Обработка аналоговой и цифровой информации
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой


По принципу действия вычислительные машины делятся на три большие класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ).

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).

Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой (больше, чем у ЭВМ), но точность решения задач очень низкая (относительная погрешность 2-5%). На АВМ наиболее эффективно решать математические задачи, содержащие диференциальные уравнения, не требующие сложной логики.
Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.
Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.
Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической обработки информации в процессе решения вычислительных и информационных задач.






Классификация сигналов по дискретно-непрерывному

Признаку.

 

Все сообщения по характеру изменяющиеся во времени можно разделить на непрерывные и дискретные. Непрерывные по времени сообщения отображаются непрерывной функцией времени. Дискретные по времени сообщения характеризуются тем, что поступают в определенные моменты времени и описываются дискретной функцией t.

Сообщения также можно разделить на непрерывные и дискретные по множеству. Непрерывные множеству сообщения характеризуются тем, что функция, их описывающая, может принимать непрерывное множество значений. Дискретные по множеству сообщения – это сообщения, которые могут быть описаны с помощью конечного набора чисел или дискретных значений некоторой функции.

Дискретности по множеству и времени не связаны друг с другом. Рассмотрим возможные типы сообщений подробнее.

Пусть сигнал описывается функцией X (t)
1) непрерывные по множеству и времени, или просто непрерывные; (рис. 1.2)
2) непрерывные по множеству и дискретные по времени; (рис. 1.3)
3) дискретные по множеству и непрерывные по времени; (рис. 1.4)
4) дискретные по множеству и времени, или просто дискретные; (рис. 1.5)


 

 

 

 

 

В процессе преобразования дискретных сообщений в сигнал про-исходит кодирование сообщения. В широком смысле кодированием называется преобразование сообщений в сигнал. В узком смысле кодирование – это отображение дискретных сообщений сигналами в виде определенных сочетаний символов. Устройство, осуществляющее кодирование назавается кодером.

При передаче сигналы подвергаются воздействию помех. Под помехами подразумеваются любые мешающие внешние возмущения или воздействия (атмосферные помехи, влияние посторонних источни-ков сигналов), а также искажения сигналов в самой аппаратуре (аппара-турные помехи), вызывающие случайное отклонение принятого сооб-щения (сигнала) от передаваемого.

На приемной стороне осуществляется обратная операция декодиро-вания, т.е. восстановление по принятому сигналу переданного сооб-щения.

Решающее устройство, помещенное после приемника, осуществляет обработку принятого сигнала с целью наиболее полного извлечения из него информации.

Декодирующее устройство, (декодер)преобразует принятый сигнал к виду удобному для восприятия получателем.

Совокупность средств, предназначенных для передачи сигнала, называется каналом связи. Одна и та же линия связи может исползоваться для передачи сигналов между многими источниками и приемниками, т.е. линия связи может обслуживать несколько каналов.

При синтезе систем передачи информации приходится решать две основные проблемы, связанные с предачей сообщений:

1. обеспечение помехоустойчивости передачи сообщений

2. обеспечение высокой эффективности передачи сообщений

 

Под помехоустойчивостью понимается способность информации противостоять вредному воздействию помех. При данных условиях, т.е. при заданной помехе, помехоустойчивость определяет верность передачи информации.  

Под верностью понимается мера соответствия принятого сообщения (сигнала) переданному сообщению (сигналу). 

Под эффективностью системы передачи информации понимается способность системы обеспечивать передачу заданного количества информации наиболее экономичным способом. Эффективность характеризует способность системы обеспечить передачу данного количества информации с наименьшими затратами мощности сигнала, времени и полосы частот.

Теория информации устанавливает критерии оценки помехоустойчивости и эффективности информационных систем, а также указывает общие пути поышения помехоустойчивости и эффективности.

Повышение помехоустойчивости практически всегда сопровождается ухудшением эффективности и наоборот.

В заключении: В настоящее время теория информации успешно применяется в философии и математике, естественных и технических науках, социально-экономических науках, биологии, медицине и др.






Дата: 2019-03-05, просмотров: 229.