ВИЗУАЛИЗАЦИЯ И РЕГИСТРАЦИЯ ИНФОРМАЦИИ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

ВВЕДЕНИЕ

Современная функциональная диагностика располагает самыми различными инструментальными методами исследования. Некоторые из них доступны только узкому кругу специалистов. Самым распространенным и доступным методом исследования является электрокардиография, используемая в основном в кардиологии. Однако она с успехом применяется и при исследовании больных с заболеваниями легких, почек, печени, эндокринных желез, системы крови, а также в педиатрии, гериатрии, онкологии, спортивной медицине и т. д. Ежегодно производят десятки миллионов электрокардиографических исследований. Этот метод в настоящее время стал достоянием широкого круга врачей – не только специалистов, занимающихся функциональной диагностикой, но и кардиологов, терапевтов, педиатров, спортивных врачей, физиологов и т. д.

Медицинскую практику можно представить как многоэтапный многократно повторяющийся лечебно-диагностический процесс, целью которого является выявление симптомов заболевания и устранение их причин. Одним из важных моментов этапа сбора данных о состоянии здоровья пациента является снятие и анализ электрокардиограммы (ЭКГ). Существует большая гамма приборов для снятия, а в ряде приборов и анализа, ЭКГ. Следует отметить, что особенно эффективное использование медицинской аппаратуры на современном этапе стало возможно благодаря появлению микрокомпьютеров, поскольку приборы на основе микро-ЭВМ способны производить сложную математическую обработку данных. Кроме того, такие приборы позволяют представить большой объём информации различной степени сложности в ясной и доступной для медицинского персонала форме, что является непременным условием для быстрого принятия необходимых решений.

 

ОПИСАНИЕ ПЛАНА ОБОРУДОВАНИЯ ДЛЯ СНЯТИЯ ЭЛЕКТРОКАРДИОГРАММЫ

Основным инструментом исследования динамики развития сердечно-сосудистых заболеваний является электрокардиограф, так как он позволяет изучать сердечную деятельность пациента в любых условиях без проникновения непосредственно в область сердца, т.е. неинвазивным путём.

При помощи электрокардиографа можно:

- определить частоту сердечных сокращений и таким образом,
своевременно выявлять любые нарушения ритма сердца;

- обнаруживать нарушения электрической проводимости сердца
(типичная диагностика), которые могут приводить к снижению его
насосной функции и даже к ее полному прекращению;

- выявлять дефекты или повреждения в сердечной мышце,
вызванные хроническим или острым заболеванием.

Принципы действия электрокардиографа состоят в регистрации электрических сигналов, возникающих при сокращении сердечной мышцы, причём величина этих сигналов характеризует электрическую активность сердца.

Для измерения сигналов используют, как минимум, два электрода, которые располагают на поверхности тела пациента.

Нормально работающее сердце генерирует электрические импульсы, создающие электрическое поле. Математически это поле может быть представлено в виде вектора определенной величины и направления. Векторное представление электрических потенциалов сердца впервые было разработано известным датским физиологом Эйнтховеном: измеряя разности потенциалов между руками и между каждой рукой и левой ногой (т.е. вдоль каждой из сторон треугольника Эйнтховена), можно определить величину и направление вектора электрического поля сердца.

Разности потенциалов между вершинами равностороннего треугольника называют стандартными передними отведениями и обычно обозначают римскими цифрами I, II, Ш. Усиленные униполярные отведения позволяют измерять разности потенциалов между одной из вершин треугольника и средними значениями потенциалов на двух других вершинах. В случае отведений I, II, Ш изучается изменение вектора электрического поля сердца во фронтальной плоскости; в случае шести дополнительных отведении, называемых грудными, изучаются изменения вектора электрического поля сердца в поперечной плоскости.

Опытному терапевту для диагностирования любой сердечной патологии, как правило, достаточно стандартной 12-канальной записи ЭКГ, т.е. шести грудных, трёх усиленных униполярных (aVR, aVF, aVL) и трёх стандартных (I, II, Ш) отведений.

Нормальная электрокардиограмма (ЭКГ):

Зубец Р характеризует охват возбуждением мускулатуры предсердий. Начальная часть зубца Р соответствует возбуждению правого предсердия, за­тем следует возбуждение левого предсердия. Про­цесс реполяризации предсердий не находит отобра­жения на ЭКГ, так как он наслаивается по времени на процесс деполяризации желудочков (комплекс QRS) К концу зубца Р предсердия максимально возбужде­ны, и начинается распространение волны возбужде­ния по АВ-узлу и пучку Гиса. Зубец Q свидетельству­ет о возбуждении межжелудочковой перегородки, которое быстро распространяется по волокнам Пуркинье на желудочки сердца Конечная часть комплекса QRS соответствует полной деполяризации желудоч­ков. Охват желудочков возбуждением предшествует их механическому сокращению. Сегмент ST опреде­ляется от конца зубца S и в норме изоэлектричен Зубец Т отражает процесс быстрой реполяризации желудочков. Значение зубца U неясно.

 

Таблица 1. Обозначения элементов нормальной ЭКГ.

 

 

предсердия

желудочки

Зубец Р     комплекс QRS Сегмент ST Зубец Т Зубец U
           

Интервал PQ Интервал QT  

 

Р-зубец соответствует сокращению предсердий, вызванному электрическим импульсом, который возникает в синоатриальном узле и по проводящей системе сердца достигает предсердий; P-R - интервал соответствует возбуждению атриовентрикулярного узла, a QRS - комплекс - сокращению желудочков; Т-зубец соответствует фазе восстановления желудочков. С помощью ЭКГ могут быть установлены различные нарушения в проводящей системе сердца, а, следовательно, и их причины.

 





ОСНОВНЫЕ ФУНКЦИИ СЕРДЦА

Сердце обладает рядом функций, определяющих особенности его работы.

1) Функция автоматизма

Функция автоматизма заключается в способности сердца вырабатывать электрические импульсы при отсутствии внешних раздражений.

Функцией автоматизма обладают клетки синоатриального узла (СА-узла) и проводящей системы сердца: атриовентрикулярного соединения (АВ-соединения), проводящей системы предсердий и желудочков. Они получили название клеток водителей /пейсмекеров (от англ., pacemaker— водитель). Сократительный миокард лишен функции ав­томатизма.

