В основе частотного преобразователя Vacon лежит технология векторного управления без обратной связи, связанная с адаптивной моделью двигателя и специализированной интегральной схемой. Работа математической модели двигателя базируется на данных о величине тока, измеряемого в каждой фазе и уровня рабочего напряжения, выдаваемого цепями блока управления. В модели автоматически идентифицируются параметры электродвигателя, как для бездатчикового векторного режима, так и для скалярного управления, при этом отслеживаются текущие изменения параметров во времени. Векторное управление основывается на системе координат вектора потока статора, которая слабо восприимчива к небольшим отклонениям в измерениях показателей и параметров двигателя, что упрощает расчёты. Цепи блока управления также осуществляют контроль за обменом информацией по внутренним шинам и отдельными внешними функциями, тем самым высвобождая процессор для решения других задач.
Принцип работы преобразователя заключается в следующем: трёхфазный дроссель переменного тока с конденсатором промежуточного звена постоянного тока образует индуктивно-ёмкостной фильтр, который совместно с диодным мостом обеспечивает постоянное напряжение на входе инвертора на транзисторах IGBT (биполярные транзисторы с изолированным затвором). Дроссель переменного тока фильтрует также высокочастотные помехи приходящие из сети в преобразователь и генерируемые преобразователем в сеть. Кроме того, он улучшает форму кривой тока, подаваемого на преобразователь.
Инверторный мост на транзисторах формирует симметричное трёхфазное напряжение регулируемое методом широтно-импульсной модуляции, подаваемого на электродвигатель. Мощность, потребляемая из сети является практически активной.
Блок прикладных функций и управления двигателем реализован с использованием микропроцессорных средств. Микропроцессор управляет двигателем в соответствии с замеренными значениями, уставками соответствующих параметров, а также управляющими командами, формируемыми цепями платы ввода-вывода и панелью управления. Блок прикладных функций в свою очередь выдаёт команды на блок управления двигателем, который определяет параметры коммутации транзисторов IGBT. Драйверы усиливают управляющие сигналы, обеспечивая коммутацию IGBT модулей.
Панель управления обеспечивает связь между оператором и преобразователем частоты. С помощью панели управления оператор может устанавливать параметры, читать информацию о состоянии оборудования и формировать управляющие команды.
3.5 Расчет и выбор коммутационных аппаратов, силовых кабелей, защиты и автоматики.
Для увеличения срока работы электродвигателей необходимо технически грамотно выбрать аппаратуру управления и защиты. Выбрать аппарат ─ это значит отобрать из многих однотипных аппаратов самый экономичный, технические данные которого полностью соответствуют условиям окружающей среды. Кроме этого, необходимо учитывать требования техники безопасности.
Методика выбора аппаратов управления и защиты установлена руководящими техническими материалами РТМ «Методика выбора элементов пускорегулирующей и защитной аппаратуры электроприводов машин». Согласно этому документу аппараты управления и защиты выбирают в зависимости от установленной мощности и режима работы электроприемника, условий внешней среды, технических требований и монтажного исполнения.
Выбор аппаратов защиты начинают с определения вида (принципа действия) защиты. Неправильный выбор вида защиты может способствовать интенсивному старению изоляции и сокращению срока службы электроприемников, возникновению пожаров, а так же поражению людей электрическим током.
Выбор автоматов управления (магнитных пускателей, контакторов, автоматических выключателей, рубильников) и защиты (предохранителей, автоматических выключателей, тепловых реле) производится по номинальному току нагрузки, номинальному напряжению и роду тока питающей сети. Чтобы предохранители и выключатели надежно защищали электроприемники и сети от коротких замыканий и перегрузок, они проверяются по номинальному току плавкой вставки и соответственно току срабатывания расцепителя. Кроме того, они должны быть проверены на селективность. Эксплуатационные требования и условия среды в месте установки аппаратов так же должны учитываться при их выборе.
|
При управлении из нескольких мест необходимо предусматривать аппараты (выключатели, переключатели), не дающие возможность дистанционного пуска механизма или линии, остановленных на ремонт. В случаях, когда оператор проектируемого механизма не сможет определить по состоянию аппарата управления, включена или отключена главная цепь электродвигателя, рекомендуется применять световую сигнализацию.
Аппараты управления следует располагать ближе к электродвигателям в местах, удобных для обслуживания. Если с места, где установлен аппарат управления электродвигателем, не виден приводимый им механизм и если этот механизм имеет постоянный обслуживающий персонал, необходимо предусмотреть следующие мероприятия для предотвращения несчастных случаев:
· установку кнопки пуска электродвигателя непосредственно у механизма;
· сигнализацию или звуковое оповещение о предстоящем пуске механизма;
· установку вблизи электродвигателя и приводимого механизма аппаратов для аварийного отключения электродвигателя, исключающих возможность пуска.
Применение установочных автоматических выключателей рекомендуется в цеховых распределительных устройствах на щитах подстанций для защиты отходящих линий, если иные выключатели применять нельзя. Защиту электродвигателей от коротких замыканий рекомендуется осуществлять с помощью предохранителей или автоматических выключателей, а от перегрузок - с помощью тепловых реле.
