Особенности структурирования математического материала в классах коррекции
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

На изучение математики в учебном плане начальной школы отводится четвёртая часть всего времени. Также, математика является одним из предметов, который вызывает значительные затруднения у большого количества учащихся.

Одна из главных причин такого положения: подмена основной функции изучения математики – формирование математических понятий, установление связей между ними, с которыми встречаются дети как в школе так и вне её – выработкой вычислительных навыков.

Ориентация на формирование вычислительных навыков, как самоцели, приводят к тому, что учащиеся овладевают ими не на основе сформировавшихся математических представлений и понятий, а механически, опираясь, в основном, на память.

Именно отсутствием ориентации на уяснение математических понятий и отношений можно объяснить такие парадоксальные явления в построении программ и учебников, как знакомство со знаками действий сложения и вычитания до знакомства с самими действиями, или знакомство с единицами длины (сантиметром, дециметром, метром), непосредственно связанные с понятием отрезка, в первом классе, а с самим отрезком – во втором. Случаев подобного рода несоответствий можно привести много.

Такое построение обучения математики тяжело сказывается на всех детях. Однако учащиеся, поступившие в школу с высоким уровнем школьной зрелости, в значительной степени компенсируют возникающую трудность за счёт собственного высокого интеллектуального потенциала, уровня математических представлений, сложившихся в дошкольный период.

Дети же «группы риска» оказываются в крайне тяжелом положении, т.к. им по существу, не на что опереться в том потоке различных приёмов, направленных на выработку вычислительных навыков, который на них обрушивается. В результате большинство из них оказываются стойко неуспевающими в математике.

  

1 класс.

Курс математики первого класса подразделяется на темы :

1) «Нумерация чисел (в пределах десятка)»;

2) «Сложение и вычитание (в пределах десятка)»;

3) «Сложение и вычитание двузначных чисел»;

Рассмотрим эти темы по отношению к детям класса коррекции.

Первой темой в курсе математики первого класса является «нумерация чисел (в пределах десятка)». Изучение этой темы в том виде, как она разработана предполагает, что начинающие школьники обладают довольно значительным запасом математических представлений, которые должны быть на уроках математики приведены в определённую систему, обобщены и усовершенствованы. Предполагается, что дети имеют уже достаточно отчетливые представления о числах первого десятка, их соотношений между собой.

Изучение начального уровня математических представлений учащихся классов коррекции показывает, что большая их часть не обладает отчётливыми представлениями о реальных множествах, которые скрываются за названиями чисел, не различают порядковые и количественные числительные (например, вместо четырёх кубиков показывают четвёртый).

Такой уровень математических представлений свидетельствует о том, что изучение первой темы курса должно быть построено иначе. Необходимо ввести значительно большее число заданий, специально направленных на формирование исходных для усвоения математических представлений как соотношение между множеством предметов, различение порядковых и количественных, умение устанавливать взаимно-однозначное соответствие между элементами множеств реальных предметов и их изображений и на основе результата этой операции делать выводы о соотношении между числами.

Организовать всю эту большую работу целесообразно, опираясь на три вида задания, построенные на основе действий с реальными предметами, которые дети могут брать в руки, на основе действий с изображениями (рисунками, чертежами), на которых перемещения невозможны, но могут использоваться различные приёмы, заменяющие реальные перемещения (зачёркивание, закрашивание, соединение линиями и тд.); задания, построенные на действиях с числами, как характеристикой множеств. В процессе выполнения заданий дети познакомятся и со всеми однозначными числами, узнают цифры, при помощи которых они записываются. Далее переходят к упорядочению действительных чисел, к установлению основных свойств натурального ряда чисел.

Вторая важная тема первого класса: «Сложение и вычитание (в пределах десятка)». Одним из важных моментов этой темы является составление таблицы сложения. Учитывая то, что учащиеся классов коррекции нуждаются в постоянном обращении к действиям с реальными предметами, должны каждый шаг пропустить «через руки», более естественно опираться при составлении таблицы сложения на состав чисел, а не на принцип прибавления к числам, сначала числа 1, потом 2 и тд., как это разработано в учебнике. Одновременно нужно полностью исключить как объект для заучивания таблицу вычитания.

Завершает курс математики первого класса тема «Сложение и вычитание двузначных чисел». Введение письменного сложения и вычитания двузначных чисел в первом классе позволяет с самых первых шагов целенаправленно работать над основными принципами выполнения этих действий.

Следует отметить, что письменное выполнение действий не исключает их устного выполнения. Однако и устное выполнение должно базироваться на тех же принципах, не вступая с ними в противоречие.

 

2 класс.

Рассмотрим темы, которые входят в изучение математики во втором классе.