Если в норме ТМПД сократительных мышечных клеток в течение всей диастолической фазы (фазы 4 ТМПД) стабильно поддерживается на одном и том же уровне, равном примерно-90 mV, то для волокон водителей
ритма (пейсмекеров) характерно медленное спонтанное уменьшение
мембранного потенциала в диастолу, как это показано на рисунке 2. Этот
процесс носит название медленной спонтанной диастолической деполяризации и возникает в результате особых свойств мембраны пейсмекеров - постепенного самопроизвольного увеличения в диастолу проницаемости мембраны для ионов Na, медленно входящих в клетку. В результате скопления в клетке все большего количества положительных ионов отрицательный заряд внутренней поверхности клеточной мембраны частично нейтрализуется, и разность потенциалов между наружной и внутренней поверхностью мембраны (ТМПП) постепенно уменьшается. Как только ТМПП достигнет критического уровня (примерно 60 mV)9 проницаемость мембраны для ионов Na резко и быстро возрастает, что приводит к возникновению быстрой лавинообразной деполяризации клетки (фаза О ТМПД) - ее возбуждению, которая является импульсом к возбуждению других клеток миокарда.   Критический потенциал покоя


Рисунок 2. Спонтанная диастолическая деполяризация волокон водителей ритма - пейсмекеров. а) - ТМПД мышечных клеток; б) - ТМПЛ клеток пейсмекеров.

 

Понятно, что чем выше скорость спонтанной диастолической деполяризации, тем чаще в клетках водителя ритма возникают электрические импульсы. В норме максимальной скоростью диастолической деполяризации и максимальной автоматической активностью обладают клетки СА-узла, который вырабатывает электрические импульсы с частотой около 60 -80 в минуту. Это центр автоматизма первого порядка.

Функцией автоматизма обладают некоторые участки в предсердиях и АВ-соединение зона перехода атриовентрикулярного узла (АВ-узла) в пучок Гиса (по международной анатомической номенклатуре - предсердно-желудочковый пучок)

Эти участки проводящей системы сердца, являющиеся центрами автоматизма второго порядка, могут продуцировать электрические импульсы с частотой 40-60 в минуту. Следует подчеркнуть, что сам АВ-узел, также входящий в состав АВ-соединения, не обладает функцией автома­тизма.

 

Межпредсердный пучок (Бахмана)

Левая передняя ветвь пучка Гиса


              Правая ножка пучка Гиса

левая задняя ветвь пучка Гиса


АВ-узел

Межузловые проводящие тракты (Бахмана Венкебаха, Тореля)

 


 

                                АВ-соединение                                

                    Правая ножка пучка Гиса

 

Рисунок 3. Проводящая система сердца

 

Наконец, центрами автоматизма третьего порядка, обладающими самой низкой способностью к автоматизму (25-45 импульсов в минуту), являются нижняя часть пучка Гиса, его ветви и волокна Пуркинье. Однако в норме возбуждение сердца происходит только в результате импульсов, возникающих в волокнах СА-узла, который является единственным нормальным водителем ритма. Дело в том, что в условиях сравнительно частой им-пульсации СА-узла подавляется автоматизм клеток АВ-соединения, пучка Гиса и волокон Пуркинье. Последние являются только потенциальными, или латентными, водителями ритма. При поражениях СА-узла функцию водителя ритма могут взять на себя нижележащие отделы проводящей системы сердца - центры автоматизма II и даже III порядка.

1. Все волокна проводящей сметены сердца (кроме средней части
АВ-узла) потенциально обладают функцией автоматизма.

2. В норме единственным водителем ритма является СА-узел,
который подавляет автоматическую активность остальных
(эктопических) водителей ритма сердца.

На функцию СА-узла и других водителей ритма большое влияние оказывает симпатическая и парасимпатическая нервная система: активизация симпатической системы ведет к увеличению автоматизма клеток СА-узла и проводящей системы, а парасимпатической системы - к уменьшению их автоматизма.

2) Функция проводимости

Функция проводимости - это способность к проведению возбужде-ния, возникшего в каком-либо участке сердца, к другим отделам сердечной мышцы.

Функцией проводимости обладают как волокна специализированной проводящей системы сердца, так и сократительный миокард; однако в последнем случае скорость проведения электрического импульса значительно меньше.

Следует хорошо усвоить последовательность и особенности распространения возбуждения по различным отделам проводящей системы сердца. В норме волна возбуждения, генерированного в клетках СА-узла, распространяется по короткому проводящему пути на правое предсердие, по трем межузловым трактам - Бахмана, Венкебаха и Тореля - к АВ-узлу и по межпредсердному пучку Бахмана - на левое предсердие. Возбуждение распространяется по этим проводящим трактам в 2-3 раза быстрее, чем по миокарду предсердий. Общее направление движения волны возбуждения - сверху вниз и несколько влево от области СА-узла к верхней части АВ-узла. Вначале возбуждается правое предсердие, затем присоединяется левое, в конце возбуждается только левое предсердие (рисунок 4). Скорость распространения возбуждения здесь невелика и составляет в среднем около 30 - 80 см-с"1. Время охвата волной возбуждения обоих предсердий не превышает 0,1 с.

1. Направление распространения волны возбуждения по предсердиям - сверху вниз и немного влево.

2. Вначале возбуждается правое, затем правое и левое предсердия, в конце - только левое предсердие.

3 Время охвата возбуждением предсердий не превышает в норме 0,1 с.

В АВ-узле и особенно в пограничных участках между АВ-узлом и пучком Гиса происходит значительная задержка волны возбуждения, скорость проведения не более2-5 см с". Задержка возбуждения в АВ-узле способствует тому, что желудочки начинают возбуждаться только после окончания полноценного сокращения предсердий и желудочков. Малая скорость проведения электрического импульса в АВ-узле обусловливает и другую особенность его функционирования: АВ-узел может «пропустить» из предсердий в желудочки не более 180 - 200 импульсов в минуту. Поэтому при учащении сердечного ритма более 180 - 200 ударов в минуту некоторые импульсы из предсердий не достигают желудочков, наступает так называемая атриовентрикулярная блокада проведения. В этом отношении АВ-узел является одним из самых уязвимых отделов проводящей системы сердца

1. В АВ - узле происходит физиологическая задержка волны возбуждения, определяющая нормальную временную последовательность возбуждения предсердий и желудочков.

