В дипломном проекте рассматривается существующая система автономного водоснабжения административного здания Морского терминала ЗАО «Каспийский Трубопроводный Консорциум - Р». Данная система реализует локальное управление системой автономного водоснабжения на основе малоинформативного локального дисплея, расположенного вне административного здания. В существующей системе не предусмотрено ведение отчетной документации, представление данных в виде ретроспективных графиков (графиков), резервное хранение данных. В соответствии с вышесказанным можно выделить следующее недостатки существующей системы водоснабжения:
Проанализировав перечень недостатков существующей системы, определим задачи, решение которых приведет к созданию системы, удовлетворяющей требованиям технического задания. Для обеспечения управления подсистемой ультрафиолетовой обработки воды требуется разработать и реализовать алгоритм управления данной подсистемой. Оставшиеся недостатки системы устраняются созданием нового программного интерфейса системы управления автономным водоснабжением, обеспечивающего возможность удаленного управления системой автономного водоснабжения на приемлемом уровне информативности. Данный интерфейс обеспечит: ведение отчетной документации, представление данных в виде ретроспективных графиков, резервное хранение данных.
Разработка структуры автоматизированной системы
Существующая система автономного водоснабжения включает большое количество КИП, необходимых как для местной индикации, так и непосредственно для создания автоматизированной системы. В данном пункте представим перечень КИП, необходимых для функционирования автоматизированной системы управления автономным водоснабжением, а также логику работы исполнительных устройств. На рисунке 1.2 представлено общее устройство системы управления водоснабжением.
Рисунок 1.2 - Общее устройство системы управления водоснабжением
Водяные скважины
Реле низкого уровня артезианской воды в скважине №1 (LSLL-7300) установлено на один метр выше насоса для его защиты от работы всухую. При активации реле, насос артезианской воды, PU-H003, отключается и на местной панели управления артезианской скважины №1 и мнемосхемы SCADA направляется аварийный сигнал. Для повторного запуска насоса отказ должен быть сброшен в системе SCADA. Активация аварийного реле высокого давления, PAH-7310, отрегулированного на 4300 кПа или аварийного реле низкого давления, PAL-7310, отрегулированного на 2900 кПа, переключает насос артезианской воды, PU-H003, а аварийный сигнал передается в систему SCADA. Для повторного запуска насоса отказ сбрасывается в системе SCADA. Отключение при низком давлении нагнетания, PAL-7310, блокируется при запуске насоса. Реле низкого уровня артезианской воды в скважине №2 (LSLL-7400) установлено на один метр выше насоса для его защиты от работы всухую. При активации реле, насос артезианской воды, PU-H004, отключается и на местной панели управления артезианской скважины №2 и мнемосхемы SCADA направляется аварийный сигнал. Для повторного запуска насоса отказ должен быть сброшен в системе SCADA. Активация аварийного реле высокого давления, PAH-7410, отрегулированного на 4300 кПа или аварийного реле низкого давления, PAL-7410, отрегулированного на 2900 кПа, переключает насос артезианской воды, PU-H004, а аварийный сигнал передается в систему SCADA. Для повторного запуска насоса отказ сбрасывается в системе SCADA. Отключение при низком давлении нагнетания, PAL-7410, блокируется при запуске насоса. Реле низкого уровня артезианской воды в скважине №3 (LSLL-7500) установлено на один метр выше насоса для его защиты от работы всухую. При активации реле, насос артезианской воды, PU-H005, отключается и на местной панели управления артезианской скважины №3 и мнемосхемы SCADA направляется аварийный сигнал. Для повторного запуска насоса отказ должен быть сброшен в системе SCADA. Активация аварийного реле высокого давления, PAH-7510, отрегулированного на 4300 кПа или аварийного реле низкого давления, PAL-7510, отрегулированного на 2900 кПа, переключает насос артезианской воды, PU-H005, а аварийный сигнал передается в систему SCADA. Для повторного запуска насоса отказ сбрасывается в системе SCADA. Отключение при низком давлении нагнетания, PAL-7510, блокируется при запуске насоса. На насосах артезианской воды предусмотрены следующие расходомеры: FQI-7300 - расходомер на нагнетании насоса PU-H003, FQI-7400 - расходомер на нагнетании насоса PU-H004, FQI-7500 - расходомер на нагнетании насоса PU-H005. Общий расход визуализируются на местном приборе и дистанционно в системе SCADA. Все три насоса управляются ПЛК, расположенным в артезианской скважине №3, или дистанционно – от системы SCADA. Запуск насосов может потребоваться либо для заполнения резервуаров питьевой воды, либо для заполнения резервуаров пожарной воды. Приоритетным является заполнение резервуаров питьевой воды. Насосы артезианских скважин, PU-H004 и PU-H005, работают по принципу «рабочего» / «резервного», что задается программным переключателем системы SCADA. При понижении уровня в промежуточной емкости необработанной воды, 42-VE-N001, и срабатывании реле низкого уровня, LSL-0951, входной изолирующий клапан, XV-0951, открывается и на «рабочий» насос посылается команда пуска. Если «рабочий» насос не запускается, в систему SCADA передается аварийный сигнал, а на «резервный» насос передается команда пуска. Когда уровень повышается в промежуточной емкости необработанной воды, 42-VE-N001, при активации реле высокого уровня, LSH-0952, входной изолирующий клапан, XV-0951, закрывается и на работающий насос посылается команда останова. На рисунке 1.3 представлен алгоритм работы насосов водяных скважин.
