(1824 г. – 1907 г.)
26 июня 1824 года в ирландском городе Белфасте родился Уильям Томсон – один из величайших физиков в истории науки, человек, который за свои научные достижения был удостоен титула лорда (что, надо сказать, происходило совсем не часто). Его предки были обычными ирландскими фермерами. Правда, Джеймс Томсон, отец Уильяма, окончил университет в Глазго и был довольно известным математиком, преподавал в Королевском академическом институте Белфаста. В 1817 году он женился на Маргарет Гарднер. Их брак был многодетным (четверо мальчиков и две девочки). Старший сын, Джеймс, и Уильям воспитывались в доме отца, а младшие мальчики были отданы на воспитание старшим сестрам. Неудивительно, что Томсон-старший позаботился о достойном образовании своих сыновей. Поначалу он больше внимания уделял Джеймсу, но скоро стало ясно, что слабое здоровье старшего сына не позволит ему получить хорошее образование, и отец сосредоточился на воспитании Уильяма.
В 1832 году Томсон-старший получил должность профессора математики в Глазго, и семья покинула Белфаст. В 1834 году Уильям поступил в университет Глазго, в котором для способных детей преподавались и дисциплины средней школы. Большую роль в формировании у юноши научных интересов сыграл Джон Никол, известный шотландский астроном и популяризатор науки, работавший в университете с 1839 года. Он следил за передовыми достижениями науки и старался знакомить с ними своих учеников. Одним из таких новшеств стал метод рядов Фурье[88], применению которого в физических исследованиях Томсон, будучи еще студентом, посвятил несколько работ. В частности, он применил метод рядов Фурье к изучению закономерностей распространения тепла в различных средах и показал аналогию между распространением тепла и электрического тока.
В 1841 году отец устроил Уильяма в Кембридж. Учился юноша успешно, в 1845 году он получил диплом второго ранглера[89] и выиграл премию Смита[90]. Надо сказать, что Уильям Томсон был всесторонне развитым молодым человеком, он занимался спортом, даже входил в команду Кембриджа по академической гребле и вместе со своими товарищами одержал победу над студентами Оксфорда в знаменитой гонке, проводящейся с 1829 года. Также Томсон хорошо разбирался в музыке и литературе. Но всем этим увлечениям он предпочитал занятия наукой, и здесь его интересы также отличались разнообразием.
В 1845 году Уильям Томсон сделал одну из первых попыток математически интерпретировать представления Фарадея о близкодействии. В этом году он получил специальную стипендию, благодаря которой смог уехать в Париж, где некоторое время работал в лаборатории известного физика Анри Виктора Раньо. Во Франции Уильям в основном занимался электростатикой и опубликовал ряд работ, в которых, в частности, изложил разработанный им электрический метод получения изображения. Этот метод впоследствии стал очень полезным инструментом во многих электростатических исследованиях.
В 1846 году Томсон получил приглашение возглавить кафедру теоретической физики в Глазго. Уже тогда 23-летний ученый приобрел определенный авторитет и известность в научных кругах. Об этом свидетельствует хотя бы его участие в ежегодном заседании Британской ассоциации содействия развитию науки в 1847 году, во время которого Уильям услышал доклад Джоуля о теориях теплопередачи. Эта тема его очень заинтересовала и он всерьез занялся термодинамикой. Уже в 1848 году Томсон предложил свою знаменитую термодинамическую шкалу температур (шкалу Кельвина). От других температурных шкал она отличается тем, что в качестве точки отсчета взят абсолютный ноль температуры. Таким образом, шкала эта не зависит от свойств термометрического вещества (вещества, используемого в измеряющем температуру приборе).
В 1851 году Уильям, почти одновременно с Рудольфом Клаузиусом и независимо от него, сформулировал второе начало термодинамики. В формулировке Томсона этот закон звучал так: «В природе невозможен процесс, единственным результатом которого была бы механическая работа, совершаемая за счет охлаждения теплового резервуара». Отсюда английский ученый сделал далеко идущие выводы: коль скоро механическая энергия может полностью перейти в тепловую, а полное обратное превращение невозможно – в конце концов, вся энергия перейдет в тепловую, а следовательно, механические движения прекратятся. Этот вывод стал известен как «идея о тепловой смерти Вселенной». Следует сказать, что сейчас гипотеза о тепловой смерти Вселенной считается ошибочной, но в любом случае она очень способствовала развитию термодинамики.
