ПРОХОРОВ АЛЕКСАНДР МИХАЙЛОВИЧ
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

(1916 г. – 2002 г.)

 

 

Выдающийся советский физик Александр Михайлович Прохоров родился 11 июля 1916 года в городе Атертон (Австралия) в семье Михаила Ивановича Прохорова и Марии Ивановны Прохоровой (урожденной Михайловой).

Его отец был выходцем из украинской рабочей семьи. По окончании церковноприходской школы он начал работать на производстве модельщиком. В 1902 году вступил в члены РСДРП, где начал вести активную подпольную работу – от распространения листовок до организационных действий. Из-за преследования властей он переехал в Оренбург, где и познакомился со своей будущей женой.

В Оренбурге отец Прохорова был арестован, но все равно не отказался от своих революционных взглядов. В 1910 году Михаил Иванович был арестован во второй раз и после осуждения по 102-й статье за принадлежность к РСДРП(б) был сослан на вечное поселение в Сибирь, в Енисейскую губернию.

Мать будущего ученого имела только начальное образование. После ссылки жениха она достала для будущего мужа новый паспорт и поехала в Енисейскую губернию. В 1912 году родители Прохорова бежали из ссылки на Дальний Восток, а оттуда – в штат Квинсленд в Австралию. Кроме Александра родители имели трех дочерей – Клавдию, Валентину и Евгению.

Смерть старшей дочери Клавдии от воспаления легких болезненно повлияла на Прохоровых. Они решили сменить место жительства и, узнав об Октябрьской революции, начали собираться в Россию, куда и вернулись в 1923 году. Понимая, что после Австралии дети будут тяжело переносить российские зимы, родители решили обосноваться в Ташкенте. Там Саша пошел в школу, где проявил особый дар к физике и математике.

Через некоторое время после переезда от столбняка умерла другая сестра будущего ученого – Валентина.

В 1930 году семья Прохоровых вновь решила сменить место жительства и переехала в Ленинград. В 1934 году Александр успешно окончил семилетку и без экзаменов поступил на рабфак при Ленинградском электротехническом институте имени В. И. Ульянова (Ленина).

После окончания рабфака Прохоров поступил на физический факультет Ленинградского университета. Главным увлечением способного студента стала радиотехника. В эти годы он также окончил Высшие курсы английского языка, что в дополнение к практическим навыкам английского, полученным в Австралии, очень помогло ученому в будущем.

В то время Ленинград был «пилотным» городом страны в обучении физике. Знаменитая экспериментальная школа физики А. Ф. Иоффе, первый Физико-технический институт выпускали прекрасных специалистов. Хорошее образование получил и Прохоров.

В 1939 году он окончил с отличием физический факультет Ленинградского государственного университета и поступил в аспирантуру Физического института им. П. Н. Лебедева АН СССР в Москве (ФИАН). В ФИАНе Прохоров учился и работал в лаборатории колебаний, где занимался исследованием процессов распространения радиоволн над земной поверхностью. Вместе со своим руководителем, физиком В. В. Мигулиным, Прохоров предложил оригинальный метод изучения ионосферы с помощью использования интерференции радиоволн.

Исследовательскую работу Прохорова в аспирантуре прервала Вторая мировая война. Вместе с другими аспирантами ФИАНа Александр записался в народное ополчение. Хотя Прохоров уже имел звание младшего лейтенанта запаса и проходил подготовку в зенитной артиллерии, его направили на курсы разведчиков.

В конце октября 1941 года Прохорова отправили на фронт. Сначала он находился в штабе армии под Тулой, потом воевал в составе 26-й курсантской стрелковой бригады на Северо-Западном фронте. В марте 1942 года будущий ученый был тяжело ранен и отослан в госпиталь. После лечения Александр был откомандирован в штаб Западного фронта, а оттуда в 94-й гвардейский стрелковый полк 30-й стрелковой дивизии Северо-Западного фронта на должность помощника начальника штаба полка по разведке.

18 февраля 1943 года во время участия в разведывательной операции Александр Прохоров был ранен осколком, перенес несколько операций. Медики признали его негодным к дальнейшей службе, и он был демобилизован. За свои мужественные действия лейтенант Прохоров был награжден медалью «За отвагу».

После демобилизации Александр Михайлович возвратился в институт им. П. Н. Лебедева, где решил продолжить свои довоенные исследования. Он был первым аспирантом института, вернувшимся живым с фронта.

Новым руководителем Прохорова стал доктор наук Сергей Михайлович Рытов. Именно он помог Александру активно включиться в актуальные исследования.

Будущий ученый начал исследовать нелинейные колебания. Он занимался теоретическими расчетами по теме «Стабилизация частоты лампового генератора в теории малого параметра». Эти работы легли в основу его кандидатской диссертации, посвященной теории нелинейных колебаний, которую он защитил в 1946 году.

В 1947 году Прохоров начал изучать движение частиц в синхротроне. Молодому ученому передали в распоряжение первый бетатрон, построенный в Советском Союзе П. А. Черенковым. Александр Михайлович вместе с сотрудниками перевел его в режим синхротронного ускорения для изучения синхротронного излучения в области сантиметровых радиоволн.

В результате серии тонких экспериментов с синхротронным излучением Прохоров доказал возможность использования его в качестве источника когерентного излучения в сантиметровом диапазоне длин волн. Также ученый определил уровень мощности и основные характеристики источника, предложил метод определения размеров электронных сгустков.

В январе 1948 года Прохорову вместе с другими работниками лаборатории была присуждена премия имени Л. И. Мандельштама. Среди работ, отмеченных АН СССР, были и исследования, которыми серьезно занимался Прохоров, а именно «К теории стабилизации частоты ламповых генераторов», «Стабилизация частоты в теории малого параметра» и «О теории стабилизации частоты».

12 ноября 1951 года Александр Михайлович успешно защитил докторскую диссертацию, в основу которой легли последние исследования ученого по изучению синхротронного излучения, и был удостоен степени доктора физико-математических наук.

Наука в СССР в то время начала развиваться семимильными шагами. Лаборатория, в которой работал Прохоров, занималась уже целым рядом различных научных вопросов, наиболее популярным из которых стала радиоастрономия. Еще в 1948 году Александр Михайлович начал серию первых в СССР исследований в радиоспектроскопии, предполагая точно определить структуры молекул.

В 1950 году молодого ученого назначают заместителем директора лаборатории колебаний. В лаборатории появляются новые ученые с уже известными в науке именами. В это время Прохоров организовывает группу молодых физиков, вместе с которой позже совершит ряд известных открытий. А после ухода в 1954 году руководителя лаборатории академика М. А. Леонтовича в Институт атомной энергии он становится заведующим лабораторией. В это время почти все научные работы Прохорова касались радиоспектроскопии.

В лаборатории Александра Михайловича вели свои научные исследования лучшие физики СССР. Поскольку число направлений все время расширялось, в лабораторию стремились попасть многие молодые перспективные ученые. Используя передовые методики, команда Прохорова провела ряд важных фундаментальных исследований, в результате чего лаборатория колебаний стала «пилотной» лабораторией в СССР в области радиоспектроскопии. С помощью точных приборов Прохоров с сотрудниками изучил вращательные и колебательные спектры молекул, в частности так называемых асимметричных волчков, обладающих тремя различными моментами инерции.

Кроме спектроскопических исследований Александр Михайлович занимался различными теоретическими вопросами, среди которых можно выделить задачу стабилизации частоты источников излучения СВЧ-диапазона. Он исследовал применение микроволновых спектров поглощения для усовершенствования эталонов частоты и времени. В это время ученый начал свое сотрудничество с Николаем Геннадиевичем Басовым.

Можно с уверенностью сказать, что эта работа стала первым шагом в создании новой области физики – квантовой электроники.

Совместное сотрудничество ученые вели в течение десяти лет, совершив одно из самых важных открытий физики XX века – создав лазер. Предыстория этого открытия описана в очерке «Николай Геннадиевич Басов».

Детально проанализировав работы Эйнштейна и других ученых, посвященные исследованию испускания и поглощения излучения молекулами, Прохоров и Басов изобрели метод усиления поступающего излучения. В своих опытах советские физики использовали неоднородные электрические и магнитные поля, с помощью которых выделяли возбужденные молекулы. После этого облучали вещество излучением специальной частоты, фотоны которого имели энергию, равную разности возбужденного и основного состояния молекулы. В итоге возникало индуцированное излучение той же частоты, которое усиливало подающий сигнал.

В начале 1952 года Прохоров вместе с Басовым начал разработку молекулярного генератора, который не только усиливал возбудимость молекул, но и генерировал излучение с частотой, которая точно определялась энергетическими уровнями молекул.

На Всесоюзной конференции по радиоспектроскопии в мае 1952 года ученые представили первые результаты своих теоретических исследований и разработанную на их основе конструкцию оптического квантового генератора (ОКГ).

В своей первой научной статье на эту тему в октябре 1954 года Прохоров и Басов предложили эффективный и универсальный метод перевода вещества в состояние, необходимое для усиления излучения. Они разработали трехуровневую схему перевода атомов из основного состояния на наиболее высокий из трех энергетических уровней, при котором на промежуточном уровне размещалось больше молекул, чем на нижнем. В результате можно было получить индуцированное излучение с частотой, которая соответствовала разности энергий между двумя более низкими уровнями.

Но еще в 1953 году, за десять месяцев до известной статьи Прохорова и Басова по молекулярным генераторам, американский физик Чарлз Таунс создал работающий молекулярный осциллятор, который назвал мазером (по начальным буквам английского выражения «microwave amplification by stimulated emisson of radiation» – микроволновое усиление с помощью стимулированного излучения). В результате своих экспериментов он достиг огромного усиления микроволн с частотой в 24 000 мегагерц.

Позже, в период с 1955 по 1956 год, советским физикам удалось создать принципиально новые малошумные квантовые усилители и генераторы радиочастотного диапазона (мазеры), первым из которых стал мазер на основе молекул аммиака.