2. При учащении сердечных импульсов, исходящих из СА-узла или предсердий, бол eel 80-220 в минуту, даже у здорового человека может наступить частичная (атриовентрикулярная) блокада проведения электрического импульса от предсердий к желудочкам. От АВ-узла волна возбуждения передается на хорошо развитую внутрижелудочковую проводящую систему, состоящую из предсердно-желудочкового пучка (пучка Гиса), основных ветвей (ножек) пучка Гиса и волокон Пуркинье.

 

 

Рисунок 4. Распространение возбуждения по предсердиям. а) - начальное возбуждение правого предсердия; б) - возбуждение правого и левого предсердий; в) конечное возбуждение левого предсердия. Красным цветом показаны возбужденные (заштрихованные) и возбуждающиеся в настоящий момент (сплошные) участки Р12, РЗ - моментные векторы деполяризации предсердий.

 

В норме скорость проведения по пучку Гиса и его ветвям составляет 100 -150 см-с ", а по волокнам Пуркинье -300 - 400 см-с "!. Большая скорость проведения электрического импульса по проводящей системе желудочков способствует почти одновременному охвату желудочков волной возбуждения и наиболее оптимальному и эффективному выбросу крови в аорту и легочную артерию. В норме общая продолжительность деполяризации желудочков колеблется от 0,06 до 0,10 с.

Для правильного понимания генеза различных зубцов ЭКГ
необходимо хорошо знать нормальную последовательность охвата
возбуждением (деполяризацией) миокарда желудочков. Поскольку
волокна Пуркинье преимущественно располагаются в субэндокардиаль-ных отделах желудочков, именно эти отделы возбуждаются первыми, и отсюда волна деполяризации распространяется к субэпикардиальным участкам сердечной мышцы (рисунок 5). Процесс возбуждения желудочков начинается с деполяризации левой части межжелудочковой перегородки в средней ее трети (рисунок 5а). Фронт возбуждения при этом движется слева направо и быстро охватывает среднюю и нижнюю части межжелудочковой перегородки. Почти одно­временно происходит возбуждение апикальной (верхушечной) области, передней, задней и боковой стенок правого, а затем и левого желудочка. Здесь возбуждение распространяется от эндокарда к эпикарду, и волна деполяризации преимущественно ориентирована сверху вниз и вначале направо, а затем начинает отклоняться влево.

Через 0,04 - 0,05 с волна возбуждения уже охватывает большую часть миокарда левого желудочка, а именно его апикальную область, переднюю, заднюю и боковые стенки Волна деполяризации при этом ориентирована сверху вниз и справа налево (рисунок 5б)

Последними в период 0,06 - 0,08 с возбуждаются базальные отделы левого и правого желудочков, а также межжелудочковой перегородки. При этом фронт волны возбуждения направлен вверх и слегка направо, как это показано на рисунке 5в.



 0,06 – 0,08 с


0,02 с


 

Рисунок 5. Распространение возбуждения по сократительному миокарду желудочков, а) - возбуждение (деполяризация) межжелудочковой перегородки (002 с); б) - деполяризация верхушек пе­редней задней и боковой стенок желудочков (004—005 с); в) — деполяризация базальных отделов левого и правого желудочков и межжелудочковой перегородки (0,06 - 0,08 с) Цветовые обозначения те же что и на рисунке 4

 

3) Функция возбудимости и рефрактерность волокон миокарда

Возбудимость - это способность сердца возбуждаться под влиянием импульсов.

Функцией возбудимости обладают клетки, как проводящей системы сердца, так и сократительного миокарда. Возбуждение сердечной мышцы сопровождается возникновением ТМПД и, в конечном счете — электрического тока.

В разные фазы ТМПД возбудимость мышечного волокна при поступлении нового импульса различна. В начале ТМПД (фаза 0, 1,2) клетки полностью невозбудимы, или рефрактерны, к дополнительному электрическому импульсу. Это так называемый абсолютный рефракторный период миокардиального волокна, когда клетка вообще неспособна отвечать новой активацией на какой-либо дополнительный электрический стимул. В конце ТМПД (фаза 3) имеет место относительный рефрактерный период, во время которого нанесение очень сильного дополнительного стимула может привести к возникновению нового повторного возбуждения клетки, тогда как слабый импульс остается без ответа. Во время диастолы (фаза 4 ТМПД) полностью восстанавливается возбудимость миокардиального волокна, а его рефрактерность отсутствует.

4) Функция сократимости

Сократимость - это способность сердечной мышцы сокращаться в ответ на возбуждение.

Этой функцией в основном обладает сократительный миокард. В результате последовательного сокращения различных отделов сердца и осуществляется основная - насосная функция сердца.

 


















Эдс


Эдс


Эдс


- II


- III


 

Рисунок 14. Треугольник Эйнтховена, каждая сторона которого является осью того или иного стандартного отведени

 

 

В настоящее время в клинической практике наиболее широко используют 12 отведений ЭКГ, запись которых является обязательной при каждом электрокардиографическом обследовании больного: 3 стандартных отведения, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений.

Стандартные отведения

Стандартные двухполюсные отведения, предложенные в 1913 г. Эйнтховеном, фиксируют разность потенциалов между двумя точками электрического поля, удаленными от сердца и расположенными во фронтальной плоскости - на конечностях. Для записи этих отведений электроды накладывают на правой руке (красная маркировка), левой руке (желтая маркировка) и на левой ноге (зеленая маркировка).

Эти электроды попарно подключаются к электрокардиографу для регистрации каждого из трех стандартных отведений. Четвертый электрод устанавливается на правую ногу для подключения заземляющего провода (черная маркировка).

Стандартные отведения от конечностей регистрируют при следующем попарном подключении электродов

I отведение - левая рука (+) и правая рука (-);

II отведение - левая рука (+) и правая рука (-);

III отведение - левая нога (+) и левая рука (-).

Знаками (+) и (-) здесь обозначено соответствующее подключение электродов к положительному или отрицательному полюсам гальванометра, т. е. указаны положительный и отрицательный полюс каждого отведения.

Как видно три стандартных отведения образуют равносторонний треугольник (треугольник Эйнтховена), вершинами которого являются правая рука, левая рука и левая нога с установленными там электродами. В центре равностороннего треугольника Эйнтховена расположен электрический центр сердца, или точечный единый сердечный диполь, одинаково удаленный от всех трех стандартных отведений.