Продолжал Уильям Томсон исследовать и электрические явления. В том же 1851 году он сделал еще одно открытие: обнаружил, что при намагничивании ферромагнетиков изменяется их электрическое сопротивление. Это явление получило название эффекта Томсона в ферромагнетиках (о термоэлектрическом эффекте Томсона мы расскажем чуть ниже). Своими работами Уильям привлекал внимание все более широкого круга коллег. 1851 год ознаменовался еще одним значительным событием – Томсона избрали членом Лондонского королевского общества.
В 1852 году ученый женился на Маргарет Крам, в которую он был влюблен с детства. Он был счастлив, но счастье, к сожалению, длилось недолго. Уже во время медового месяца здоровье Маргарет резко ухудшилось. Следующие 17 лет жизни Томсона были омрачены постоянными тревогами за здоровье супруги, и практически все свободное время ученый посвящал уходу за ней.
В 1852–1856 годах Томсон активно сотрудничал с Джоулем, хотя общались ученые в основном посредством переписки. В 1853–1854 годах они совместно провели серию опытов и обнаружили эффект изменения температуры газа при его адиабатическом расширении. Эффект Джоуля – Томсона может быть положительным (газ охлаждается) и отрицательным (газ нагревается). Помимо научного интереса это явление имеет и практическое применение: оно используется при получении очень низких температур.
Наконец, в 1855 году ученый совместил две сферы своих научных интересов и стал исследовать термоэлектрические процессы. Он разработал термодинамическую теорию термоэлектрических явлений. Многие такие явления уже были известны, некоторые открыл сам Томсон. Одно из них получило название термоэлектрического эффекта Томсона. Заключается он в следующем: если вдоль проводника, по которому протекает электрический ток, имеется перепад температуры, то помимо процесса нагревания, объясняемого законом Джоуля – Ленца, происходит дополнительное поглощение или выделение тепла (в зависимости от направления тока). Самое удивительное, что Томсон не экспериментально осуществил это открытие, а предсказал его исходя из своей теории. И это в то время, когда ученые еще не имели даже более-менее правильных представлений о природе электрического тока! К исследованиям термоэлектрических явлений Томсон привлекал и студентов. Благодаря этому начинанию была создана первая в университете Глазго учебно-научная лаборатория.
Очень интересовался английский ученый практическим применением достижений современной ему науки. В 1854 году он получил предложение принять участие в проекте прокладки трансатлантического телеграфного кабеля. Этой работе Томсон посвятил очень много сил и времени, с 1856 года он входил в совет директоров компании «Атлантик Телеграф», участвовал, в основном, во время каникул, в экспедициях по прокладке кабеля. Но наибольшее содействие реализации проекта Томсон оказал своими научными исследованиями. Он изучал закономерности распространения электрических импульсов по проводам, электрические токи в колебательном контуре[91], разрабатывал теорию электромагнитных колебаний и в частности вывел одну из основных формул электро– и радиотехники, названную его именем (формула Томсона определяет зависимость периода колебаний контура от емкости его конденсатора и индуктивности катушки).
Конечно же, во время экспедиций такой разносторонний и увлеченный человек, как Томсон, не мог не заинтересоваться вопросами мореплавания. Применение своим изобретательским и научным талантам он нашел и в этой сфере: усовершенствовал конструкции компаса и лота, провел исследования по теории волн и теории приливов и т. д. Вообще же изобретательская деятельность Уильяма Томсона заслуживает отдельного внимания. Он сконструировал и усовершенствовал целый ряд физических приборов: зеркальный гальванометр, квадратный и абсолютный электрометры, был автором и нескольких прикладных изобретений. Например, он запатентовал ондулятор[92] с сифонной подачей чернил, один из видов телеграфного ключа и даже водопроводный кран собственной конструкции.
За участие в прокладке трансатлантического телеграфного кабеля 10 ноября 1866 года Уильяму Томсону и другим руководителям проекта были присвоены титулы лордов. Эта деятельность отнимала множество сил и времени, и ученому долгое время приходилось ограничиваться только теми исследованиями, которые можно было проводить, не отвлекаясь от нее. Но эта работа очень увлекала Томсона, к тому же он страстно полюбил море. С 1869 года Уильям Томсон принимал участие в прокладке французского атлантического кабеля.