После успешного завершения цикла работ по созданию мазеров ученые начали интересоваться вопросами создания лазеров оптического диапазона. Основной проблемой при распространении принципов и методов радиофизики и квантовой электроники на оптический диапазон частот была резко возрастающая вероятность спонтанных переходов. Еще в 1955 году ученые предложили использовать так называемый метод трех уровней, который сейчас лежит в основе работы всех лазеров с оптической накачкой. Этот метод подходил для любых многоуровневых систем, независимо от величины энергии кванта.

В 1958 году Прохорову удалось решить вторую проблему, стоящую на пути создания лазера. Ученые никак не могли подобрать подходящий резонатор для оптического диапазона, так как его размеры должны были быть соизмеримы с длиной волны генерируемого им излучения. Александр Михайлович решил проблему следующим способом: он предложил использовать так называемый открытый резонатор – пару плоских параллельных пластин-зеркал.

Сегодня открытый генератор используется во всех лазерных системах. Ученым оставалось сделать всего один шаг, но и тут их опередил американец. В 1960 году американский физик Теодор Меймен сконструировал прибор для усиления и генерирования красного света, работавший на трехуровневом принципе. В качестве резонансной камеры ученый использовал длинный кристалл синтетического рубина, на который была навита спиральная трубка с газом ксеноном. Свой прибор американец назвал лазером, от начальных букв английского выражения «light amplification by stimulated emission of radiation» – световое усиление с помощью индуцированного излучения.

За исследования по созданию молекулярных осцилляторов и парамагнитных усилителей Александр Михайлович Прохоров и Николай Геннадиевич Басов были награждены в 1959 году Ленинской премией.

В 1964 году «за фундаментальную работу в области квантовой электроники, которая привела к созданию генераторов и усилителей, основанных на лазерно-мазерном принципе» Прохоров и Басов были удостоены Нобелевской премии по физике. Каждый из них получил по четверти денежного приза. Другая половина приза была присуждена Чарлзу Таунсу, представителю Массачусетсского технологического института (США).

В своей Презентационной речи профессор Шведской академии наук Бенгт Эдлен подробно представил историю и содержание работ лауреатов. Он обратил также внимание на огромное значение открытия лазера и возможности его применения в различных социальных сферах, в частности при микрохирургических операциях.

11 декабря 1964 года Прохоров прочитал нобелевскую лекцию «Квантовая электроника». В ней знаменитый ученый перечислил основные препятствия на пути создания лазера оптического диапазона и назвал способы, которые были применены для их устранения.

После получения Нобелевской премии Алексвндр Михайлович продолжил свои успешные исследования. Благодаря революционным работам по изобретению мазеров и лазеров гениальный ученый значительно обогатил такие области науки, как микроэлектроника, физика поверхностей, нелинейная оптика, волоконная и интегральная оптика, физика магнитных явлений, субмиллиметровая спектроскопия.

Роль Прохорова в революционных открытиях XX века трудно переоценить. Ученый первым понял значение лазерной физики и все время был лидером в этой области, указывая путь другим физикам. За короткое время СССР наряду с США стал одной из двух лазерных супердержав, в стране открылось множество новых специализированных институтов, лабораторий, производств, начали готовиться специалисты-лазерщики.

После совершения своих важных открытий ученый стал постоянным участником различных международных конференций по вопросам квантовой электроники – он побывал в США, Пуэрто-Рико, Канаде, Омане, Греции и т. д.

Под руководством Прохорова были проведены различные исследования. Научные работы в лаборатории колебаний ФИАНа, а позже и в ИОФАНе, были отмечены 4-мя Ленинскими и 13-ю Государственными премиями СССР.

С 1969 по 1990 год знаменитый ученый был главным редактором Большой Советской Энциклопедии, с 1969 года состоял председателем научно-редакционного совета издательства «Большая Российская Энциклопедия». Кроме того, ученый являлся главным редактором энциклопедического словаря «Физика», членом редколлегии журнала «Радиотехника и электроника» (1956–1988), «Журнала экспериментальной и теоретической физики» (1967–1987), «Журнала технической физики» (1973–1989).

С 1954 года Прохоров занимал пост директора лаборатории колебаний ФИАНа. Используя свое служебное положение, он создал еще две новые лаборатории – радиоастрономии и квантовой радиофизики. В 1959 году ученый стал профессором Московского государственного университета. Он организовал лабораторию радиоспектроскопии в научно-исследовательском институте ядерных исследований при МГУ, с 1979 по 1992 год был заведующим кафедрой оптики МГУ.

В 1960 году Прохоров был избран членом-корреспондентом АН СССР, в 1966-м – действительным членом АН СССР, в 1970-м – членом президиума АН СССР. С 1991 года Александр Михайлович был академиком РАН и президентом Академии инженерных наук РФ.

С 1973 года Прохоров являлся академиком-секретарем Отделения общей физики и астрономии АН СССР. В 1999 году Международный астрономический союз в знак признания выдающихся заслуг ученого перед мировой наукой присвоил одной из малых планет имя Александра Михайловича Прохорова.

С 1983 года Прохоров возглавлял Институт общей физики (ИОФАН) Академии наук СССР (ныне РАН), идеологом и основателем которого был он сам. В 1996 году ИОФАН был реорганизован, и ученый стал создателем и директором Центра естественно-научных исследований.

Нобелевский лауреат является создателем целой научной школы, хорошо известной не только в СССР, а позже в России, но и за рубежом.

В свободное от работы время Прохоров любил заниматься альпинизмом, увлекался велосипедом, в зимнее время катался на лыжах. В одной из таких лыжных поездок будущий академик и нобелевский лауреат Виталий Лазаревич Гинзбург познакомил Прохорова с Галиной Алексеевной Шелепиной, которая в скором времени стала женой Александра Михайловича. Жена Прохорова была по специальности географом, выпускницей МГУ. В 1945 году у супругов родился сын Кирилл.

Кроме Нобелевской премии ученый был награжден различными премиями и медалями, среди которых можно выделить болгарский орден Кирилла и Мефодия II степени (1979), медаль им. Гельмгольца Академии наук ГДР (1987), медаль Фредерика Айвеса – высшую награду Американского оптического общества (2000), золотую медаль им. Ломоносова АН СССР (1988).

Также Прохоров был удостоен Ленинской премии (1959), Государственной премии СССР (1980), Государственной премии России (1998), Демидовской премии (2001).

Знаменитый ученый был дважды Героем Социалистического Труда, кавалером пяти орденов Ленина, ордена Отечественной войны I степени, ордена «За заслуги перед Отечеством» II степени, многих других наград.

Прохоров состоял в различных научных обществах, среди которых Европейское физическое общество (1970), Американская академия наук и искусств в Бостоне (1972), Венгерская академия наук (1972), Академия наук ГДР (1976), Национальная академия наук Украины (2000), был почетным членом ряда престижных университетов – в Дели (1967), Бухаресте (1971), Праге (1980), американском штате Флорида (1988).

Знаменитый ученый умер в возрасте 86 лет в результате острого двустороннего воспаления легких 8 января 2002 года в Москве.

После смерти великого ученого Институт общей физики Российской академии наук был переименован в Институт общей физики Российской академии наук им. А. М. Прохорова.

 

БАСОВ НИКОЛАЙ ГЕННАДИЕВИЧ

(1922 г. – 2001 г.)

 

 

Знаменитый советский физик Николай Геннадиевич Басов родился 14 декабря 1922 года неподалеку от Воронежа в деревне Усмань (теперь город Усмань Липецкой области) в семье Геннадия Федоровича Басова и Зинаиды Андреевны Молчановой.

Отец будущего ученого состоял профессором Воронежского лесного института. Среди его известных исследований можно выделить анализ влияния лесопосадок на подземные воды и поверхностный дренаж.

После окончания средней школы в Воронеже в 1941 году Николай Басов был призван в Советскую армию. Во время Второй мировой войны он прошел медицинскую подготовку в Куйбышевской военно-медицинской академии. Окончив в 1943 году академию по специальности «ассистент военного доктора», он был прикомандирован к Первому Украинскому фронту. До окончания войны в 1945 году Басов находился в рядах армии в качестве врача-ассистента.

В декабре 1945 года Басов был демобилизован и в следующем году поступил в Московский механический институт (позже – Московский инженерно-физический институт, МИФИ). Особенно Николая Басова заинтересовала теоретическая и экспериментальная физика. Институт он окончил в 1950 году, после чего решил продолжить учебу и в этом же году поступил в аспирантуру того же института на кафедру теоретической физики. Научным руководителем Басова в аспирантуре был известный академик М. А. Леонтович.

Еще за два года до окончания института, в 1948 году, способному студенту предложили работу лаборанта (а позднее инженера) в лаборатории колебаний Физического института им. П. Н. Лебедева АН СССР в Москве (ФИАН). В ФИАНе будущий ученый проработал более пятидесяти лет, до самой смерти.

В это время группа молодых физиков этого института под руководством А. М. Прохорова начала цикл исследований по радиоспектроскопии – направлению, бурно развивавшемуся в те годы.

Принимая участие в этих работах, параллельно с 1950 по 1953 год Николай Басов продолжал обучение в аспирантуре и готовил кандидатскую диссертацию под руководством М. А. Леонтовича и А. М. Прохорова. В 1953 году Николай Басов успешно защитил свою кандидатскую диссертацию на тему «Определение ядерных моментов радиоспектроскопическим методом».

Совместные исследования Басова и Прохорова, проведенные в эти годы, заложили новое направление современной физики – квантовую электронику. Советские ученые разработали основные принципы усиления и генерации электромагнитного излучения квантовыми системами.

В 1900 году «отец» квантовой физики Макс Планк предположил, что осцилляторы излучают энергию лишь дискретными порциями – квантами. При этом энергия кванта пропорциональна частоте колебания, а каждый энергетический уровень равен частоте, умноженной на специальную константу, получившую название постоянной Планка.