Поскольку учащиеся классов коррекции обучаются с большим трудом и более медленно осваивают учебный материал, у них дольше вырабатываются вычислительные навыки, им нужно больше времени для запоминания изученного. Поэтому непродуктивным является изучение этими детьми подряд табличного и нетабличного умножения и деления в пределах сотни, как это предусматривается действующими пособиями. Экспериментальная практика подтверждает большую рациональность другого подхода, когда после изучения табличного умножения и деления учитель переходит к изучению нумерации трёхзначных чисел и выполнению действия сложения и вычитания на этом множестве чисел. Если работа над сложением и вычитанием двузначных чисел строится в соответствии с данными рекомендациями, изучение этого материала не вызовет затруднений.

Параллельно с изучением нового материала будут совершенствоваться и навыки табличного умножения и деления. После завершения темы, связанной с трехзначными числами. Учитель приступает к изучению табличного умножения и деления, рассматривая выполнение этих действий на однозначное число не только на множестве двузначных чисел, но и на множестве трехзначных, начиная с самых простых случаев перехода через разряд, а при делении удобные слагаемые совпадают с разрядными.

Желательно рассмотрение не только случаев деления двузначных чисел на двузначные, но и трехзначных на двузначные в случаях, когда получается однозначное частное.

Умножение и деление на однозначное число необходимо вначале сопровождать подробной записью. Только тогда, когда алгоритм решения будет освоен учащимися и будут понятны основные принципы выполнения действий, вводится запись решения в столбик. Далее дети переходят к более сложным случаям, где возникает переход через разряд. Эта операция является объективно трудной для всех учащихся, для детей «группы риска» в силу большей инертности их мыслительных процессов она особенно сложна. Только неторопливая и длительная работоспособность помогает детям освоить переход от разрядных слагаемых к дробным, научиться различать случаи, когда последние совпадают, а когда – нет.

 

3 класс.

В результате осуществления предложенных изменений в порядке прохождения учебного материала значительно облегчается программа третьего года обучения, за счёт создания прочной базы обобщённого восприятия многих вопросов, составляющих содержание учебного материала третьего года обучения.

Обоснованный подход к структурированию материала высвобождает дополнительное время для изучения таких трудных для детей вопросов, как деление на многозначное число, а также для возвращений к тем вопросам программы начальной школы, которые оказались усвоены недостаточно полно и глубоко.

Основные положения данной рекомендации, разработанные автором И.И.Аргинской, должны быть положены в основу работы учителя классов коррекции, но учитель должен осуществлять к организации учебного процесса своего класса творческий подход и структурировать учебный материал в соответствии с особенностями своих учеников (физиологических, психических, психолого-педагогических).

 

2. Методика обучения математике в коррекционных классах, направленных на развитие математических способностей учащихся.

Обучение в классах коррекции – это прежде всего дифференцированный процесс. Обучение в каждом конкретном классе индивидуально и зависит от состава класса. Поэтому учителя, работающие в этих классах, творчески подходят к методике обучения и зачастую некоторые особенности методики носят индивидуальный характер.

*         *          *

Рассмотрим некоторые фрагменты уроков

А) с геометрическим материалом;

Б) с арифметическим материалом;

В концентре «Сотня I кл» ребят знакомят с геометрическими понятиями: прямая, луч, отрезок. Вот как возможно это сделать, используя сказку «Путешествие точки по стране геометрии» .

Фрагменты урока-знакомства с геометрическими понятиями: прямая, луч, отрезок.

- Жила-была точка. Вот она (на магнитную доску вывешивается модель точки).

- Она была очень любопытная и хотела всё знать. Увидит незнакомую линию и непременно спросит: «Как эта линия называется?»

- А какие вы, ребята, знаете линии? (Кривые, прямые, ломаные).

- Подумала однажды точка: «Как же я смогу всё узнать, если всегда буду жить на одном месте?! Отправлюсь-ка я путешествовать!». Сказано-сделано (на доске прямая). Вышла точка на прямую и пошла по этой прямой (учитель передвигает по этой прямой точку). Шла-шла по прямой линии. Долго шла. Устала. Остановилась и говорит: «Долго ли я ещё буду идти? Скоро ли конец прямой?» Засмеялась прямая: «Эх ты, точка! Ведь ты не дойдёшь до конца. Разве ты не знаешь, что у прямой нет конца?»

- «Тогда я поверну назад»,- сказала точка. «Я, наверное, пошла не в ту сторону».

- «И в другую не будет конца. У прямой линии совсем нет концов».

- А вы, ребята, где в жизни могли видеть прямую без конца и без края? (Рельсы, провода). Посмотрите, и наша прямая не имеет конца. Я могу её продолжить (учитель показывает). Давайте начертим прямую у себя в тетради, только вся она у нас не поместится, начертим её часть. А что же наша точка?

- «Как же быть?»,- спрашивает она. «Что же мне так и придётся идти, идти и идти без конца?».

- «Ну, если ты не хочешь идти без конца, давай позовём на помощь ножницы»,- сказала прямая.

- «Давай позовём. А зачем нам ножницы?».

- «Сейчас увидишь». Тут, откуда ни возьмись, появились ножницы , щёлкнули перед самым точкиным носом и разрезали прямую (учитель имитирует разрезание прямой).

