· пропорционально-дифференциальный (ПД) — тип аналогового регулятора, у которого выходной сигнал управления пропорционален с заданным коэффициентом входному сигналу и его производной UBblx(t) = k|UBX(t) + k3dUBX(t)/dt;
· пропорционапъно-интегрально-дифферет^иальный (ПИД) — тип аналогового регулятора, у которого выходной сигнал управления пропорционален с заданными коэффициентами входному сигналу, его интегралу и производной UBb,x(t) = k|UBX(t) + k2 J U.,(t) dt + k3dUBX(t)/dt;
· адаптивный (А) — это наиболее сложный тип регулятора, у которого структура и параметры могут изменяться в зависимости от значений контролируемых параметров или каких-либо внешних условий.
Реализация различных типов регуляторов возможна как простейшими аппаратными средствами, например, с использованием операционных усилителей, цифро-аналоговых преобразователей, программируемых таймеров и пр., так и с использованием микропроцессорных средств.
Последнее решение более предпочтительно, поскольку позволяет дополнительно реализовать более сложные адаптивные алгоритмы программного изменения как структуры регулятора, так и его параметров. Особое внимание при выборе средств управления следует обращать на возможность реализации нескольких разнородных каналов управления. Здесь также предпочтительно использование микроконтроллеров. Например, микроконтроллер типа РСВ80С552 фирмы Philips имеет два независимых канала ШИМ, два независимых цифро-аналоговых преобразователя и три канала частотного управления. Спектр исполнительных механизмов достаточно широк и обычно ориентирован на прикладные области применения:
· в теплотехнике ~ устройства нагрева, охлаждения и т.д.;
· в электротехнике - реле, контакторы, электродвигатели, электронные преобразователи частоты и напряжения и пр.;
· в гидравлике — насосные и компрессорные агрегаты, задвижки и вентили и т.д.
Общим требованием ко всем исполнительным механизмам является возможность их автоматического управления, что не всегда просто реализуется и требует иногда разработки уникальных силовых устройств. Например, для реализации различных алгоритмов управления электроприводами потребовалось разработать универсальный многофазный преобразователь частоты и напряжения мощностью 1000 Вт, у которого регулируются:
· уровень выходного напряжения в диапазоне 0...220 В с дискретностью не хуже 1 В;
· частота выходного напряжения в диапазоне 0...1000 Гц с дискретностью не хуже 1 Гц;
· тип выходного напряжения (постоянное, переменное);
· форма выходного напряжения (меандр, ступенчатая, квазисинусоидальная).
Дата: 2019-05-28, просмотров: 192.