В 1905 году Альберт Эйнштейн, использовав идеи Планка, предсказал двойственную природу света, объяснил фотоэлектрический эффект и ввел понятие фотона. В 1916 году гениальный физик Альберт Эйнштейн впервые представил принципы работы молекулярного генератора. По результатам исследований взаимодействия электромагнитного излучения и группы молекул в замкнутом пространстве Эйнштейну удалось вывести уравнение с тремя членами, характеризирующее испускание и поглощение излучения молекулами. Первым двум членам уравнения соответствовали процессы спонтанного излучения и поглощения излучения, а природу третьего члена, связанного с неизвестным тогда типом излучения, Эйнштейну объяснить не удалось.

В 20-е годы XX века благодаря работам Вернера Гейзенберга, Эрвина Шрёдингера и Поля Дирака квантовая теория получила дальнейшее развитие. Оказалось, что множество энергетических уровней индивидуально для конкретного атома или молекулы. При поглощении фотонов, энергия которых состояла из разности энергий двух энергетических уровней, атом или молекула переходили на более высокий энергетический уровень. Спустя некоторое время они вновь возвращались на более низкий уровень, а в результате такого перехода выделялась энергия в виде фотона излучения. Третий член в уравнении Эйнштейна соответствовал этому переходу с высшего энергетического уровня на более низкий.

Излучение такого типа получило название индуцированного (стимулированного) излучения, поскольку оно было стимулировано некоторыми обстоятельствами. С помощью закона знаменитого австрийского физика Людвига Больцмана было установлено, что в состоянии равновесия на более высоких энергетических уровнях размещалось меньшее количество электронов, чем на более низких. Отсюда можно было сделать вывод, что в процессе индуцированного излучения участвует относительно мало атомов.

Проанализировав исследования Эйнштейна и других ученых, Басов придумал способ, который позволял использовать индуцированное излучение в качестве усилителя поступающего излучения. Советский ученый увеличил число возбужденных молекул относительно числа молекул, находящихся в основном состоянии, и таким образом получил состояние вещества с инверсной заселенностью энергетических уровней.

Чтобы достичь этого результата, Басов в своих опытах использовал неоднородные электрические и магнитные поля, с помощью которых выделял возбужденные молекулы. После этого ученый облучал вещество излучением специальной частоты, фотоны которого имели энергию, равную разности возбужденного и основного состояний молекулы. В результате таких действий возникало индуцированное излучение той же частоты, которое усиливало подающий сигнал.

Начатые Басовым в 1952 году теоретические работы в области квантовой радиофизики требовали экспериментальных доказательств. Вместе с Прохоровым советский физик сконструировал генератор, который работал не только как усилитель возбудимости молекул, но и генерировал излучение с частотой, которая точно определялась энергетическими уровнями молекул.

В мае этого же года Басов и Прохоров представили на Всесоюзной конференции по радиоспектроскопии первые полученные результаты теоретического анализа эффектов усиления и генерации электромагнитного излучения квантовыми системами и предложили конструкцию оптического квантового генератора (ОКГ), основанного на инверсной заселенности.

В своей первой статье на эту тему в октябре 1954 года советские физики предложили эффективный и универсальный метод создания состояний с инверсной населенностью (метод селективной накачки электромагнитным излучением трехуровневой системы). Согласно предложенной советскими физиками «трехуровневой схеме», при переводе атомов из основного состояния на наиболее высокий из трех энергетических уровней, на промежуточном уровне размещалось больше молекул, чем на нижнем. В результате этого явления можно было получить индуцированное излучение с частотой, которая соответствовала разности энергий между двумя более низкими уровнями.

За десять месяцев до публикации этой статьи Басова и Прохорова, еще в 1953 году американский физик Чарлз Таунс в лаборатории Колумбийского университета (США) создал работающий молекулярный осциллятор, который назвал мазером (по начальным буквам английского выражения «microwave amplification by stimulated emisson of radiation» – микроволновое усиление с помощью стимулированного излучения). В своих работах американский физик использовал резонансную полость, заполненную возбужденными молекулами аммиака. В результате этих экспериментов он достиг огромного усиления микроволн с частотой в 24 000 мегагерц.

В 1955 году Николай Геннадиевич Басов возглавил группу молодых талантливых ученых, которая проводила исследования частотных характеристик молекулярных осцилляторов. В 1956 году он защитил докторскую диссертацию на тему «Молекулярный осциллятор», в которой суммировал свои теоретические и экспериментальные исследования молекулярного генератора на основе пучков аммиака. За эту работу ему была присуждена степень доктора физико-математических наук.

За период с 1955 по 1956 год Басов и Прохоров создали принципиально новые малошумные квантовые усилители и генераторы радиочастотного диапазона (мазеры), первым из которых стал мазер на основе молекул аммиака.

В 1957 году Басов начал работать над конструкцией квантовых осцилляторов в оптическом диапазоне частот. Идея о возможности распространения принципов и методов радиофизики и квантовой электроники на оптический диапазон частот пришла к ученому еще во время его первых работ над молекулярными генераторами.

Советский ученый полностью переключился на поиск путей создания оптического квантового генератора (получившего в будущем название лазера). Он подключил к своим исследованиям молодых студентов-физиков, в 1959 году организовал в ФИАНе сектор молекулярных генераторов, а в 1963 году – лабораторию квантовой физики. В 1986 году лаборатория Басова стала частью целого отдела, а с 1989 года – и отделения ФИАНа.

Также вместе со своей командой физиков-теоретиков Николай Геннадиевич изучал возможности реализации квантовых генераторов на основе полупроводников. В 1958 году вместе с соавторами Басов опубликовал статью «Квантовомеханические полупроводниковые генераторы и усилители электромагнитных колебаний», в которой высказал идею создания инверсной населенности в полупроводниках путем лавинного размножения носителей тока в импульсном электрическом поле. Эту идею ученый предложил вниманию ученых и в своем докладе на Международной конференции в США в 1959 году. Предложение Басова ознаменовало начало освоения квантовой электроникой оптического диапазона частот.

В 1959 году Николай Геннадиевич Басов и Александр Михайлович Прохоров были награждены Ленинской премией за исследования по созданию молекулярных осцилляторов и парамагнитных усилителей.

В 1960 году американский физик Теодор Меймен сконструировал прибор, в котором реализовал трехуровневый принцип усиления и генерирования красного света. Свое название «лазер» устройство получило от начальных букв английского выражения «light amplification by stimulated emission of radiation» – световое усиление с помощью индуцированного излучения.

В начале 1961 года Басов и его сотрудники предложили и обосновали методы создания полупроводниковых лазеров: с оптической накачкой, инжекционных и с электронным возбуждением. Ученые сформулировали условие инверсии в терминах квазиуровней Ферми и предсказали стационарный режим работы. Результатами дальнейших исследований стало создание инжекционных лазеров в конце 1962 года в СССР и в США.

В 1961 году Басов вместе с В. С. Зуевым, П. Г. Крюковым, В. С. Летоховым занялся вопросами получения мощного излучения. В этом же году совместно с О. Н. Крохиным ученый предложил три различных метода для достижения состояния с отрицательной температурой в полупроводниках при наличии прямых и непрямых переходов. В следующем году ученые работали над возможностью применения лазеров для получения термоядерной плазмы.

Свою идею получения термоядерных реакций при лазерном облучении мишени ученый выдвинул в 1962 году на заседании Президиума АН СССР, а затем на Международной конференции по квантовой электронике в Париже в 1963 году. Вместе с О. Н. Крохиным Басов спрогнозировал и разработал основы лазерного термоядерного синтеза (ЛTC). Хотя в те годы существовали только твердотельные лазеры с энергией импульса меньше одного джоуля и непрерывные лазеры мощностью менее одного ватта, ученый умело спрогнозировал ситуацию на несколько десятилетий вперед. Спустя шесть лет в его лаборатории в ФИАНе будут получены первые нейтроны при лазерном облучении мишени из дейтерия лития.

В то время Басов был лидером и пионером в «лазерных» исследованиях.

В 1963 году вместе с Б. Вулом и Ю. М. Поповым Басов исследовал условия образования структур с отрицательной температурой в полупроводниках.

Результатом сотрудничества Басова и Вула стало создание в этом же году первого полупроводникового лазера на основе арсенида галлия (GaAs). Эти работы стали продолжением исследований Басова по возбуждению полупроводниковых лазеров, начатых еще в 1961 году.

В том же 1963 году Басов принял активное участие в проектах по оптоэлектронике. Результатом его работ стало создание быстродействующих элементов на основе диодных лазеров.

В следующем году гениальный советский ученый вместе с О. В. Богданкевичем и А. Н. Девятковым разработал полупроводниковый лазер с электронной накачкой. В последующих исследованиях Н. Г. Басов совместно с А. 3. Грасюком и В. А. Катулиным разработал полупроводниковый лазер с оптической накачкой при одно– и двухквантовом поглощении возбуждающего лазерного излучения.

В 1964 году «за фундаментальную работу в области квантовой электроники, которая привела к созданию генераторов и усилителей, основанных на лазерно-мазерном принципе» Басов был удостоен Нобелевской премии по физике. Николай Геннадиевич получил четверть денежного приза. Еще четверть досталась Александру Михайловичу Прохорову и половина приза – Чарлзу Таунсу, представителю Массачусетсского технологического института (США), которые также стали лауреатами Нобелевской премии по физике в этом году.

11 декабря 1964 года Басов прочел свою известную нобелевскую лекцию «Полупроводниковые лазеры». В ней ученый указал способы использования полупроводниковых лазеров в науке и технике.

После получения высокой награды Басов продолжил свои плодотворные исследования. Учитель и многолетний сотрудник Николая Басова академик Александр Прохоров отметил, что после получения Нобелевской премии Басов, его талантливейший ученик, значительно вырос в научном плане, успешно развивал новое перспективное направление «лазерный термояд».

В 1968 году нобелевский лауреат вместе с П. Г. Крюковым и Ю. В. Сенатским сконструировал лазер на неодимовом стекле, который выдавал 30 джоулей при импульсе длительностью 20 пикосекунд. В этом же году Николай Геннадиевич совместно с П. Г. Крюковым, Ю. В. Сенатским и С. Д. Захаровым обнаружил эмиссию электронов дейтериевой плазмой, полученной с помощью лазера.