Гипотетическая линия, соединяющая два электрода, участвующие в образовании электрокардиографического отведения, называется осью отведения. Осями стандартных отведений являются стороны треугольника Эйнтховена. Перпендикуляры, проведенные из центра сердца, т е. из места расположения единого сердечного диполя, к оси каждого стандартного отведения, делят каждую ось на две равные части: положительную, обращенную в сторону положительного (активного) электрода (-) отведения, и отрицательную, обращенную к отрицательному электроду (-). Если ЭДС сердца в какой-либо момент сердечного цикла проецируется на положительную часть оси отведения, на ЭКГ записывается положительное отклонение (положительные зубцы R, Т, Р). Если ЭДС сердца проецируется на отрицательную часть оси отведения, на ЭКГ регистрируются отрицательные отклонения (зубцы Q, S, иногда отрицательные зубцы Т или даже Р).

Для облегчения анализа ЭКГ, зарегистрированных в стандартных отведениях, и ускорения операции разложения вектора ЭДС сердца в электрокардиографии принято несколько смещать оси этих отведений, и проводить их через электрический центр сердца. Получается удобная для дальнейшего анализа трехосевая система координат, в которой угол между осью каждого отведения составляет, как и в традиционном треугольнике Эйнтховена, 60°. Такое небольшое смещение осей стандартных отведений вполне правомочно, так как при перемещении осей параллельно их первоначальному расположению проекция на них сердечного вектора не изменяется.

Усиленные отведения от конечностей

Усиленные отведения от конечностей были предложены Гольдбергером в 1942 г. Они регистрируют разность потенциалов между одной из конечностей, на которой установлен активный положительный электрод данного отведения (правая рука, левая рука или левая нога), и средним потенциалом двух других конечностей. Таким образом, в качестве отрицательного электрода в этих отведениях используют так называемый объединенный электрод Гольдбергера, который образуется при соединении через дополнительное сопротивление двух конечностей.

 

 

Рисунок 15. Трехосевая система координат стандартных отведений. Красным цветом показаны оси трех стандартных отведений от конечностей в треугольнике Эйнтховена (а) и в трехосевой системе координат (б).

 

Три усиленных однополюсных отведения от конечностей обозначают следующим образом:

aVR - усиленное отведение от правой руки; aVL - усиленное отведение от левой руки;

aVF - усиленое отведение от левой ноги.

Оси усиленных однополюсных отведений от конечностей получают, соединяя электрический центр сердца с местом наложения активного электрода данного отведения, т.е. фактически — с одной из вершин треугольника Эйнтховена.

Электрический центр сердца как бы делит оси этих отведений на две равные части положительную, обращенную к активному электроду, и отрицательную, обращенную к объединенному электроду Гольдбергера.

Шестиосевая система координат (по Bayley )

Стандартные и усиленные однополюсные отведения от конечностей дают возможность зарегистрировать изменения ЭДС сердца во фронтальной плоскости, т. е. в плоскости, в которой расположен треугольник Эйнтховена. Для более точного и наглядного определения различных отклонений ЭДС сердца в этой фронтальной плоскости, в частности для определения положения электрической оси сердца, была предложена так называемая шести осевая система координат. Она получается при совмещении осей трех стандартных и трех усиленных отведений от конечностей, проведенных через электрический центр сердца. Последний делит ось каждого отведения на положительную и отрицательную части, обращенные соответственно к активному (положительному) или к отрицательному электроду.

Электрокардиографические отклонения в разных отведения от конечностей можно рассматривать как различные проекции одной и той же ЭДС сердца на оси данных отведений. Поэтому, сопоставляя амплитуду и полярность электрокардиографических комплексов в различных отведениях, входящих в состав шестиосевой системы координат, можно достаточно точно определять величину и направление вектора ЭДС сердца во фронтальной плоскости.

Направление осей отведений принято определять в градусах. За начало отсчета (0°) условно принимается радиус, проведенный строго горизонтально из электрического центра сердца влево по направлению к активному положительному полюсу I стандартного отведения.

 

 

-a


 

Рисунок 16. Формирование шестиосевой системы координат (по Barley).

 

Положительный полюс II стандартного отведения расположен под углом +60°, отведения aVF - под углом +90°, III стандартного отведения - под углом +120°, aVL - под углом -30°. a aVR - под углом -150°. Ось отведения aVL перпендикулярна оси II стандартного отведения, ось I стандартного отведения перпендикулярна оси aVF. а ось aVR перпендикулярна оси III стандартного отведения.

Грудные отведения

Грудные однополюсные отведения, предложенные Wilson в 1934 г., регистрируют разность потенциалов между активным положительным электродом, установленным в определенных точках на поверхности грудной клетки, и отрицательным объединенным электродом Вильсона.

Последний образуется при соединении через дополнительные сопротивления трех конечностей (правой руки, левой руки и левой ноги), объединенный потенциал которых близок к нулю (около 0,2 mV).

Рисунок17. Положение 6 электродов грудных отведений на поверхности грудной клетки

 

Обычно для записи ЭКГ используют 6 общепринятых позиций грудного электрода на передней и боковой поверхности грудной клетки, которые в сочетании с объединенным электродом Вильсона образуют 6 грудных отведений. Грудные отведения обозначаются заглавной латинской буквой V (потенциал, напряжение) с добавлением номера позиции активного положительного электрода, обозначенного арабскими цифрами.

Отведение V1 - активный электрод установлен в четвертом межреберье по правому краю грудины.

Отведение V2 - активный электрод расположен в четвертом межреберье по левому краю грудины.

Отведение V 3 - активный электрод находится между второй и четвертой позицией, примерно на уровне четвертого ребра по левой парастернальной линии.

Отведение V4 - активный электрод установлен в пятом межреберье по левой срединно-ключичной линии.

Отведение V5 - активный электрод расположен на том же горизонтальном уровне, что и V4 по левой передней подмышечной линии.

Отведение V6 - активный электрод по левой средней подмышечной линии на том же горизонтальном уровне, что и электроды отведений V 4 и V 5

 

Рисунок 18. Расположение осей 6 грудных отведений в горизонтальной плоскости

 

Как показано на рисунке 18, ось каждого грудного отведения образована линией, соединяющей электрический центр сердца с местом расположения активного электрода на грудной клетке.