17 июня 1870 года умерла Маргарет. После этого ученый решил изменить свою жизнь, больше времени посвящать отдыху, он даже купил шхуну, на которой совершал прогулки с друзьями и коллегами. Летом 1873 года Томсон возглавлял очередную экспедицию по прокладке кабеля. Из-за повреждения кабеля экипаж был вынужден сделать 16-дневную остановку на Мадейре, где ученый подружился с семьей Чарлза Бланди, особенно с Фанни – одной из его дочерей, на которой женился летом следующего года.
Помимо научной, преподавательской и инженерной деятельности, Уильям Томсон выполнял и многие почетные обязанности. Трижды (1873–1878, 1886–1890, 1895–1907) он избирался президентом Королевского общества Эдинбурга, с 1890 по 1895 год возглавлял Лондонское королевское общество. В 1884 году совершил поездку в США, где прочел серию лекций. В 1892 году за научные заслуги ученый получил титул первого барона Кельвина (это имя было взято от названия реки, протекающей по территории университета Глазго). К сожалению, Уильям стал не только первым, но и последним бароном Кельвином – его второй брак, так же как и первый, оказался бездетным. В 1899 году Кельвин оставил кафедру в Глазго, хотя и не перестал заниматься наукой. В следующем году он выступил с лекцией о кризисе динамической теории света и тепла. Позже ученый интересовался новыми открытиями: рентгеновскими лучами, радиоактивностью и др. Умер лорд Уильям Кельвин 17 декабря 1907 года. Похоронен ученый в Вестминстерском аббатстве, рядом с могилой Исаака Ньютона.
МАКСВЕЛЛ ДЖЕЙМС КЛЕРК
(1831 г. – 1879 г.)
«В истории человечества (если посмотреть на нее, скажем, через десять тысяч лет) самым значительным событием XIX столетия, несомненно, будет открытие Максвеллом законов электродинамики. На фоне этого важного научного открытия Гражданская война в Америке в том же десятилетии будет выглядеть провинциальным происшествием».
Р. Ф. Фейнман[93]
Джеймс Клерк Максвелл родился 13 июня 1831 года в Эдинбурге. Его отец, Джон Клерк, был шотландским дворянином. В свое время он получил в наследство поместье жены одного своего родственника, которая в девичестве носила фамилию Максвелл. По распространенной тогда традиции Клерк вместе с поместьем принял и новую фамилию. После рождения Джеймса семья переехала в Южную Шотландию, где поселилась в своем поместье Гленлэр («Приют в долине»). Когда мальчику было 8 лет, его мать умерла. Первоначально родители, весьма, надо сказать, образованные люди, собирались обучать Джеймса дома, но затем отец был вынужден отказаться от этого намерения. В 1841 году Джеймс был отправлен в Эдинбург к тетушке, где начал учебу в школе, носившей гордое название «Эдинбургская академия».
Известно, что в первое время мальчик произвел на одноклассников отнюдь не блестящее впечатление: за застенчивость и некоторую медлительность он даже получил прозвище Тупица. Он не особо интересовался общением со сверстниками и проводил досуг в чтении, черчении каких-то графиков и изготовлении механических моделей. Но вскоре соученики Максвелла были удивлены далеко не средними математическими успехами Тупицы. Да и в других предметах Джеймс был одним из лучших. В неполные 15 лет он написал свою первую научную работу «О черчении эллипсов», в которой описал новый простой способ вычерчивания эллиптических фигур.
В 1847 году Максвелл поступил в Эдинбургский университет, но через три года перешел в кембриджский Тринити-колледж, который и окончил в 1854 году. Джеймс был одним из лучших студентов в обоих заведениях. По кембриджской традиции среди выпускников определяли Старшего Полемиста – студента, сдавшего лучше всех экзамен по математике. Максвелл был признан Вторым Полемистом, но с примечанием, что это звание, в данном случае, может быть приравнено и к Старшему Полемисту. В студенческие годы Джеймс написал несколько прекрасных работ по физике, математике, физиологии и физике цветного зрения.