В своих последующих работах ученый вместе с В. С. Летоховым предложил теорию формирования пикосекундных импульсов, а с А. Н. Ораевским – способ термической накачки. Эти исследования привели к созданию газодинамических лазеров.

В известной статье «Получение отрицательных температур методом нагрева и охлаждения системы» Басов (совместно с Ораевским) подробно обосновал получение инверсной населенности при термической накачке. Спустя некоторое время ученый начал серию работ по импульсным фотодиссоционным лазерам и лазерам на основе вынужденного комбинационного рассеяния.

В 1970-х годах Басов продолжал работать над химическими лазерами. В своей лаборатории ученому удалось создать первый эксимерный лазер. Он построил лазер на смеси дейтерия, фтора и диоксида углерода.

В 1971 году под его руководством был создан первый электро-ионизационный лазер на углекислом газе.

В конце 1970-х годов знаменитый ученый вместе с Е. П. Маркиным, А. Н. Ораевским и А. В. Панкратовым представил экспериментальные доказательства ускорения химических реакций инфракрасным лазерным излучением.

Басов был заядлым тружеником и все свое время посвящал науке. Он очень переживал за развитие науки в стране. Из-под его пера вышли различные обзорные и популярные статьи по разным областям физики. Всеми своими действиями ученый старался популяризировать физику в широких кругах общественности.

Многие ученики Басова стали впоследствии профессорами, докторами наук и лауреатами различных премий. Ученого можно назвать создателем целой научной школы, из которой вышло более 60 докторов и 300 кандидатов наук.

Главным вкладом Басова в мировую науку явились его работы в области квантовой электроники. Знаменитый ученый стал лидером и пионером развития и конструирования лазерной техники.

Кроме того, Николай Геннадиевич четко определил главную тенденцию развития лазерной техники – создание мощных высокоэнергетичных лазеров, как непрерывных, так и импульсных, необходимых для решения целого ряда задач, к числу которых можно отнести термоядерный синтез, лазерные технологии, лазерную локацию Луны и т. д.

С 1958 по 1972 год Басов занимал пост заместителя директора Физического института им. П. Н. Лебедева АН СССР в Москве, а с 1973 по 1989 год – его директора. Будучи директором ФИАНа, Басов в 1980 году организовал в Самаре (ныне Куйбышев) филиал ФИАНа, который вскоре стал ведущим в СССР центром по лазерной технике и технологии.

С момента основания (в 1963 году) лаборатории квантовой радиофизики Физического института АН СССР и до самой смерти Басов являлся ее руководителем. Также с 1963 года Басов состоял профессором кафедры полупроводниковой физики Московского инженерно-физического института. По его инициативе в институте в 1971 году был организован специальный факультет физики, на который принимались только лучшие студенты-физики различных университетов СССР.

В 1950 году Николай Басов женился на Ксении Тихоновне Назаровой. Его жена по профессии также была физиком и работала в МИФИ. У Басовых родилось два сына – Геннадий (в 1954 году) и Дмитрий (в 1963 году). Дмитрий Николаевич Басов пошел по стопам отца и стал известным ученым-физиком.

Главным и единственным увлечением в жизни ученого была наука. Он являлся главным редактором известных научно-популярных журналов «Природа» (1967–1990) и «Квантовая электроника» (1971), членом редколлегии журнала «Il Nuovo Cimento».

Кроме Нобелевской премии Басов был многократно награжден различными премиями и медалями, среди которых можно выделить золотую медаль Чехословацкой академии наук (1975), золотую медаль А. Вольты (1977), золотую медаль им. М. В. Ломоносова АН СССР (1990).

В 1959 году Басов стал лауреатом Ленинской премии, а в 1989 году получил Государственную премию СССР. Николай Геннадиевич дважды был удостоен звания Героя Социалистического Труда (1969, 1982), пять раз награждался орденом Ленина.

В 1962 году знаменитый ученый был избран членом-корреспондентом АН СССР, в 1966 году – действительным членом АН СССР, с 1967 года являлся членом Президиума АН СССР, с 1990 года – председателем Президиума АН СССР, с 1991 года – председателем Президиума РАН.

Николай Геннадиевич был членом различных академий наук, среди которых можно выделить академии Польши, Чехословакии, Болгарии, Германии, Франции, Шведскую королевскую академию инженерных наук, Американское оптическое общество, а также Германскую академию естествоиспытателей «Леопольдина».

Знаменитый ученый являлся вице-председателем исполнительного совета Всемирной федерации научных работников, членом Советского комитета защиты мира и Всемирного Совета Мира, председателем правления Всесоюзного общества «Знание» в 1978–1990-х годах. Он принимал активное участие и в международных научных организациях (ВФНР, МАГАТЭ, ЮНЕСКО).

В 1974 году Николай Геннадиевич Басов был избран в Верховный Совет СССР и являлся его депутатом до 1989 года, а с 1982 по 1989 год был членом его Президиума. В 1991 году знаменитый ученый стал членом Экспертного совета при председателе Правительства Российской Федерации.

Первого июля 2001 года Николай Геннадиевич Басов умер в Москве.

 

ГЕЛЛ-МАНН (ГЕЛЛ-MAH) МАРРИ

(р. в 1929 г.)

 

 

Марри Гелл-Манн родился в Нью-Йорке 15 сентября 1929 года, в семье Артура и Полин Гелл-Манн – евреев-иммигрантов, перебравшихся в Соединенные Штаты из Черновиц, в те времена входивших в состав Австро-Венгрии. 40 днями позднее, 25 октября, произошел крах котировок акций на Нью-Йоркской бирже. Это событие, известное как «черная пятница», ознаменовало начало Великой депрессии. Гелл-Манны и до того достатком похвалиться не могли – проживали они в трущобном районе. Теперь же Артур с большим трудом обеспечивал свое семейство самым необходимым. Это обстоятельство, впрочем, не мешало ему уделять много внимания воспитанию детей. Именно отец привил Марри интерес к наукам вообще и к точным наукам в особенности. Мальчик был настоящим вундеркиндом. Позже Гелл-Манн вспоминал, например, такой эпизод из своего детства: «У меня был учебник Сильвануса Томпсона[114], но мне не нравился способ, которым автор решал несколько важных проблем, например – концепцию пределов». Казалось бы, ничего странного: будущий великий ученый не согласился с взглядами уже состоявшегося ученого. Вот только учебник Томпсона Марри изучал… когда ему было семь лет.

Интересно, что сначала Марри Гелл-Манн планировал заняться лингвистикой или археологией. Школьная физика вызывала у него тоску: в основном изучение этой науки состояло в зазубривании законов, которые для юного вундеркинда были очевидны. Отец же считал, что с карьерной точки зрения наиболее перспективно инженерное образование. В качестве своеобразной альтернативы Марри выбрал Йельский университет, в который поступил в возрасте 15 лет. Здесь преподавание физики выгодно отличалось от школьного, и вскоре Гелл-Манн был буквально покорен этой наукой. Особенно его заинтересовала теоретическая физика.

Уже в девятнадцать лет Марри стал бакалавром и поступил в аспирантуру Массачусетсского технологического института. В 1951 году он получил докторскую степень по физике. После этого Гелл-Манн год работал в Принстонском институте фундаментальных исследований, а затем, с 1952 по 1955 год – в Чикагском университете, вместе со знаменитым Энрико Ферми: сначала преподавателем, затем ассистент-профессором и адъюнкт-профессором. Марри было всего 23 года, когда он опубликовал свою основополагающую работу по странности элементарных частиц.

Для большей ясности мы сделаем некоторое отступление. Физика элементарных частиц в 1950-е годы находилась только в стадии становления. Экспериментаторы, используя ускорители, сумели получить несколько новых типов элементарных частиц. Некоторые из этих частиц проявляли необычные (странные) свойства. Скорость их рождения указывала на то, что их поведение определяется сильным взаимодействием[115]. Скорость же распада странных частиц была необычайно мала и указывала на то, что этот процесс определяется слабым взаимодействием.

В своих рассуждениях Гелл-Манн отталкивался от понятия зарядовой независимости. Суть этого понятия состоит в том, что при классификации частиц учитывается их сходство. Например, протон и нейтрон отличается только электрическим зарядом: протон – +1, нейтрон – 0. Значит, их можно считать разновидностью одного и того же типа частиц (нуклонов), имеющих средний заряд 1/2. Вместе протон и нейтрон образуют так называемый дуплет. Другие частицы могут образовывать группы, состоящие из иного числа членов. Такие группы получили общее название мультиплеты. Но странные частицы подобному способу классификации не поддавались: средний заряд их мультиплетов отличается от 1/2. Гелл-Манн предположил, что как раз это отличие и является фундаментальным свойством странных частиц, и предложил новое квантовое свойство, названное странностью. Странность равна удвоенной разности между средним зарядом мультиплета и средним зарядом нуклона (1/2). Далее ученый вывел закон сохранения странности, согласно которому суммарная странность всех частиц до реакции, в которой участвует сильное или электромагнитное взаимодействие, равна суммарной странности после реакции. Таким образом стало понятно, что распад странных частиц и не может быть вызван этими силами и определяется слабым взаимодействием.

В 1955 году Марри Гелл-Манн получил предложение занять должность адъюнкт-профессора Калифорнийского технологического института. Следующие 38 лет жизни ученого были связаны с этим учебным заведением. Уже через год он стал полным профессором, а в 1967 году был удостоен почетного профессорского поста, учрежденного в честь Роберта Эндрюса Милликена.

Что же касается личной жизни ученого, то в 1955 году Гелл-Манн женился на Маргарет Доу, археологе по образованию. Через год в их семье родилась дочь, Элизабет Сара, а в 1963 году сын – Николас Вебстер. В 1981 году Маргарет умерла. В 1992 году 63-летний Гелл-Манн женился на Марше Соутвик.