Итак, в клинической электрокардиографии наиболее широкое распространение получили 12 электрокардиографических отведений (3 стандартных, 3 усиленных однополюсных отведения от конечностей и 6 грудных отведений). Электрокардиографические отклонения в каждом из этих отведений отражают суммарную ЭДС всего сердца, т. е. являются результатом одновременного воздействия на данное отведение изменяющегося электрического потенциала в левых и правых отделах сердца, в передней и задней стенке желудочков, в верхушке и основании сердца и т. д.

Дополнительные отведения

Диагностические возможности электрокардиографического исследования могут быть расширены при применении некоторых дополнительных отведений. Их использование особенно целесообразно в тех случаях, когда обычная программа регистрации 12 общепринятых отведений ЭКГ не позволяет достаточно надежно диагностировать ту или иную электрокардиографическую патологию или требует уточнения некоторых количественных параметров выявленных изменений.

Методика регистрации дополнительных грудных отведений отличается от методики записи 6 общепринятых грудных отведений лишь локализацией активного электрода на поверхности грудной клетки. В качестве электрода, соединенного с отрицательным полюсом кардиографа, используют объединенный электрод Вильсона.

Отведения V7-V9 - Активный электрод устанавливают по задней подмышечной (V7), лопаточной (V8) и паравертебральной (V 9) линиям на уровне горизонтали, на которой расположены электроды V4 – V6. Эти отведения обычно используют для более точной диагностики очаговых изменений миокарда в заднебазальных отделах левого желудочка.

Отведения V3R - V6R- грудной (активный) электрод помещают на правой половине грудной клетки в позициях, симметричных обычным точкам расположения электродов V3 -V 6. Эти отведения используют для диагностики гипертрофии правых отделов сердца.

Отведения по Нэбу. Двухполюсные грудные отведения, предложенные в 1938 г. Нэбом, фиксируют разность потенциалов между двумя точками, расположенными на поверхности грудной клетки. Для записи трех отведений по Нэбу применяют электроды, обычно ис­пользуемые для регистрации трех стандартных отведений от конечностей. Электрод, обычно устанавливаемый на правой руке (красная маркировка провода), помещают во втором межреберье по правому краю грудины; электрод с левой ноги (зеленая маркировка) переставляют в позицию грудного отведения V4 (у верхушки сердца), а электрод, располагающийся на левой руке (желтая маркировка), помещают на том же горизонтальном уровне, что и зеленый электрод, но по задней подмышечной линии. Если переключатель отведений электрокардиографа находится в положении I стандартного отведения, регистрируют отведение «Dorsalis» (D). Перемещая переключатель на II и III стандартные отведения, записывают соответственно отведения «Anterior» (А) и «Inferior» (I). Отведения по Нэбу находят применение для диагностики очаговых изменений миокарда задней стенки (отведение D), передней боковой стенки (отведение А) и верхних отделов передней стенки (отведение I).

Прекордиальная картография. В последние годы все большее распространение в клинической практике получает методика регистрации так называемой прекордиальнои картограммы в 35 точках на передней и боковой поверхности грудной клетки. Электроды останавливают пятью горизонтальными рядами от второго до шестого межреберья по 7 электродов в каждом ряду. Электроды располагаются от правой парастернальной до левой задней подмышечной линии.

Прекордиальная картография позволяет исследовать большую зону миокарда, уточнять локализацию очаговых изменений миокарда, а также измерять размеры некротической и периинфарктной зоны при остром инфаркте миокарда.

 





АНАЛИЗ ЭЛЕКТРОКАРДИОГРАММЫ

Анализ любой ЭКГ следует начать с проверки правильности техники ее регистрации.

Во-первых, необходимо обратить внимание на наличие разнообразных помех, которые могут быть обусловлены наводными токами, мышечным тремором, плохим контактом электродов с кожей и другими причинами. Если помехи значительны, ЭКГ следует переснять.

Во-вторых, необходимо проверить амплитуду контрольного милливольта, которая должна соответствовать 10 мм.

В-третьих, следует оценить скорость движения бумаги во время регистрации ЭКГ.

 

Рисунок 24. Помехи, возникающие при регистрации ЭКГ.

 

а - наводные токи - сетевая наводка в виде правильных колебаний с частотой 50 Гц; б - «плавание» (дрейф) изолинии в результате плохого контакта электрода с КОЖЕЙ; в - наводка, обусловленная мышечным тремором (видны неправильные частые колебания). При записи ЭКГ со скоростью 50 мм с"1 мм на бумажной ленте соответствует отрезку времени 0,02 с, 5 мм - 0,1 с, 10 мм - 0,2 с, 50 мм - 1,0 с. В этом случае ширина комплекса QRS обычно не превышает 4-6 мм (0,08-0,12 с), а интервал Q - Т- 20 мм (0,4 с).

При записи ЭКГ со скоростью 25 мм-с"1 мм соответствует временному интервалу 0,04 с (5 мм - 0,2 с), следовательно, ширина комплекса QRS, как правило, не превышает 2 - 3 мм (0,08-0,12 с), а интервала Q-Т- 10 мм (0,4 с).

Чтобы избежать ошибок в интерпретации электрокардиографических изменений, при анализе любой ЭКГ нужно строго придерживаться определенной схемы ее расшифровки, которую следует хорошо запомнить.

Общая схема (план) расшифровки ЭКГ.

I.  Анализ сердечного ритма и проводимости:

1)    оценка регулярности сердечных сокращений;

2)    подсчет числа сердечных сокращений;

3)    определение источника возбуждения;

4)    оценка функции проводимости.

II. Определение поворотов сердца вокруг переднезадней, продольной и поперечной осей:

1)  определение положения электрической оси сердца во фронтальной
плоскости;

2)  определение поворотов сердца вокруг продольной оси;

3)  определение поворотов сердца вокруг поперечной оси.
Ш.Анализ предсердного зубца Р.

IV. Анализ желудочкового комплекса QRST

1) анализ комплекса QRS;

2)   анализ сегмента RS-Т;

3)   анализ зубца Т;

4)   анализ интервала Q- Т.