Получив научную степень, Джеймс Максвелл первое время преподавал в Кембридже. Здесь он и положил начало своим важнейшим изысканиям. Еще студентом Джеймс заинтересовался «Экспериментальными исследованиями по электричеству» Майкла Фарадея. Позже Максвелл писал: «Прежде чем начать изучение электричества, я принял решение не читать никаких математических работ по этому предмету до тщательного прочтения “Экспериментальных исследований по электричеству” Фарадея. Я был осведомлен, что высказывалось мнение о различии между фарадеевским методом понимания явлений и методом математиков, так что ни Фарадей, ни математики не были удовлетворены языком друг друга».
Математики, упомянутые Максвеллом (прежде всего Ампер и Нейман), исходили из концепции дальнодействия, согласно которой взаимное действие тел передается мгновенно на любое расстояние. Это представление противоречило идеям Фарадея об электрическом и магнитном полях. Максвелл попытался преодолеть это противоречие. Результатом стала серия блестящих работ: «О Фарадеевых линиях сил» (1855–1856), «О физических силовых линиях» (1861–1862);
«Динамическая теория электромагнитного поля» (1864). В них молодой ученый пытался математически обосновать и развить идеи Фарадея. Он обобщил полученные эмпирическим путем законы электрических и магнитных явлений и создал теорию электромагнитного поля. Законы электромагнитного поля Максвелл выразил в знаменитых уравнениях, названных в его честь и ставших фундаментальными уравнениями классической электродинамики. Именно работы Джеймса Максвелла окончательно продемонстрировали неразрывную связь между электрическими и магнитными явлениями.
К современному виду – системе четырех дифференциальных уравнений – их независимо друг от друга привели ученые Оливер Хевисайд и Генрих Герц. Опираясь на свои уравнения, Максвелл предсказал существование электромагнитных волн, показал, что скорость их распространения в вакууме равна скорости света, и сделал вывод о том, что свет имеет электромагнитную природу. Эйнштейн так охарактеризовал роль работ Максвелла: «Тут произошел великий перелом, который навсегда связан с именами Фарадея, Максвелла, Герца. Львиная доля в этой революции принадлежит Максвеллу… После Максвелла физическая реальность мыслилась в виде непрерывных, не поддающихся механическому объяснению полей… Это изменение понятия реальности является наиболее глубоким и плодотворным из тех, которые испытала физика со времен Ньютона».
Но вернемся вновь к биографии Джеймса Максвелла. В 1856 году он получил известие о болезни отца, из-за чего ему пришлось покинуть Кембридж и искать новую работу поближе к дому. Он предложил свою кандидатуру на пост профессора физики в Маришал-колледже – одном из колледжей Абердинского университета. В конце апреля ходатайство Максвелла было удовлетворено. По злой иронии судьбы за месяц до этого его отец умер.
В Абердине изучение электромагнитных явлений временно отошло на второй план. Максвелл занимался широким кругом разнообразных научных вопросов, в частности, вернулся к вопросам оптики и физиологии зрения. В 1857 году одним из колледжей Кембриджа был объявлен конкурс на лучшее исследование колец Сатурна. Джеймс выиграл конкурс, написав превосходную работу, в которой, в частности, математически показал, что кольца могут быть устойчивы только в том случае, если они состоят из большого числа не связанных между собой тел.
В 1859 году Максвелл женился на Кэтрин Мэри Дьюар, дочери главы Маришал-колледжа. Сведений о личной жизни ученого сохранилось очень немного. Причиной тому, по большей части, является пожар, произошедший в Гленлэре в 1929 году – как полагают, в огне могли погибнуть материалы, содержащие сведения биографического характера. Кроме того, Максвелл всегда отличался скромностью и застенчивостью. Он вел уединенный образ жизни и не любил говорить о своей семье.
В 1860 году Маришал-колледж объединился с Королевским колледжем, и Максвелл временно остался без места. Но в этом же году он был принят в Лондонское королевское общество и получил приглашение возглавить кафедру физики в Королевском колледже Лондонского университета. Несмотря на то что преподавательская нагрузка на новом месте была значительно больше, чем в Абердине, шесть лет, проведенные Максвеллом в Лондонском университете, стали, пожалуй, самыми плодотворным периодом его жизни. Он занимался не только описанными выше исследованиями электрических и магнитных явлений. Ученый, например, продолжил свои оптические изыскания. В 1861 году Максвелл получил первое в мире цветное изображение, спроецировав на экран красный, зеленый и синий диапозитив. Тем самым была не только доказана трехкомпонентная гипотеза цветного зрения, но и заложена основа для создания в будущем цветной фотографии. Кроме того, ученый создал один из первых приборов для количественного измерения цвета – так называемый диск Максвелла.