Начало 1960-х годов ознаменовалось новым фундаментальным открытием Гелл-Манна. Ученый выяснил, что предложенная им для описания странных частиц система мультиплетов может стать составляющей гораздо более широкого обобщения, на основании этого Гелл-Манн смог выделить «семейства» сильно взаимодействующих частиц. Интересно, что ученый имел обширные познания не только в физике, и потому назвал свою новую систему классификации восьмеричным путем[116], так как в некоторые семейства входило по восемь частиц. Эту классификацию также часто называют восьмеричной симметрией. Здесь надо заметить, что вскоре после Гелл-Манна и независимо от него подобные выводы сделал израильский физик Ювал Нееман. По значению и роли в физике элементарных частиц восьмеричный путь можно сравнить с периодическим законом Менделеева в химии. Так, например, в своей новой классификации частиц Гелл-Манн оставил свободные места в некоторых семействах частиц, предположив, каким набором свойств должны обладать еще не открытые частицы. Уже в 1964 году одна из таких частиц была обнаружена, что стало блестящим подтверждением теоретических выкладок американского ученого.

Но составлением собственной классификации Марри Гелл-Манн не ограничился. В 1963 году он обратил внимание на то, что объяснить наблюдения, на которых основан восьмеричный путь, можно, если допустить, что каждая из частиц, участвующих в сильном взаимодействии, состоит из трех гипотетических частиц, имеющих заряды +2/3 или –1/3. Например, нейтрон состоит из двух частиц, имеющих заряд –1/3 и одной с зарядом +2/3. Протон – из двух частиц, имеющих заряд +2/3 и одной с зарядом –1/3. Гелл-Манн назвал частицы с дробным зарядом кварками. Кварки с одним и тем же зарядом могут отличаться другими свойствами, иными словами, существуют несколько типов кварков с одним и тем же зарядом. Само слово «кварк» Гелл-Манн позаимствовал у знаменитого английского писателя Джеймса Джойса. В романе «Поминки по Финнегану» это слово упоминается в единственном месте. Вообще этот роман построен на словотворчестве, и перевести его на другие языки крайне сложно. Комментарии к этому произведению занимают вдвое больше страниц, чем сам роман, и в них объясняется смысл огромного числа слов и выражений. Главному герою приснился сон, в котором он увидел себя королем Корнуэлла Марком. Марк поручает рыцарю Тристану привести его невесту Изольду. Когда Тристан и Изольда плывут на корабле, вокруг кружат чайки, напевая песенку, которая начинается словами: «Три кварка для Марка». По-видимому, Гелл-Манну понравилось необычное слово, и он сделал его научным термином. Физик Джордж Цвейг, занимавшийся теми же проблемами, что и Гелл-Манн, вместо слова кварк использовал слово «туз», но это название не прижилось. Заканчивая рассказ о физических достижениях Гелл-Манна, следует упомянуть, что позднее он вместе с Ричардом Фейнманом предложил понятие «токов» слабых взаимодействий и внес большой вклад в развитие «алгебры токов».

В 1969 году Марри Гелл-Манн стал лауреатом Нобелевской премии по физике «за открытия, связанные с классификацией элементарных частиц и их взаимодействий». И поныне американский ученый пользуется огромным авторитетом и уважением в ученом мире. Кроме Нобелевской премии он удостоен целого ряда других престижных наград и званий (и, что интересно, не только в области физики): премии имени Дэнни Хайнемана, награды имени Эрнеста О. Лоренса, медали имени Франклина и Джона Дж. Карти, приза Эрис, почетного свитка за экологические достижения от ООН. Гелл-Манн является почетным доктором наук многих университетов, среди которых Кембриджский, Йельский, Чикагский, Туринский, Оксфордский. Он состоит членом Американской академии наук и искусств, иностранным членом Лондонского королевского общества.

Интересы Марри Гелл-Манна очень разнообразны и даже несколько экстравагантны. По собственному признанию, ученый не знает, что такое свободное время. Вот только немногие из его увлечений: пешие прогулки, наблюдение за птицами, путешествия в глухие уголки планеты, например, он может поехать записывать голоса птиц в далекий Бутан. Марри Гелл-Манн коллекционирует антиквариат из Восточной Азии, увлекается лингвистикой, является членом редакционного совета энциклопедии «Британника». В 1984 году он стал одним из основателей Института Санта-Фе – некоммерческой организации, занимающейся изучением сложных систем. Здесь работают высококвалифицированные специалисты в области истории, биологии, экономики, физики, статистики. В 1990-х годах в рамках сотрудничества с этим институтом по результатам своих исследований он написал популярную книгу «Кварки и ягуар: приключения в простом и сложном». Сейчас американский ученый возглавляет один из наиболее успешных проектов современной лингвистики – «Evolution of Human Languages», целью которого является изучение истории развития языков.

 

АЛФЁРОВ ЖОРЕС ИВАНОВИЧ

(р. в 1930 г.)

 

 

Знаменитый советский и российский ученый Жорес Иванович Алфёров родился 15 марта 1930 года в городе Витебске (тогда еще в Белорусской ССР).

Его родители были коренными белорусами. Отец будущего ученого, Иван Карпович Алфёров, сменил множество профессий.

Во время Первой мировой войны он воевал, был гусаром, унтер-офицером лейб-гвардии. За свою храбрость был представлен к награждению, став дважды Георгиевским кавалером.

В сентябре 1917 года старший Алфёров вступил в партию большевиков, а спустя некоторое время перешел на хозяйственную работу. С 1935 года отец Жореса занимал различные руководящие должности на военных заводах СССР. Он работал директором завода, комбината, начальником треста. Из-за специфики работы отца семья часто переезжала с места на место. Маленькому Алфёрову довелось увидеть Сталинград, Новосибирск, Барнаул, Сясьстрой под Ленинградом, Туринск Свердловской области, полуразрушенный Минск.

Мать мальчика, Анна Владимировна, работала в библиотеке, в отделе кадров, а большую часть времени была домохозяйкой.

Родители будущего ученого были заядлыми коммунистами. Своего старшего сына они назвали Марксом (в честь Карла Маркса), а младший получил имя Жорес (в честь Жана Жореса, основателя французской социалистической партии, идеолога и основателя газеты «Юманите»).

Детские воспоминания Жореса часто связаны с его старшим братом. Маркс помогал мальчику в учебе, никогда не давал его в обиду. После окончания школы и нескольких месяцев учебы в Уральском индустриальном институте он бросил все и ушел на фронт – защищать Родину. В возрасте 20 лет младший лейтенант Маркс Алфёров был убит.

Начальное образования Жорес получил в Сясьстрое. 9 мая 1945 года отец мальчика получил назначение в Минск, куда вскоре переехала и семья. В Минске Жореса определили учиться в единственную не разрушенную в городе 42-ю среднюю школу, которую он окончил в 1948 году с золотой медалью.

Учителем физики в 42-й школе был знаменитый Я. Б. Мельцерзон. Несмотря на отсутствие физического кабинета, преподавателю удалось привить любовь и интерес школьников к своему предмету. Заметив талантливого мальчика, Яков Борисович всячески помогал ему в учебе. После окончания школы учитель порекомендовал Алфёрову ехать в Ленинград и поступать в Ленинградский электротехнический институт им. В. И. Ленина (ЛЭТИ).

На молодого Алфёрова физические уроки действовали магнетически. Особенно его заинтересовал рассказ учителя о работе катодного осциллографа и принципах радиолокации, так что мальчик после школы уже твердо знал, кем он хочет быть. Он поступил в ЛЭТИ на специальность «электровакуумная техника» факультета электронной техники (ФЭТ). В то время институт был одним из «пилотных» вузов в области отечественной электроники и радиотехники.

На третьем курсе способного студента взяли на работу в вакуумную лабораторию профессора Б. П. Козырева, где молодой Алфёров начал свою первую экспериментальную работу под руководством Натальи Николаевны Созиной. Позже Алфёров очень тепло отзывался о своем первом научном руководителе. Незадолго до прихода в институт Жореса она сама защитила диссертационную работу по исследованию полупроводниковых фотоприемников в инфракрасной области спектра и всячески помогала в исследованиях Жореса Алфёрова.

Атмосфера в лаборатории, процесс исследования очень нравились студенту, и он решил стать профессиональным физиком. Особенно Жореса заинтересовало изучение полупроводников. Под руководством Созиной Алфёров написал дипломную работу, посвященную получению пленок и исследованию фотопроводимости теллурида висмута.

В 1952 году Алфёров окончил ЛЭТИ и решил продолжить научные исследования в заинтересовавшей его области физики. При распределении выпускников на работу Алфёрову улыбнулась удача: он отказался остаться в ЛЭТИ и был принят в Физико-технический институт им. А. Ф. Иоффе (ЛФТИ).

В то время настольной книгой молодого ученого была монография Абрама Федоровича Иоффе «Основные представления современной физики». Распределение в Физтех было одним из самых счастливых моментов в жизни знаменитого ученого, определившее его дальнейший путь в науке.

К моменту прихода молодого специалиста в институт светило советской науки, директор ЛФТИ Абрам Федорович Иоффе уже ушел со своего поста. «Под Иоффе» была образована лаборатория полупроводников при Президиуме АН СССР, куда выдающийся ученый пристроил почти всех лучших физиков – исследователей полупроводниковой области. Молодому ученому повезло во второй раз – он был откомандирован в эту лабораторию.

Великий А. Ф. Иоффе был пионером полупроводниковой науки в целом и основоположником отечественных разработок в этой области. Именно благодаря ему Физтех стал центром полупроводниковой физики.

В 1930-е годы в Физтехе проводились различные исследования, ставшие фундаментальными основами новой области физики. Среди таких работ следует особенно выделить совместный труд Иоффе и Френкеля 1931 года, в котором ученые описали туннельный эффект в полупроводниках, а также работу Жузе и Курчатова по собственной и примесной проводимости полупроводников.