V. Электрокардиографическое заключение.

 

Рисунок 25. Запись ЭКГ на миллиметровой бумаге со скоростью 50 мм с"1. Каждый миллиметр бумаги по горизонтали соответствует 0,02 с, каждые 5 мм - 0,1 , а 10 мм - 0,2 с. Справа - увеличенный в 5 раз отрезок кривой.

 

АНАЛИЗ СЕРДЕЧНОГО РИТМА И ПРОВОДИМОСТИ

Анализ ритма сердца включает определение регулярности и числа сердечных сокращений, нахождение источника возбуждения, а также оценку функции проводимости.

Анализ регулярности сердечных сокращений.

Регулярность сердечных сокращений оценивается при сравнении продолжительности интервалов R-R между последовательно зарегистрированными сердечными циклами. Интервал R-R обычно измеряется между вершинами зубцов R (или S).

Регулярный, или правильный, ритм сердца диагностируется в том случае, если продолжительность измеренных интервалов R-R одинакова и разброс полученных величин не превышает ±10 % от средней продолжительности интервалов R-R. В остальных случаях диагностируется неправильный (нерегулярный) сердечный ритм. Неправильный ритм сердца (аритмия) может наблюдаться при экстрасистолии, мерцательной аритмии, синусовой аритмии и т.д.

 Подсчет числа сердечных сокращений

Подсчет числа сердечных сокращений (ЧСС) проводится с помощью различных методик, выбор которых зависит от регулярности ритма сердца.

При правильном ритме ЧСС определяют по формуле: ЧCC=60/R-R

где 60-число секунд в минуте, R-R - длительность интервала, выраженная в секундах.

Гораздо удобнее определять ЧСС с помощью специальных таблиц, в которых каждому значению интервала R-R соответствует заранее вычисленное ЧСС.

Пример подсчета ЧСС при правильном ритме приведен на рисунке 25а.

При неправильном ритме ЭКГ в одном из отведений (наиболее часто во II стандартном отведении) записывается дольше, чем обычно, например, в течение 3-4с.

 

Рисунок 26. Оценка регулярности сердечного ритма и частоты сердечных сокращений, а -правильный ритм; б, в - неправильный ритм.

 

При скорости движения бумаги 50 мм-с"1 это время соответствует отрезку электрокардиографической кривой длиной 15-20 см. Затем подсчитывают число комплексов QRS, зарегистрированных за 3 с (15 см бумажной ленты), и полученный результат умножают на 20 (рисунрок 26б, в).

При неправильном ритме можно ограничиться также определением минимального и максимального ЧСС. Минимальное ЧСС определяется по продолжительности наибольшего интервала R-R, а максимальное ЧСС - по наименьшему интервалу R-R.

Расчет ЧСС производится по формуле: ЧСС = 60/R-R  

У здорового человека в покое ЧСС составляет от 60 до 90 в минуту. Повышение ЧСС (более 90 в минуту) называют тахикардией, а урежение (менее 60 в минуту) - брадикардией.

 




ВВЕДЕНИЕ

Современная функциональная диагностика располагает самыми различными инструментальными методами исследования. Некоторые из них доступны только узкому кругу специалистов. Самым распространенным и доступным методом исследования является электрокардиография, используемая в основном в кардиологии. Однако она с успехом применяется и при исследовании больных с заболеваниями легких, почек, печени, эндокринных желез, системы крови, а также в педиатрии, гериатрии, онкологии, спортивной медицине и т. д. Ежегодно производят десятки миллионов электрокардиографических исследований. Этот метод в настоящее время стал достоянием широкого круга врачей – не только специалистов, занимающихся функциональной диагностикой, но и кардиологов, терапевтов, педиатров, спортивных врачей, физиологов и т. д.

Медицинскую практику можно представить как многоэтапный многократно повторяющийся лечебно-диагностический процесс, целью которого является выявление симптомов заболевания и устранение их причин. Одним из важных моментов этапа сбора данных о состоянии здоровья пациента является снятие и анализ электрокардиограммы (ЭКГ). Существует большая гамма приборов для снятия, а в ряде приборов и анализа, ЭКГ. Следует отметить, что особенно эффективное использование медицинской аппаратуры на современном этапе стало возможно благодаря появлению микрокомпьютеров, поскольку приборы на основе микро-ЭВМ способны производить сложную математическую обработку данных. Кроме того, такие приборы позволяют представить большой объём информации различной степени сложности в ясной и доступной для медицинского персонала форме, что является непременным условием для быстрого принятия необходимых решений.

 

ОПИСАНИЕ ПЛАНА ОБОРУДОВАНИЯ ДЛЯ СНЯТИЯ ЭЛЕКТРОКАРДИОГРАММЫ

Основным инструментом исследования динамики развития сердечно-сосудистых заболеваний является электрокардиограф, так как он позволяет изучать сердечную деятельность пациента в любых условиях без проникновения непосредственно в область сердца, т.е. неинвазивным путём.

При помощи электрокардиографа можно:

- определить частоту сердечных сокращений и таким образом,
своевременно выявлять любые нарушения ритма сердца;

- обнаруживать нарушения электрической проводимости сердца
(типичная диагностика), которые могут приводить к снижению его
насосной функции и даже к ее полному прекращению;

- выявлять дефекты или повреждения в сердечной мышце,
вызванные хроническим или острым заболеванием.

Принципы действия электрокардиографа состоят в регистрации электрических сигналов, возникающих при сокращении сердечной мышцы, причём величина этих сигналов характеризует электрическую активность сердца.

Для измерения сигналов используют, как минимум, два электрода, которые располагают на поверхности тела пациента.

Нормально работающее сердце генерирует электрические импульсы, создающие электрическое поле. Математически это поле может быть представлено в виде вектора определенной величины и направления. Векторное представление электрических потенциалов сердца впервые было разработано известным датским физиологом Эйнтховеном: измеряя разности потенциалов между руками и между каждой рукой и левой ногой (т.е. вдоль каждой из сторон треугольника Эйнтховена), можно определить величину и направление вектора электрического поля сердца.

Разности потенциалов между вершинами равностороннего треугольника называют стандартными передними отведениями и обычно обозначают римскими цифрами I, II, Ш. Усиленные униполярные отведения позволяют измерять разности потенциалов между одной из вершин треугольника и средними значениями потенциалов на двух других вершинах. В случае отведений I, II, Ш изучается изменение вектора электрического поля сердца во фронтальной плоскости; в случае шести дополнительных отведении, называемых грудными, изучаются изменения вектора электрического поля сердца в поперечной плоскости.