__________________|                      |________|_____________

- «Ура!»,- закричала точка. «Вот и конец получился! Ай, да ножницы! А теперь сделайте, пожалуйста, конец с другой стороны.

- «Можно и с другой»,- послушно щёлкнули ножницы.

______________| |_________|__________| |__________________

- «Как интересно!»,- воскликнула точка.

- «Что же из моей прямой получилось? С одной стороны конец, с другой стороны – конец. Как это называется?»

- «Это отрезок»,- сказали ножницы. «Теперь ты, точка, на отрезке прямой».

-  «Отрезок прямой, отрезок прямой»,- с удовольствием повторила точка, прогуливаясь по отрезку от одного конца до другого.

- Давайте и мы начертим в тетради две точки. Приложите к ним линейку и соедините точки прямой линией. Получился отрезок. Начертите ещё отрезки. (ученики чертят разные отрезки: по длине, расположению на листе). К доске вызываются ученики начертить свой отрезок.

 

 

 

Хором повторяют название – «отрезок».

- Я запомню, - сказала точка,- это название. Мне нравится на отрезке! Но прямая мне тоже нравится. Жаль, что её не стало. Ведь теперь вместо прямой есть мой отрезок и ещё два этих…. - не знаю как их назвать. Тоже отрезки? (Как вы, ребята, думаете?- Нет. У отрезка 2 конца).

- Нет,- ответили ножницы. Ведь у них конец только с одной стороны, а в другую сторону нет конца. И называется это по-другому.

- А как они называются?

- Лучами.

          Это луч.                                         И это луч. ____________________|     |______________________

- А! – радостно сказала точка. – Я знаю почему они так называются. Они похожи на… (А кто скажет на что похожи эти лучи?) – солнечные лучи.

- Да, - подтвердили ножницы. Солнечные лучи начинаются на солнце и идут от солнца без конца, если только не встретят что-нибудь на своём пути. Например, Землю, Луну или спутник.

- Значит из прямой вот что получилось: мой отрезок и ещё два луча. Давайте и мы начертим лучи у себя в тетради.

- Скажите, чем же отличаются и что общего между прямой, отрезком и лучом? (общее – все прямые). Отрезок и луч имеют конец, только отрезок – два конца, а луч – один. У прямой конца совсем нет.

Далее следуют задания на закрепление.

Теперь рассмотрим фрагмент урока на арифметический материал.

Тема: «Сложение и вычитание двузначных чисел, оканчивающихся на 0».

(40+20);(50-30)

На доске десятки (полоски, содержащие 10 квадратов)

40+20

Учитель на доску выкладывает 4 полоски.

Учитель: сколько десятков на доске?

Ученик: четыре.

Учитель: какое это число?

Ученик: 40.

Учитель добавляет ещё 2 полоски в другую сторону доски.

Учитель: Добавлю ещё десятки. Сколько на доске?

Ученик: 2.

Учитель: какое число?

Ученик: 20.

 

Учитель: а теперь нам нужно узнать сколько десятков и тут (показывает на 4 десятка) и тут (на 2 десятка) вместе. Как это сделать?

Ученик: сложить 4 десятка и 2 десятка.

Учитель: записывает 4 десятка+2 десятка=6 десятков

 40+20=60. Что общего в числах 40,20,60?

Ученик: 0 – единиц.

Учитель: Я могу ещё по-другому записать этот пример - в столбик. Посмотрите, как я это делаю. Пишу десятки под десятками, единицы под единицами. Складываю. Начинаю с единиц. Складываю единицы: 0 единиц+0 единиц=0 единиц. Складываю десятки: 4 десятка+ 2 десятка= 6 десятков. Читаю ответ: шестьдесят.

Аналогичный приём используется при сложении двузначных чисел, из которых одно оканчивается 0, 34+20 и сложение двузначного и однозначного числа 34+2. А также при сложении и вычитании двузначных чисел без перехода через десяток (например, 42+53, 28-12).

Иная запись в столбик используется при сложении двузначного числа с однозначным и двузначного с двузначным с переходом через десяток. Например, 26+4. Пишу десяток под десятком, единицу под единицей.

Пишу 4 под 6. Складываю единицы, 6+4=10. Записываю 10.           Под десятком переписываю 2. Складываю. Получаем 30. Такая запись в столбик оформляется для того, чтобы избежать ошибок при получении двузначного числа в результате сложения единиц и перехода десятка в свой разряд. (Этот десяток забывается детьми).

Приведём ещё пример:

Пишу десяток под десятком, единицу под единицей. Складываю единицы. 9+3=12. Записываю 12. Складываю десятки 4+2=6. Записываю под десятками 6. Складываю. Ответ: 72.

Заметим, что письменно выполнение действий быстро и хорошо усваивается детьми и , вскоре, многие из них переходят у устным вычислениям.

Для того, чтобы у детей закрепились правила в памяти нужно чаще повторять уже ранее изученный материал. Это правило поможет и в дальнейшей работе учителя.

*        *        *

Дата: 2019-05-28, просмотров: 206.