Однако после серии успешных работ Иоффе заинтересовался ядерной физикой, другие гениальные физики занимались иными близкими им областями науки, так что развитие физики полупроводников несколько замедлилось. Кто знает, как бы развивались дальше дела, если бы в 1947 году американским ученым не удалось добиться транзисторного эффекта на точечном транзисторе. В 1949 году уже был изготовлен первый транзистор с p-n -переходами.

В начале 1950-х годов советское правительство поставило институту конкретную задачу – разработать современные полупроводниковые приборы, которые можно было бы использовать в отечественной промышленности. Лаборатория полупроводников должна была получить монокристаллы чистого германия и на их основе создать плоскостные диоды и триоды. Способ массового промышленного производства транзисторов американские ученые предложили в ноябре 1952 года, теперь очередь была за советскими учеными.

Молодой ученый оказался в самом эпицентре научных разработок. Ему довелось участвовать в создании первых отечественных транзисторов, фотодиодов, мощных германиевых выпрямителей и т. д.

Задание советского правительства лаборатория Тучкевича выполнила на «отлично». Жорес Алфёров принимал активное участие в разработках. Уже 5 марта 1953 года он сделал первый транзистор, который справлялся с нагрузками и хорошо показал себя в работе. В 1959 году за комплекс проведенных работ Жорес Алфёров получил правительственную награду.

В 1960 году вместе с другими учеными Жорес отправился на международную конференцию по физике полупроводников в Прагу. Среди знаменитых ученых там присутствовали Абрам Иоффе и Джон Бардин, представитель знаменитой троицы Бардин – Шокли – Браттейн, создавшей в 1947 году первый транзистор. После посещения конференции Алфёров еще больше заинтересовался научными исследованиями.

В следующем году Жорес Алфёров защитил свою кандидатскую работу, посвященную созданию и исследованию мощных германиевых и частично кремниевых выпрямителей, и был удостоен степени кандидата технических наук. Фактически эта работа подвела итог его десятилетних исследований в данной области науки.

Особенных раздумий, какую область физики выбрать для дальнейших исследований, у него не было – он уже серьезно работал над получением полупроводниковых гетероструктур и исследованием гетеропереходов. Алфёров понимал, что если ему удастся создать совершенную структуру – это будет настоящий скачок в физике полупроводников.

В то время сформировалась отечественная силовая полупроводниковая электроника. Долгое время ученым не удавалось разработать приборы, основанные на гетеропереходах, из-за трудности создания перехода, близкого к идеальному.

Алфёров показал, что в таких разновидностях p-n -переходов, как р-i-n, р-n-n + в полупроводниковых гомоструктурах, при рабочих плотностях тока, ток в пропускном направлении определяется рекомбинацией в сильно легированных р  и n(n +)  областях структур. При этом средняя i(n)  область гомоструктуры не является главной.

При работе над полупроводниковым лазером молодой ученый предложил использовать преимущества двойной гетероструктуры типа p-i-n (р-n-n +, n-p-p +) . Заявка на авторское свидетельство Алфёрова была засекречена, гриф секретности был снят только после того, как американский ученый Кремер опубликовал подобные выводы.

В возрасте 30 лет Алфёров уже был одним из ведущих специалистов в области полупроводниковой физики в Советском Союзе. В 1964 году его пригласили принять участие в международной конференции по физике полупроводников, проводившейся в Париже.

Через два года Жорес Алфёров сформулировал общие принципы управления электронными и световыми потоками в гетероструктурах.

В 1967 году Алфёров был избран заведующим лабораторией ЛФТИ. Работа над исследованиями гетероструктур шла полным ходом. Советские ученые пришли к выводу, что реализовать основные преимущества гетероструктуры возможно лишь после получения гетероструктуры типа Alx Ga1-x As.

В 1968 году стало ясно, что не одни советские физики работают над этим исследованием гетероструктур. Оказалось, что Алфёров и его команда всего лишь на месяц опередили исследователей из лаборатории IBM в своем открытии гетероструктуры типа Alx Ga1-x As. Кроме IBM в исследовательской гонке приняли участие такие монстры электроники и полупроводниковой физики, как компании Bell Telephone и RCA.

В лаборатории Н. А. Горюновой удалось подобрать новый вариант гетероструктуры – тройное соединение AlGaAs, что позволило определить популярную на сегодня в электронном мире гетеропару GaAs/AlGaAs.

К концу 1969 года советские ученые во главе с Алфёровым реализовали практически все возможные идеи управления электронными и световыми потоками в классических гетероструктурах на основе системы арсенид галлия – арсенид алюминия.

Кроме создания гетероструктуры, близкой по своим свойствам к идеальной модели, группа ученых под руководством Алфёрова создала первый в мире полупроводниковый гетеролазер, работающий в непрерывном режиме при комнатной температуре. Конкуренты из Bell Telephone и RCA предложили лишь более слабые варианты, базирующиеся на использовании в лазерах одиночной гетероструктуры p AlGaAs-p GaAs.

В августе 1969 года Алфёров совершил первую свою поездку в США на Международную конференцию по люминесценции в Ньюарке, штат Делавер. Ученый не отказал себе в удовольствии и выступил с докладом, в котором упомянул характеристики созданных лазеров на основе AlGaAs. Эффект от доклада Алфёрова превысил все ожидания – американцы намного отстали в своих исследованиях, и только специалисты из Bell Telephone спустя несколько месяцев повторили успех советских ученых.

На основе разработанной в 1970-х годах Алфёровым технологии высокоэффективных и радиационностойких солнечных элементов на основе гетероструктур AlGaAs/GaAs в Советском Союзе впервые в мире было организовано массовое производство гетероструктурных солнечных элементов для космических батарей. Когда подобные работы опубликовали американские ученые, советские батареи уже много лет использовались для различных целей. В частности, одна из таких батарей была установлена в 1986 году на космической станции «Мир». В течение многих лет эксплуатации она работала без существенного снижения мощности.

В 1970 году на основе идеальных переходов в многокомпонентных соединениях InGaAsP (предложенных Алфёровым) были сконструированы полупроводниковые лазеры, использующиеся, в частности, как источники излучения в волоконно-оптических линиях связи повышенной дальности.

В том же 1970 году Жорес Иванович Алфёров успешно защитил свою докторскую диссертацию, в которой обобщил исследования гетеропереходов в полупроводниках, преимущества использования гетероструктур в лазерах, солнечных батареях, транзисторах и т. д. За эту работу ученому была присуждена степень доктора физико-математических наук.

За небольшой срок Жорес Алфёров добился поистине феноменальных результатов. Его работы привели к бурному развитию волоконно-оптических систем связи. В следующем году ученому была присуждена первая международная награда – золотая медаль Баллантайна Франклиновского института в США (Филадельфия), которую в мире науки называют «малой Нобелевской премией». К 2001 году кроме Алфёрова аналогичной медалью были награждены только три советских физика – П. Капица, Н. Боголюбов и А. Сахаров.

В 1972 году ученый вместе со своими учениками-коллегами был удостоен Ленинской премии. В этом же году Жорес Иванович стал профессором Л ЭТИ, а в следующем – заведующим базовой кафедрой оптоэлектроники (ЭО) на факультете электронной техники ФТИ. В 1988 году Ж. И. Алфёров организовал в Санкт-Петербургском политехническом институте физико-технический факультет и стал его деканом.

Работы Алфёрова 90-х годов XX века были посвящены исследованиям свойств наноструктур пониженной размерности: квантовых проволок и квантовых точек.

10 октября 2000 года Нобелевский комитет по физике присудил Нобелевскую премию 2000 года Жоресу Ивановичу Алфёрову, Херберту Крёмеру и Джеку Килби за «их базовые работы в области информационных и коммуникационных систем». Конкретно Алфёров и Крёмер получили премию «за разработку полупроводниковых гетероструктур, которые используются в сверхбыстрых микроэлектронных компонентах и оптоволоконной связи».

Своими работами все три лауреата значительно ускорили развитие современной техники, в частности Алфёров и Крёмер открыли и разработали быстрые и надежные опто– и микроэлектронные компоненты, которые сегодня используются в самых различных областях.

Денежную премию в 1 млн долларов ученые разделили между собой в таких пропорциях: Джек Килби за свои работы в области интегральных схем получил половину премии, а другая половина была поровну разделена между Алфёровым и Крёмером.

В своей презентационной речи, произнесенной 10 декабря 2000 года, профессор Шведской королевской академии наук Торд Клесон проанализировал главные достижения трех великих ученых. Свою нобелевскую лекцию Алфёров прочитал 8 декабря 2000 года в Стокгольмском университете на отличном английском языке и без конспекта.

В 1967 году Жорес Алфёров женился на Тамаре Георгиевне Дарской, дочери известного актера. Его жена некоторое время работала под руководством академика В. П. Глушко в Москве. Влюбленные люди около полугода летали друг к другу из Москвы в Ленинград и обратно, пока Тамара не согласилась переехать в Ленинград.

В свободное от науки время ученый интересуется историей Второй мировой войны.

Уже в довольно позднем возрасте Алфёров начал свою карьеру политика. В 1989 году он был избран народным депутатом СССР, входил в Межрегиональную депутатскую группу. После развала Союза он не забросил свою политическую деятельность.

Осенью 1995 года знаменитый ученый был включен в качестве кандидата в общефедеральный список избирательного объединения «Всероссийское общественно-политическое движение “Наш дом – Россия”». По результатам голосования по общефедеральному округу он был избран депутатом российской Государственной думы второго созыва (с 1995 года), а через некоторое время стал членом комитета по образованию и науке (подкомитет по науке).

В 1997 году Алфёров был включен в состав Научного совета Совета безопасности Российской Федерации.

В 1999 году Жорес Иванович был избран депутатом Государственной думы РФ третьего созыва. Ученый был членом фракции КПРФ, наследницы КПСС, в которой Алфёров состоял с 1965 года по август 1991 года. Кроме того, ученый был членом бюро Ленинградского обкома КПСС в 1988–1990 годах, делегатом XXVII съезда КПСС.