Опытному терапевту для диагностирования любой сердечной патологии, как правило, достаточно стандартной 12-канальной записи ЭКГ, т.е. шести грудных, трёх усиленных униполярных (aVR, aVF, aVL) и трёх стандартных (I, II, Ш) отведений.

Нормальная электрокардиограмма (ЭКГ):

Зубец Р характеризует охват возбуждением мускулатуры предсердий. Начальная часть зубца Р соответствует возбуждению правого предсердия, за­тем следует возбуждение левого предсердия. Про­цесс реполяризации предсердий не находит отобра­жения на ЭКГ, так как он наслаивается по времени на процесс деполяризации желудочков (комплекс QRS) К концу зубца Р предсердия максимально возбужде­ны, и начинается распространение волны возбужде­ния по АВ-узлу и пучку Гиса. Зубец Q свидетельству­ет о возбуждении межжелудочковой перегородки, которое быстро распространяется по волокнам Пуркинье на желудочки сердца Конечная часть комплекса QRS соответствует полной деполяризации желудоч­ков. Охват желудочков возбуждением предшествует их механическому сокращению. Сегмент ST опреде­ляется от конца зубца S и в норме изоэлектричен Зубец Т отражает процесс быстрой реполяризации желудочков. Значение зубца U неясно.

 

Таблица 1. Обозначения элементов нормальной ЭКГ.

 

 

предсердия

желудочки

Зубец Р     комплекс QRS Сегмент ST Зубец Т Зубец U
           

Интервал PQ Интервал QT  

 

Р-зубец соответствует сокращению предсердий, вызванному электрическим импульсом, который возникает в синоатриальном узле и по проводящей системе сердца достигает предсердий; P-R - интервал соответствует возбуждению атриовентрикулярного узла, a QRS - комплекс - сокращению желудочков; Т-зубец соответствует фазе восстановления желудочков. С помощью ЭКГ могут быть установлены различные нарушения в проводящей системе сердца, а, следовательно, и их причины.

 





ВИЗУАЛИЗАЦИЯ И РЕГИСТРАЦИЯ ИНФОРМАЦИИ

Одним из наиболее распространенных средств записи информации являются самописцы, снабженные специальными перьями, наполненными чернилами. При движении перо оставляет чернильный след на градуированной бумажной ленте. В некоторых самописцах используются перья с подогревом: такое перо, соприкасаясь с термочувствительной бумагой, также оставляет на ней след. Другим часто используемым средством визуализации является электронно-лучевая трубка (ЭЛТ). В этом случае форма ЭКГ - сигнала высвечивается на экране дисплея. В приборе такого типа предусмотрена электронная память в сочетании с цифровыми и аналоговыми схемами для запоминания и воспроизведения полного сигнала.

В некоторых воспроизводящих устройствах в качестве индикатора сердечных сокращений или сигнализатора тревоги применяется звук. При выборе устройств со звуковой сигнализацией следует учитывать такие факторы, как степень воздействия звукового сигнала на больных и возможность спутать данный сигнал с другими звуковыми сигналами, поступающими на пост медицинской сестры.

Стетоиндикаторы, используемые для воспроизведения информации о состоянии больного, должны быть легко различимыми и не должны раз­мещаться слишком близко друг к другу. С появлением компьютеров, обладающих большими вычислительными возможностями и имеющих сравнительно низкую стоимость, в медицине появились компьютерные системы 4-го
поколения, в которых широко применяется сложная математическая
обработка измеренных физиологических параметров. Это в первую
очередь относится к области электрокардиографии, где начали широко
использоваться многоканальные диагностические системы, обеспечивающие:

измерение биоэлектрических потенциалов в большом числе точек на поверхности грудной клетки пациента,

вычислительную обработку результатов измерения с использованием различных математических моделей,

представление окончательных результатов вычислений на экране монитора ЭВМ в виде топографических карт с привязкой к анатомическим ориентирам. Такой способ отображения, получивший название «картирование» или «мапинг», позволяет обеспечить более надежную и точную диагностику по сравнению с традиционной электрокардиографией.

В последние годы за рубежом появилось большое количество подобных систем. В области электрокардиографии - система ИРМ-7100 фирмы FUKUDA DENSHI (Япония) и система CARDIAC -112.2 фирмы 2РА (Чехия). Эти системы выполнены в виде стационарных устройств, причем исследуемый пациент связан с ними множеством проводов. Вместе с тем существует настоятельная необходимость изучать организм пациента при различных видах деятельности, а также при физических нагрузках. Учитывая эти обстоятельства, в настоящее время разрабатываются диагностические многоканальные электрокардиографические системы с телеметрическим каналом связи.

На базе этого комплекса можно будет создавать системы, аналогичные по своим параметрам системам SPECTRUM-32 и CARDIAG-112.2, но предназначенные для исследования физиологических характеристик пациента, не соединенного проводами с измерительной аппаратурой.

С этой целью вся система выполняется из двух частей, а именно, измерительно-передающего блока (ИПБ) с массой не более 0,7кг, удобно закрепляемая на пациенте, и приемно-регистрирующего комплекса (ПРК). Связь между ИПБ и ПРК осуществляется беспроводным (телеметрическим) способом посредством передачи электромагнитных сигналов.

В основу работы комплекса положен метод МУЛЬТЭКАРТО, который состоит в том, что с помощью оптимальной системы отведений, состоящей, например, из 48 электродов, располагаемых равномерной сеткой на поверхности грудной клетки пациента по схеме, учитывающей симметрию тела и анатомические ориентиры, синхронно измеряют электрические потенциалы, генерируемые сердцем. По результатам измерения электрических потенциалов, решают обратную электродинамическую задачу и определяют эпикардиальное распределе­ние потенциала, а затем, на основе тонкостенной модели желудочков сердца как электрического генератора, определяют распределение на поверхности сердца основных электрофизиологических состояний стенки желудочков в процессе возбуждения и рассчитывают основные электрофизиологические характеристики: время прихода деполяризации, длительность активации, длительность реполяризации и др.

Существует также метод непрерывной записи ЭКГ на магнитную ленту в течение длительного периода времени (сутки и более) Продолжительная запись ЭКГ осуществляется с помощью портативного электрокардиографа или карманного кассетного магнитофона, питающегося от батареек.