Рисунок 1.3 – Алгоритм работы насосов водяных скважин
1.3.2 Промежуточная емкость необработанной воды
Уровень в промежуточной емкости необработанной воды поддерживается в рабочих пределах реле низкого уровня LSL-0951 (уставка = 300мм). При активации реле низкого уровня входной изолирующий клапан, XV-0951, открывается и на насосы артезианской воды передается команда пуска. Аварийный сигнал передается системе SCADA. Уровень в промежуточной емкости необработанной воды поддерживается в рабочих пределах реле высокого уровня LSH-0952 (уставка = 4140мм). При активации реле высокого уровня входной изолирующий клапан, XV-0951, закрывается и системе SCADA направляется аварийный сигнал. Входной изолирующий клапан промежуточной емкости необработанной воды открывается при активации реле низкого уровня, LSL-0951, и закрывается при активации реле высокого уровня, LSH-0952. Рассмотрим логику работы насосов необработанной воды (42-PU-N001 A/B). В нормальном режиме один из насосов промежуточной емкости необработанной воды, 42-PU-N001 A или B, работает непрерывно. Управление насосами осуществляется вручную с локального пульта управления с дистанционной визуализацией состояния в системе SCADA. Когда уровень в обоих хранилищах питьевой воды достигает уставки реле высокого уровня, LAH-0905 и LAH-0925, работающий насос отключается. На рисунке 1.4 представлен алгоритм работы КИП промежуточной емкости необработанной воды.
Рисунок 1.4 – Алгоритм работы КИП промежуточной емкости необработанной воды
1.3.3 Блочная установка подготовки питьевой воды
В таблице 1.10 представлен перечень КИП установки подготовки питьевой воды.
Таблица 1.10 – Перечень КИП установки подготовки питьевой воды
Перечень КИП | ||||
Наименование | Линия “A” | Линия “B” | ||
Входное давление блочной установки | PT-7752 | |||
Реле расхода на входе в блочную установку | FS-7741 | |||
Расходомер на входе линии | FT-7701A | FT-7701B | ||
Клапан регулирования расхода на входе линии | FC-7701A | FC-7701B | ||
Датчик давления многослойного фильтра | DTP-7701A | DTP-7701B | ||
Клапан на входе многослойного фильтра | BFV-7701A | BFV-7701B | ||
Клапан на выходе многослойного фильтра | BFV-7702A | BFV-7702B | ||
Клапан верхней дрены многослойного фильтра | BFV-7703A | BFV-7703B | ||
Клапан входа воды обратной промывки многослойного фильтра | BFV-7704A | BFV-7704B | ||
Клапан нижней дрены многослойного фильтра | BFV-7705A | BFV-7705B | ||
Датчик давления фильтра с активированным углем | DTP-7711A | DTP-7711B | ||
Клапан на выходе фильтра с активированным углем | BFV-7712A | BFV-7712B | ||
Клапан верхней дрены фильтра с активированным углем | BFV-7713A | BFV-7713B | ||
Клапан входа воды обратной промывки фильтра с активированным углем | BFV-7714A | BFV-7714B | ||
Клапан нижней дрены фильтра с активированным углем | BFV-7715A | BFV-7715B | ||
Расходомер умягчителя | FT-7721A | FT-7721B | ||
Клапан на входе умягчителя | BFV-7721A | BFV-7721B | ||
Клапан на выходе умягчителя | BFV-7722A | BFV-7722B | ||
Клапан верхней дрены умягчителя | BFV-7723A | BFV-7723B | ||
Клапан входа воды обратной промывки умягчителя | BFV-7724A | BFV-7724B | ||
Клапан нижней дрены умягчителя | BFV-7725A | BFV-7725B | ||
Клапан входа рассола умягчителя | BFV-7726A | BFV-7726B | ||
Реле расхода обратной промывки многослойного фильтра | LFS-7701A | LFS-7701B | ||
Реле расхода обратной промывки фильтра с активированным углем | LFS-7711A | LFS-7711B | ||
Реле расхода обратной промывки умягчителя | LFS-7721A | LFS-7721B | ||
Ультрафиолетовая система | 42-UV-N514 | |||
Реле расхода на выходе блочной установки | FS-7743 | |||
Реле низкого уровня в хранилище хлора | LSL-7741 | |||
Входной насос хлора | 42-CIP-7741 | |||
Выходной насос хлора | 42-CIP-7742 | |||
Запасной насос хлора | 42-CIP-7743 | |||
Клапан подачи рассола | BFV-7761 | |||
Клапан подачи пресной воды | BFV-7762 | |||
Реле низкого уровня в дозаторе рассола | LSL-7761 | |||
Реле высокого уровня в дозаторе рассола | LSH-7761 | |||
Реле высокого уровня в хранилище соли | LSH-7762 | |||