В настоящее время Алфёров по-прежнему заядлый коммунист и атеист.

Из-под пера Алфёрова вышло более 350 научных статей, три фундаментальные научные монографии. Он имеет более 100 авторских свидетельств на изобретения. Ученый является главным редактором «Журнала технической физики».

В 1972 году Алфёров был избран членом-корреспондентом Академии наук СССР, в 1979 году – академиком, в 1990 году он стал вице-президентом АН СССР, в 1991 году – академиком Российской академии наук (РАН) и ныне является ее вице-президентом.

Параллельно Алфёров занимает должности председателя президиума Санкт-Петербургского научного центра РАН (с 1989 года), директора Центра физики наногетероструктур, председателя Международного фонда им. М. В. Ломоносова для возрождения и развития фундаментальных исследований в области естественных и гуманитарных наук, члена бюро отделения физических наук РАН, члена секции общей физики и астрономии отделения физических наук РАН, директора физико-технического института РАН (с 1987 года).

На всех своих должностях Алфёров занимает активную позицию. Его рабочий график расписан на месяц вперед.

Кроме Нобелевской премии ученый был награжден различными медалями и премиями, среди которых стоит выделить золотую медаль им. Стюарта Баллантайна Франклиновского института (США, 1971), премию «Хьюлетт-Паккард» Европейского физического общества, Международную премию симпозиума по арсениду галлия (1987), золотую медаль X. Велькера (1987), премию им. А. Ф. Иоффе РАН (1996), Общенациональную неправительственную Демидовскую премию РФ (1999), премию Киото за передовые достижения в области электроники (2001).

Также ученый был удостоен Ленинской премии (1972), Государственной премии СССР (1984) и Государственной премии Российской Федерации (2002).

Жорес Алфёров награжден многими медалями и орденами СССР и Российской Федерации, среди которых орден «Знак Почета» (1958), орден Трудового Красного Знамени (1975), орден Октябрьской Революции (1980), орден Ленина (1986), медаль «За заслуги перед Отечеством» 3-й степени.

Нобелевский лауреат является активным и почетным членом различных научных обществ, академий и университетов, среди которых Национальная инженерная академии США (1990), Национальная академия наук США (1990), Академия науки и технологии Кореи (1995), Франклиновский институт (1971), Академия наук Республики Беларусь (1995), Гаванский университет (1987), Оптическое общество США (1997), Санкт-Петербургский гуманитарный университет профсоюзов (1998).

В 2005 году на территории Санкт-Петербургского гуманитарного университета профсоюзов был установлен бронзовый бюст Жореса Алфёрова. Прижизненное открытие бюста было приурочено к 75-летнему юбилею ученого.

Знаменитый ученый является учредителем Фонда поддержки образования и науки для поддержки талантливой учащейся молодежи, содействия ее профессиональному росту, поощрения творческой активности в проведении научных исследований в приоритетных областях науки. Алфёров первым сделал вклад в Фонд, использовав часть средств своей Нобелевской премии.

В своей автобиографии, подготовленной для нобелевского сайта, ученый вспоминает прекрасную книгу Каверина «Два капитана», которую он прочитал еще 10-летним мальчиком. С того времени он всю жизнь следует жизненным принципам одного из главных героев книги Сани Григорьева: «Бороться и искать, найти и не сдаваться».

 


[1] Мусейон – храм муз (греч .).

 

[2] Катоптрика – часть оптики, изучающая законы отражения света от зеркальных поверхностей.

 

[3] Вифиния – историческая область на территории современной Турции.

 

[4] Хорезм – древнее государство в Средней Азии с центром в низовьях Амударьи.

 

[5] Газневиды – династия туркменского происхождения. Государство Газневидов находилось на территории нынешнего Афганистана, восточного Ирака, позже – Хорезма, Северной Индии.

 

[6] В этом труде Бируни рассматривал линии тангенса и котангенса как тени гномона.

 

[7] Квадрант – старинный угломерный астрономический инструмент для измерения высоты небесных светил над горизонтом и угловых расстояний между светилами.

 

[8] Джагатайский Улус – государство монгольских ханов из рода Джагатая. Выделился из Монгольской империи в 1224 году и включал среднеазиатские земли.

 

[9] Мавераннахр – арабское название территории междуречья Амударьи и Сырдарьи.

 

[10] Ханака  – странноприимный дом с мечетью, кельями; обитель дервишей.

 

[11] Отрар  – город в среднем течении Сырдарьи.

 

[12] Тимпан  – внутреннее поле фронтона.

 

[13] Фетва – план действий, решение, принимаемое в соответствии с законами шариата.

 

[14] Аккомодация – приспосабливание глаза к ясному видению предметов, находящихся на разных расстояниях.

 

[15] Фототропизм – направленность роста растений в зависимости от расположения источника света, геотропизм – в зависимости от сил гравитации.

 

[16] Задача Аполлония Пергского – задача о нахождении круга, касательного трем данным кругам.

 

[17] Монокулярная полиопия – двоение, троение предметов, особенно светящихся, перед больным глазом.

 

[18] Вителло (Вителлий) Эразм – польский астроном XII века.

 

[19] Рефрактор – телескоп, в котором изображение создаются преломлением световых лучей в линзовом объективе.

 

[20] «Новая философия» – это понятие определяло границу между античностью и системным научным мышлением Средневековья.

 

[21] Схоластика (от греч. sholastikos – школьный, ученый) – религиозное учение, представители которого (схоласты) стремились рационально обосновать и систематизировать христианское вероучение, используя идеи античных философов Платона и Аристотеля.

 

[22] Метафизика (от греч. metá ta physika – то, что идет после физики) – в древности трактовалась как учение о природе; в идеалистической философии рассматривает проблемы духовных, недоступных опыту первоначал и принципов бытия.

 

[23] Курия – система центральных учреждений, с помощью которых папа управляет церковью.

 

[24] Трансцендентный  (лат. transcendens – выходящий за пределы) – термин, обозначающий то, что находится за границами сознания и познания.

 

[25] Дуализм  (от лат. dualis – двойственный) – философское учение, признающее дух и материю как два самостоятельных и независимых начала.

 

[26] Комплексное число – число, имеющее вид x+iy , в котором х и у действительные числа, а i – мнимая единица, квадрат которой равен – 1.

 

[27] См. сноску на с. 81.

 

[28] Грешемовский колледж – основан по завещанию коммерсанта Томаса Грешема в его доме.

 

[29] Ирисовая диафрагма – диафрагма, состоящая из тонких непрозрачных серповидных пластинок, заходящих друг за друга. Применяется в фотообъективах и других оптических приборов.

 

[30] См. сноску на с. 81.

 

[31] Субстанция  (от лат. substantia – сущность; то, что лежит в основе) – материя в единстве всех форм ее движения; нечто относительно устойчивое, то, что существует само по себе и не зависит ни от чего другого.

 

[32] Телеология (от греч. teleos  – цель, logos – учение) – религиозно-философское учение об объективной закономерной взаимосвязи явлений природы и общества.

 

[33] Деизм  (от лат. deus – бог) – философское воззрение, согласно которому Бог является источником начальной энергии мира (первопричиной), но впоследствии уже не вмешивается в течение земных событий.

 

[34] Адъюнкт – лицо, проходящее научную стажировку и (или) являющееся помощником профессора. Эйлер был помощником Даниила Бернулли.

 

[35] Полигистор – в Средние века ученый-универсал.

 

[36] Янсенисты – последователи нидерландского богослова XVII века Янсения. Янсенизм – течение в католицизме, имеющее некоторые черты кальвинизма.

 

[37] Лиценциат – первая ученая степень в некоторых странах, которая дает право преподавать в среднем учебном заведении.

 

[38] Изопериметрические задачи – класс задач вариационного исчисления. Простейшие примеры: нахождение треугольника и многоугольников заданного периметра, имеющих наибольшую площадь.

 

[39] Ламберт Иоганн Генрих – немецкий математик, физик и астроном. Один из создателей фотометрии, доказал иррациональность числа π .

 

[40] Принцип возможных перемещений – один из вариационных принципов механики. Согласно ему для равновесия механической системы необходимо и достаточно, чтобы сумма работ всех действующих на систему сил при любом возможном перемещении системы была равна нулю.

 

[41] Лавуазье Антуан Лоран – знаменитый французский химик. В 1768–1791 годах возглавлял «Компанию откупов» – организации финансистов, получавших на откуп право сбора налогов. Через год (в 1794 году) уже сам Лавуазье стал жертвой революционной лихорадки. Как бывший генеральный откупщик он был гильотинирован.

 

[42] На самом деле крутильные весы еще до Кулона придумал английский ученый Генри Кавендиш и использовал их для подтверждения закона всемирного тяготения. Но он не публиковал описания своих открытий, так что можно утверждать, что Кулон изобрел весы независимо.

 

[43] Шарль Борда – французский физик и геодезист, в свое время дал благоприятный отзыв на одну из первых работ Кулона.

 

[44] Целибат  – обет безбрачия.

 

[45] Болотный газ – газ, который выделяется со дна стоячих водоемов, в основном, состоит из метана.

 

[46] Эвдиометр – прибор для анализа газов, в частности, для определения количества кислорода в воздухе.

 

[47] Предполагается, что им была жена Гальвани Лючия.

 

[48] Элемент Лекланше – гальванический элемент, в котором положительный электрод изготавливается из двуокиси марганца с добавкой графита и сажи, отрицательный – из цинка. Изобретен французским химиком Лекланше.

 

[49] Эксцентриситет орбиты – параметр, характеризующий форму орбиты, которую можно представить одним из конических сечений (круг, эллипс, парабола, гипербола.

 

[50] Шарль Фредерик Жерар – французский химик, разграничил понятие молекулы, химического эквивалента и атома, развил учение, рассматривающее молекулу как систему, образованную соединением атомов.

 

[51] Шарль Жак Александр Сезар (1746–1823) – французский физик, изучал расширение газов. Один из пионеров воздухоплавания.