Но, конечно же, наибольшее значение имеют работы английского ученого по кинетической теории газов, на которых и следует остановиться подробнее. Осенью 1859 года, еще будучи преподавателем Маришал-колледжа, Максвелл выступил с докладом «Пояснения к динамической теории газов». В нем он впервые привел названное позже его именем распределение молекул по скоростям, позволяющее «определить среднее число частиц, скорости которых лежат в определенных пределах». При этом Максвелл отказался от взглядов Даниила Бернулли и Рудольфа Клаузиуса, считавших, что скорости всех молекул газов при одной температуре одинаковы. Таким образом, Максвелл не только стал одним из основателей молекулярно-кинетической теории газов, но и первым ученым, который ввел в физические исследования элементы статистики. Кинетическая теория, можно сказать, развязала руки Максвеллу и другим физикам. На ее основании ученый объяснил закон Авогадро, рассчитал зависимость вязкости газа от скорости и длины свободного пробега молекул, определил средний размер молекул. В 1866 году Максвелл опубликовал работу «Динамическая теория газов», в которой обобщил свои открытия в данной области. Также важную роль сыграл знаменитый эксперимент с «демоном Максвелла». Находясь в перегородке, разделяющей на две части термически изолированный сосуд, «демон Максвелла» – гипотетическое устройство или существо – пропускает в одну из полостей быстрые или «горячие» молекулы и не пропускает медленные («холодные»). Таким образом, абстрактно можно представить себе условия, при которых ставится под сомнения второе начало термодинамики. В дальнейшем «демон Максвелла» привел Людвига Больцмана к выведению статистической интерпретации второго закона термодинамики.
К 1865 году здоровье Джеймса Максвелла сильно ухудшилось. В связи с этим он оставил кафедру в Лондоне и поселился в своем поместье. Здесь ученый работал над фундаментальным трудом «Трактат по электричеству и магнетизму», который был опубликован в 1873 году. В книге были собраны все сведения по этому вопросу, накопленные научным миром к тому моменту: от самых первых данных до преставлений самого Максвелла и его современников.
В 1871 году Кембриджский университет предложил Максвеллу возглавить кафедру экспериментальной физики. При ней ученый организовал великолепную лабораторию, названную в честь Генри Кавендиша[94] (деньги на строительство лаборатории выделил потомок Кавендиша). Лаборатория была официально открыта 16 июня 1874 года. После Максвелла в разные времена ее возглавляли знаменитейшие физики и химики: Рэлей, Томсон, Резерфорд и другие. В стенах основанной Максвеллом Кавендишской лаборатории было сделано громадное количество открытий мирового значения.
В 1874–1879 годах Джеймс Максвелл работал над рукописями Кавендиша – талантливейшего ученого-экспериментатора, который оставил около двадцати томов записок, опубликовав всего две статьи. Результатом этой работы стала книга «Электрические исследования Генри Кавендиша», которая не только позволила оценить вклад выдающегося ученого в развитие физики и химии, но и заполнила серьезный пробел в истории науки.
Немало сделал Джеймс Максвелл и как популяризатор науки. Его книги «Теория теплоты в элементарной обработке», «Материя и движение» и «Электричество в элементарном изложении» способствовали распространению физических знаний и новых научных идей не только в Англии, но и в других странах.
По свидетельствам студентов, в мае 1879 года Максвелл выглядел очень больным, но продолжал читать лекции. Лето он провел в Гленлэре вместе с супругой, здоровье которой также находилось не в лучшем состоянии. К началу октября ученый едва мог ходить, но, тем не менее, вернулся в Кембридж и продолжил преподавание. А 5 ноября Джеймс Максвелл умер. Причиной смерти стал рак. Несмотря на сильные боли, вызванные болезнью, Максвелл до конца своих дней сохранял удивительную бодрость духа. Его врач говорил: «Я никогда не видел человека, встретившего смерть так спокойно и рассудочно». Похоронен Максвелл рядом с церковью в деревушке неподалеку от Гленлэра.
Дата: 2019-04-23, просмотров: 364.