Расчёт и выбор автоматического выключателя.
Автоматические выключатели предназначены для автоматического размыкания электрических цепей при аварийных режимах (КЗ и перегрузках), для редких оперативных переключений (три – пять в час) при нормальных режимах, а также для защиты электрических цепей при недопустимых снижениях напряжения.
В нашем случае роль автоматического выключателя сводится к защите преобразователя частоты со стороны питающей сети, т.к. все защиты электродвигателя (перегрузка, обрыв фазы, заклинивание, тепловая защита, защита от работы с недогрузкой, защита от сверхтока) реализуются и контролируются преобразователем.
Технические данные преобразователя частоты Vacon 18,5 CXL4:
Pном.пр……………………………………………………..18,5 кВт.
Iном.пр. ……………………………………………………… 42А
Uном……….………….………………………………………400В.
Найдем ток теплового расцепителя: Iт.расц..≥ Iном.пр.
Iт.расц. = 1,1*Iн [A];
Iт.расц. = 1,1*42 = 46,2 А
Кратность тока уставки автомата Iном.пр. / Iт.расц.:
К = 42 / 46,2 = 0,9.
По этим условиям выбираем по справочнику (с.604 Федоров) автоматический выключатель типа: АЕ2040.
Параметры выключателя:
Uн = 380 В
Iн = 50 А
Iт.расц = 46,2 А .
Для питания частотного преобразователя по схеме необходимо выбрать магнитный пускатель.
Магнитные пускатели предназначены главным образом для дистанционного управления асинхронным электродвигателем с короткозамкнутым ротором мощностью до 100кВт; для пуска непосредственным подключением к сети и останова электродвигателя (нереверсивные пускатели); для пуска, останова и реверса электродвигателя (реверсивные пускатели). В исполнении с тепловым реле пускатели также защищают управляемые электродвигатели от перегрузок. Магнитный пускатель представляет собой трехполюсный контактор переменного тока с прямоходовой магнитной системой.
Пускатели выбирают по следующим условиям:
Напряжение втягивающей катушки должно быть равно напряжению сети.
Номинальный ток пускателя должен быть больше или равным силе тока нагрузки.
Пускатель должен обеспечивать нормальные условия коммутации.
Исполнение и степень защиты должны соответствовать условиям окружающей среды.
Выбираем по таблице 3.6 (с.143 Коновалова) исходя из номинального тока преобразователя магнитный пускатель типа ПМЛ-3600 с параметрами:
Параметры пускателя:
Uн = 380 В.
Iн = 63 А.
Uкат. = 220В.
Пускатель на условия коммутации проверять не нужно, так как разгон двигателя осуществляется плавно и пусковые токи, характерные при прямом пуске отсутствуют.
Сетевой кабель и кабель для подключения электродвигателя выбираем в соответствии с руководством эксплуатации преобразователя и рекомендациями завода-изготовителя для подключения частотных преобразователей Vacon: кабели рассчитаны по номинальному току преобразователя.
По таблице руководства выбираем четырёхжильные экранированные медные кабеля с сечением 10 мм2 ( КВВГэ - 4 *10).
Прокладка кабелей должна вестись как можно дальше от информационных кабелей связи, если такие применяются на производстве, для наименьшего наведения помех в них.
3.6.Конструкторская разработка
В качестве конструкторской разработки необходимо разработать схему управления скребковым конвейером. Схема должна осуществлять дистанционное управление включением и выключением частотного преобразователя. В схему управления необходимо ввести потенциометр, позволяющий регулировать напряжение в необходимых пределах, которое подаётся на вход преобразователя для ручного регулирования скорости, а также миллиамперметр для индикации скорости электродвигателя на пульту управления оператора. Данная схема должна быть построена таким способом, чтобы исключить пуск двигателя, когда не выполнены ниже перечисленные условия:
• Переключатель местного и дистанционного управления не должен находиться в положении “0”
• Скребковый конвейер транспортирует кору на другой ленточный конвейер, поэтому, чтобы не произошло засыпания последнего, они должны быть сблокированны.
• Так же в схеме должно быть предусмотрено реле уровня коры в циклоне, которое в случае закупорки коры в последнем, отключает весь механизм.
• По «Правилам устройства электроустановок» (ПУЭ) при наличии дистанционного управления электродвигателем какого-либо механизма вблизи последнего должен быть установлен аппарат аварийного отключения, исключающий возможность дистанционного или автоматического пуска электродвигателя до принудительного возврата этого аппарата в исходное положение.
• По ПУЭ вблизи электродвигателей, которые управляются дистанционно, должна быть предусмотрена звуковая и световая сигнализация для оповещения технологического персонала о том, что на данную электроустановку будет подано напряжение.
Разработанная схема представлена в графической части.
4. ОРГАНИЗАЦИОННО -ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ.
Дата: 2019-05-28, просмотров: 184.