 Портативный электрокардиограф для дли­тельной записи ЭКГ на магнитную ленту по за­данной программе (фирмы «Cardiodyne», США).

 

Скорость движения ленты в магнитофоне 2,4 см/с, что и позволяет производить длительную регистрацию ЭКГ. Магнитофон может работать по заранее заданной программе, периодически включаясь на короткий период через определенный промежуток времени. Например, прибор может записывать ЭКГ в течение 14 с, автоматически включаясь через каждые полчаса. Длительность регистрации ЭКГ и интервалы между записями определяются врачом и осуществляются с помощью переключателя программ. Кроме того, больной может сам начать запись в любой момент времени, нажав соот­ветствующую кнопку. Это дает ему возможность зарегистрировать ЭКГ во время появления приступа стенокардии, нарушений ритма, одышки, головокружений, обморочного состояния и т. д. Одновре­менно у исследуемого имеется возможность устно записать свои ощущения в этот или любой другой период времени. Особенно удо­бен кассетный регистратор при преходящих мимолетных измене­ниях самочувствия больного, вероятность возникновения которых при пребывании больного на приеме у врача или во время обыч­ной регистрации ЭКГ в больнице чрезвычайно мала. Устные ком­ментарии больного дают возможность проводить корреляцию субъективных симптомов с изменениями ЭКГ.

Один из аппаратов — кардиокассета фирмы «Cardiodyne» (США) —может быть запрограммирован на автоматическое вклю­чение в периоды 3, 5, 7, 14 или 28 с с интервалами между включе­ниями 15, 30, 60, 120 мин. Прибор может работать непрерывно по заданной программе в течение недели или больше. Его можно но­сить в кожаном футляре, перекидывая на ремне через плечо или прикрепляя к поясу. Электроды фиксируются с помощью липкого пластыря.

При записи ЭКГ применяют в большинстве случаев двухполюс­ные отведения, причем активным является красный электрод, ин­дифферентным — белый, а зеленый служит заземлением. Для выявления нарушений коронарного кровообращения красный электрод помещают в пятом межреберье слева по среднеключичной или передней подмышечной линии, белый — над рукояткой грудины или под ключицей справа и зеленый — над V или VI реб­ром справа по среднеключичной линии. Получают видоизменен­ное отведение V4. Для диагностики аритмий лучше помещать крас­ный электрод на нижнюю часть грудины вблизи от мечевидного отростка, белый — над рукояткой грудины, зеленый — над V реб­ром по среднеключичной линии. Это видоизменное отведение V1. При таком расположении электродов лучше выявляется зубец Р.

Записанную па магнитную ленту ЭКГ в последующем воспро­изводят с помощью обычного электрокардиографа и подвергают тщательному анализу. Можно воспроизвести ее на экране любого осциллоскопа, например векторэлектрокардиоскопа. При обнару­жении на осциллоскопе патологических изменении ЭКГ их можно зарегистрировать на обычном электрокардиографе. Кроме того, обработка магнитной ленты может быть произведена с помощью ЭВМ с подробным анализом ее. При анализе ЭКГ врач может быстро определить, связаны ли жалобы больных с нарушениями сердечной деятельности и каков характер этих нарушений.

Запись ЭКГ с помощью портативного электрокардиографа поз­воляет проводить длительную амбулаторную регистрацию ЭКГ во время обычной деятельности больного: физической нагрузки, профессиональной деятельности, отдыха, сна, во время занятий спор­том и т. д.

Запись ЭКГ на магнитную ленту с помощью портативного маг­нитофона можно рекомендовать для регистрации преходящих на­рушений ритма и проводимости, для оценки применяемой противоаритмической терапии, для диагностики и оценки нарушений рит­ма и проводимости у больных острым инфарктом миокарда и влия­ния на них антиаритмических средств. Кроме того, ее можно использовать при постоянных формах нарушения ритма для оцен­ки влияния на них различных бытовых и профессиональных фак­торов, имеющихся в повседневной жизни больного. Иногда такая методика записи ЭКГ применяется при проведении пробы с фи­зической нагрузкой. Длительная регистрация ЭКГ помогает также в выявлении скрытой коронарной недостаточности, а также фак­торов, вызывающих ухудшение ЭКГ во время обычной повседнев­ной жизни больного, у больных с заведомо имеющейся ишемической болезнью сердца.

Непрерывное длительное наблюдение ЭКГ с помощью мониторов. Современные мониторы предоставляют возможность длительно­го наблюдения за ЭКГ на экране осциллоскопа. Для регистрации ЭКГ используют при этом различные отведения: стандартные, грудные, отведения по Небу и т. д. Длительное электрокардиогра­фическое наблюдение (в течение нескольких часов или дней) в ос­новном используется для диагностики различных нарушений рит­ма и проводимости. При появлении на экране осциллоскопа арит­мии ее можно зарегистрировать с помощью электрокардиографа. Большинство современных мониторных установок имеет специаль­ное сигнальное устройство — сигнал тревоги, которое автоматиче­ски включается (свет или звук) при появлении аритмии, значи­тельном замедлении или учащении ритма. В некоторых аппара­тах одновременно автоматически производится запись ЭКГ.

Мониторное электрокардиографическое наблюдение наиболее часто используют при остром инфаркте миокарда. Его проводят обычно в отделениях или палатах интенсивной терапии в первые дни после возникновения инфаркта, при наличии преходящих нарушений ритма и проводи­мости, которые требуют срочных терапевтических мероприятий, а также для уточнения диагноза аритмии. Кроме того, его ис­пользуют иногда при проведении массивной противоаритмической или сердечной терапии, а также при применении отдельных диаг­ностических процедур, которые могут приводить к возникновению аритмий (например, проба с физической нагрузкой, зондирование сердца, ангиокардиография и т. д.). Нередко ЭКГ записывают на магнитную ленту, что позволяет вводить и анализировать ЭКГ с помощью ЭВМ.

Современная медицина базируется на широком использовании разнообразной аппаратуры, которая в большинстве своем является физической по конструкции. Поэтому в курсе медицинской и биологической физике рассматриваются устройство и принципы работы основной медицинской аппаратуры.

 







Дата: 2019-05-28, просмотров: 249.