 

[52] Бертолле Клод Луи (1748–1822) – французский химик, один из основателей учения о химическом равновесии.

 

[53] Кювье Жорж (1769–1832) – французский зоолог, один из создателей современной палеонтологии и систематики животных.

 

[54] Метод наименьших квадратов – один из методов теории ошибок. Служит для оценки неизвестных величин по результатам измерений, содержащим случайные ошибки.

 

[55] Теория ошибок – раздел математической статистики, посвященный численному определению значений величин по данным измерений. На основе теории ошибок разработана методика выявления и оценки погрешностей измерений.

 

[56] Гелиотроп – прибор, служащий для отражения солнечных лучей с одного геодезического пункта на другой.

 

[57] Швейггер Иоганн – немецкий физик, изобрел электрометр, пружинный гальванометр и электромагнитный мультипликатор – индикатор электрического тока.

 

[58] Луиджи Федериго Менабриа – итальянский ученый, военный инженер, генерал, политический деятель, с 1867 по 1869 год премьер-министр Италии.

 

[59] Числа Бернулли – специальная последовательность рациональных чисел, фигурирующая в различных вопросах математического анализа и теории чисел.

 

[60] Тахометр – прибор, служащий для измерения частоты вращения деталей механизмов.

 

[61] Привычки сызмала важны (лат .). – Цитата из Вергилия.

 

[62] Критика в данном случае подразумевает восстановление правильных текстов, искаженных многократной перепиской. Александрийцы – греческие ученые, работавшие в Александрии Египетской.

 

[63] Дерптский университет был создан в 1802 году на основе Академии Густавиана, работавшей в 1632–1665 и 1690–1710 годах.

 

[64] Пассажный инструмент – инструмент, зрительная труба которого может двигаться только в вертикальной плоскости. Предназначен для наблюдения прохождения звезд через небесный меридиан.

 

[65] Йозеф Фраунгофер – немецкий физик, директор оптического института, в котором изготавливалась различная аппаратура.

 

[66] Лифляндия – официальное название территорий Северной Латвии и Южной Эстонии с XVII до начала XX века.

 

[67] Аберрация света в астрономии – изменение направления светового луча, идущего от небесного светила, вследствие движения наблюдателя относительно светила. Постоянная аберрации – коэффициент, позволяющий вычислить годичную аберрацию, вызванную движением Земли вокруг Солнца.

 

[68] Младший сын Карно, Ипполит, впоследствии стал известным политиком и деятелем образования Франции.

 

[69] Изотермический процесс – процесс, протекающий при постоянной температуре.

 

[70] Адиабатический (адиабатный) процесс – процесс, при котором система не получает тепла извне и не отдает его.

 

[71] Реньо Анри Виктор (1810–1878) – французский физик и химик, определил физические константы многих газов, паров, жидкостей и твердых тел.

 

[72] Габриель Ламе  – французский математик и инженер. Автор трудов по математической физике и теории упругости. Разработал общую теорию криволинейных координат, ввел специальный класс функций, названных его именем.

 

[73] В 1830 году он обжег глаз фосфорной спичкой, вовремя не начал лечить, простудил и на всю жизнь остался зрячим лишь на один глаз – второй был слеп и постоянно слезился.

 

[74] Этот недостаток трудов Лобачевского отмечал и принявший его идеи с восторгом великий Гаусс, сравнивавший работы российского коллеги с запутанным лесом, через который нельзя найти дороги, не изучив предварительно каждое дерево.

 

[75] Широко известна история о том, как на экзамене Остроградский поставил высший балл молодому Цезарю Кюи – будущему фортификатору и члену «Могучей кучки». «Благодарите вашего папеньку, что дал вам такое имя», – объяснил ошарашенному студенту именитый ученый.

 

[76] Метеорологические элементы – характеристики состояния атмосферы и процессов, в ней происходящих: температуры, давления, влажности, облачности и т. д.

 

[77] Гало  – световые круги, видимые вокруг Солнца и Луны.

 

[78] Лакруа Сильвестр Франсуа (1765–1843) – французский математик, составил известный курс дифференциального исчисления.

 

[79] Общество народных школ было создано в 1811 году с целью воспитания молодежи в духе англиканской церкви.

 

[80] Механический эквивалент теплоты – количество работы, энергетически эквивалентное единице количества теплоты.

 

[81] В науке, в отличие от разговорной речи, метеором именуется не тело, а явление – вспышка при вхождении метеорного тела в атмосферу.

 

[82] Медаль Копли – учреждена в 1709 году согласно завещанию сэра Годфри Копли – богатого землевладельца, коллекционера и общественного деятеля. Является одной из самых престижных научных наград Великобритании.

 

[83] Дисперсия волн – зависимость фазовой скорости гармонических волн в среде от частоты их колебания. При нормальной дисперсии показатель преломления среды увеличивается с ростом частоты, а при аномальной – уменьшается.

 

[84] Демидовские премии вручались за труды по науке, технике, искусству, премии были основаны на средства П. Н. Демидова.

 

[85] Лежандр Андриен Мари (1752–1833) – французский математик.

 

[86] Предельные теоремы – ряд теорем теории вероятности, указывающих условия возникновения тех или иных закономерностей в результате действия большого числа случайных факторов.

 

[87] Бунзен Роберт Вильгельм (1811–1899) – немецкий химик, изобрел газовую горелку, ледяной калориметр, вместе с Кирхгофом стал основоположником спектрального анализа.

 

[88] Ряд Фурье – тригонометрический ряд, служащий для разложения периодических функций на гармонические компоненты.

 

[89] Ранглер  (от англ. wrangler , букв, «спорщик») – почетное звание студентов, особо отличившихся на экзамене по математике в Кембридже.

 

[90] Премия Смита – ежегодная премия, которой награждались бакалавры за успехи в области математики и естественных наук. Учреждена в 1768 году по завещанию математика Роберта Смита.

 

[91] Колебательный контур – замкнутая электрическая цепь, состоящая из конденсатора и катушки с индуктивностью.

 

[92] Ондулятор — аппарат, записывающий телеграфные сигналы на движущейся ленте.

 

[93] Фейнман Ричард Филлипс (1918–1988) – выдающийся американский физик, нобелевский лауреат, один из создателей квантовой электродинамики.

 

[94] Генри Кавендиш (1731–1810) – английский физик и химик.

 

[95] Эмпириокритицизм (махизм) – философское направление, согласно которому отправным пунктом познания является не мышление или субъект, не материя или объект, а чистый опыт в том виде, как он непосредственно познается людьми.

 

[96] Энтропия – одна из характеристик теплового состояния тела или системы тел: мера внутренней неупорядоченности. В одной из формулировок второе начало термодинамики гласит, что невозможен переход теплоты от тела более холодного к телу более нагретому без каких-либо других изменений в системе или окружающей среде.

 

[97] Эффект Холла – заключается в том, что в проводнике с током, помещенном в магнитное поле, вектор напряженности которого перпендикулярен направлению тока, возникает электрическое поле в направлении, перпендикулярном направлениям тока и магнитного поля.

 

[98] Так, по крайней мере, гласили официальные данные.

 

[99] Адольфо Бартоли – итальянский физик. В 1876 году обосновал существование светового давления, исходя из термодинамических соображений.

 

[100] Фриц Газенерль – ученый, который первым доказал эквивалентность между энергией излучения и массой.

 

[101] Колориметрия – методы измерения и количественного выражения цвета, основанные на определении координат цвета в выбранной системе трех основных цветов.

 

[102] Макс фон Лауэ – известный немецкий физик, разработал теорию дифракции рентгеновских лучей на кристаллах и предложил метод, с помощью которого она была открыта. Автор трудов по сверхпроводимости, теории относительности, квантовой теории. Нобелевский лауреат 1914 года.

 

[103] Милликен Роберт Эндрюс – американский физик, вычислил с большой точностью заряд электрона, экспериментально подтвердил квантовую теорию фотоэффекта Эйнштейна. Нобелевский лауреат 1923 года.

 

[104] Имеется в виду объектив.

 

[105] Цефеиды – пульсирующие переменные звезды-сверхгиганты, имеющие изменяющийся периодически блеск. Название цефеиды получили от звезды Цефея – типичной звезды подобного рода.

 

[106] Эффект Доплера – изменение длины волны, наблюдаемое при движении источника волн относительно их приемника.

 

[107] Александров Павел Сергеевич  – математик, основатель научной школы по топологии, автор трудов по теории множеств, теории функций.

 

[108] Для математиков эта премия является своего рода аналогом Нобелевской премии.

 

[109] Кстати, Ландау высказал пророческие идеи о существовании и природе нейтронных звезд, которые нашли свое подтверждение уже в 80-е годы XX века.

 

[110] Именно он первым ввел в 1933 году понятие антиферромагнетизма, как особой фазы магнетика, он же разработал теорию доменной структуры ферромагнетика и предсказал явление ферромагнитного резонанса.

 

[111] Младший – Илья Михайлович – тоже прославленный харьковский физик. Его-то как раз Ландау очень уважал как ученого.

 

[112] Впрочем, сам Ландау, отвечая на вопрос: «Кого вы считаете лучшим советским физиком?», говорил: «Тамм – второй».

 

[113] Это было лишь продолжение постоянной борьбы, которая велась в течение многих лет.

 

[114] Сильванус Филипп Томпсон – английский физик и электротехник.

 

[115] Сильное взаимодействие – самое сильное из фундаментальных взаимодействий элементарных частиц. Превосходит электромагнитные силы примерно в 100 раз. Примером сильного взаимодействия могут быть ядерные силы – силы, которые удерживают нуклоны в ядре. Слабое взаимодействие гораздо слабее сильного и электромагнитного. Им обусловлено большинство распадов элементарных частиц.

 

[116] В буддизме восьмеричный путь (аштангика-марга) – путь освобождения от страдания, который имеет восемь ступеней: воззрение, размышление, речь, поведение, способ поддержания жизни, приложение сил, память и сосредоточение.

 


Дата: 2019-04-23, просмотров: 277.