Американским исследователям из института Санта Фе удалось усовершенствовать конструкцию солнечных батарей на основе сенсибилизированных красителей. Заменив диоксид титана и платину, использующиеся при производстве этих батарей, на углеродные нанотрубки с дефектами, ученые добились прироста производительности и удешевления конструкции. Работа опубликована в журнале Nano Letters. В настоящее время они патентуют свое изобретение.
Солнечные батареи на основе сенсибилизированных красителей (Dye-sensitized solar cells или DSC) были изобретены в 1991 году. В настоящее время схема элементов батареи следующая: на стеклянной основе располагается слой прозрачного проводящего ток диоксида титана с вкраплениями сенсибилизированных красителей (красители с химически повышенной чувствительностью к ультрафиолету). Между слоем диоксида и стеклом находится слой платины. Электрический ток возникает в результате химических реакций, которые происходят во вкраплениях красителей под воздействием солнечного света. Эти реакции катализируются платиной.
Группа американских исследователей из института Санта Фе заменила оксид и платину на слой из углеродных нанотрубок. Как оказалось "обычные" нанотрубки для этой цели не подходят: полученный слой не обладает прозрачностью и проводимостью оксида и катализирующими свойствами платины. Для получения первых двух свойств ученые добавили слой более длинных нанотрубок.
Чтобы получить каталитический эффект, исследователи решили внести в нанотрубки дефекты. Предположительный механизм катализа с помощью дефективных нанотрубок заключается в том, что дефекты являются "посадочными площадками" для атомов реагирующих веществ. Исследователи поместили нанотрубки в озон - крайне активное химическое соединение. Воздействие озона вызвало разрушения в структурах трубок, то есть, образованию необходимых дефектов. Катализирующие свойства батарей при этом выросли в десятки раз.
Применение углеродных нанотрубок призвано решить ряд принципиальных проблем солнечных батарей на основе сенсибилизированных красителей. Во-первых, новая конструкция обладает большой выходной мощностью. Батареи традиционной конструкции по этому параметру уступали широко распространенным кремниевым. Во-вторых, уменьшается тепловыделение, что позволяет использовать в качестве основы для батареи не только термостойкие материалы. В третьих, производство батарей на основе нанотрубок существенно дешевле, так как при этом не используется дорогая платиновая пленка.[22]
Уче6ным же из Корнельского отделения исследований в области нанотехнологий (Cornell NanoScale Science and Technology Facility) удалось создать элемент солнечной батареи, в которой вместо кремния также используются углеродные нанотрубки. По словам нанотехнологов, новая батарея, как показывают расчеты и тесты, будет намного эффективней переводить солнечную энергию в электрическую.
По словам ведущего проект ученого, профессора физики Пола МакЭвена, его команда изготовила фотодиод нового типа на основе углеродных нанотрубок и провела испытания, подвергая его облучения потока света. Результат показал, что такой фотодиод выделяет намного больше электричества, чем традиционный.
Для его создания ученые использовали одностеночную нанотрубку размером с молекулу ДНК. Эта трубка была подсоединена к двум контактам и помещена между источниками положительного и отрицательного заряда. Затем трубка освещалась лучом лазера разного спектра под разными углами. Учеными было замечено, что усиление потока света приводило к многократному увеличению выделяемой электроэнергии.
Дальнейшее исследование показало, что за счет цилиндрической формы электроны как бы выдавливаются из трубки, а проходя вдоль нее они вырывают новые электроны. По словам ученых, это делает трубку очень эффективным солнечным элементом, поскольку энергия свободных электронов также задействуется для выработки электричества. Это явное преимущество по сравнению с традиционными фотоэлементами, в которых много энергии уходит впустую на нагревание.
В настоящее время ученые занимаются дальнейшими исследованиями физических свойств процесса при изменении внешнего воздействия.[23]
Ученых продолжает привлекать мир насекомых, как источник новых уникальных технологий. Ранее "Нано Дайджест" уже рассказывал о создании английскими учеными математической компьютерной модели полета саранчи. Недавно ученым из Университета Пенсильвании и их испанским коллегам из Автономного Университета Мадрида удалось разработать технологию, которая позволяет воспроизводить биологические структуры, такие, как крыло бабочки, на наноуровне. Получившиеся биоматериалы могут использоваться в оптически активных структурах, таких, как, например, светорассеиватели в солнечных батареях.
Окраска насекомых и их способность менять цвет в зависимости от угла зрения, которую ученые называют «иридисценцией», а также наличие у насекомых металлических цветов связано с тем, что в их покрове присутствуют наноразмерные фотонные структуры. Именно эти наноструктуры и их способность испускать свет привлекли ученых.
По словам одного из ведущих проект ученых, Рауля Х. Мартина-Палмы, они создали «свободные реплики хрупких пластинчатых хитиновых структур, которые являются репликами крыла бабочки. Причем внешний вид этих структур зависит не столько от пигмента на их поверхности, сколько от их регулярной наноструктуры.
Ранее ученым для воссоздания биоматериалов приходилось использовать сложную технологию, предполагающую использование агрессивных сред, коррозионных атмосфер и высокого давления. Новая методика позволяет воссоздавать нанобиоматериалы при комнатной температуре без участия агрессивных сред.
Для создания этого биоматериала ученые использовали соединения германия, селена и сурьмы и применили технологию, известную в англоязычной специальной литературе, как Conformal-Evaporated-Film-by-Rotation (CEFR). Данная технология предполагает сочетание термического напыления с вращением подложки в камере низкого давления. Затем ученые погружали пленку в водный ортофосфорной кислоты раствор чтобы растворить хитин.
Как указывают ученые, полученные искусственным образом наноструктуры, основанные на строении крыла бабочки могут использоваться при создании различных активных оптических структур, например, светорассеивателей или покрытий, максимизирующих поглощение света в солнечных батареях. Кроме того, по словам разработчиков, данная методика позволяет воспроизвести и другие биоструктуры, такие, как жучиный панцирь, фасетчатые глаза мухи, пчелы ил осы, на основе которых можно сконструировать миниатюрные камеры и оптические сенсоры, и многое другое.[24]
Дата: 2019-05-28, просмотров: 181.