При обнаружении расхода на входе скида активация входного реле расхода воды, FS-7741, включает входное устройство хлорирования, 42-CIP-7741. Расход на линии “A”, FT-7701-A, регулируется с помощью входного регулирующего клапана, FC-7701-A. Клапан регулирования расхода работает в обратном режиме, т.е. когда расход увеличивается, клапан закрывается.
Дифференциальное давление на многослойном фильтре передается на местную панель управления. Последовательность обратной промывки инициируется, когда дифференциальное давление на фильтре превышает заданное значение в течение периода более 5 минут непрерывно. Значение регулируется на 100 кПа и может изменяться с дисплея местной панели управления. Выдержка времени в 5 минут предотвращает несвоевременную инициацию обратной промывки при пульсациях давления. Когда линия не работает, высокое дифференциальное давление на фильтре не инициирует последовательности обратной промывки. Дифференциальное давление на фильтре с активированным углем передается на местную панель управления. Последовательность обратной промывки инициируется, когда дифференциальное давление на фильтре превышает заданное значение в течение периода более 5 минут непрерывно. Значение регулируется на 70 кПа и может изменяться с дисплея местной панели управления. Выдержка времени за 5 минут предотвращает несвоевременную инициацию обратной промывки при пульсациях давления. Когда линия не работает, высокое дифференциальное давление на фильтре не инициирует последовательности обратной промывки.
Рассмотрим логику работы клапанов блочной установки подготовки питьевой воды на примере линии “A”. Входной двухпозиционный изолирующий клапан многослойного фильтра BFV-7701A открыт в нормальном рабочем режиме и закрыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан на выходе многослойного фильтра или входе фильтра с активированным углем BFV-7702A открыт в нормальном рабочем режиме и закрыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан верхней дрены многослойного фильтра BFV-7703A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан на входе воды обратной промывки многослойного фильтра BFV-7704A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан нижней дрены многослойного фильтра BFV-7705A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Выходной двухпозиционный изолирующий клапан фильтра с активированным углем BFV-7712A открыт в нормальном рабочем режиме и закрыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан верхней дрены фильтра с активированным углем BFV-7713A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан на входе воды обратной промывки фильтра с активированным углем BFV-7714A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан нижней дрены фильтра с активированным углем BFV-7715A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Входной двухпозиционный изолирующий клапан умягчителя BFV-7721A открыт в нормальном рабочем режиме и закрыт во время последовательности обратной промывки. Выходной двухпозиционный изолирующий клапан умягчителя BFV-7722A открыт в нормальном рабочем режиме и закрыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан верхней дрены умягчителя BFV-7723A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан на входе воды обратной промывки умягчителя BFV-7724A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан нижней дрены умягчителя BFV-7725A закрыт в нормальном рабочем режиме и открыт во время последовательности обратной промывки. Двухпозиционный изолирующий клапан на входе рассола умягчителя BFV-7726A закрыт в нормальном рабочем режиме и открыт во время последовательности регенерации.
Общий объем умягчаемой воды визуализируется на счетчике потребления FT-7721A и передается на местную панель управления. Последовательность регенерации инициируется после достижения заданного объема.
Рассмотрим КИП обратной промывки фильтров. Реле расхода обратной промывки многослойного фильтра LFS-7701A указывает достижение минимального заданного расхода в линии подачи воды обратной промывки многослойного фильтра. Реле расхода обратной промывки фильтра с активированным углем LFS-7711A указывает достижение минимального заданного расхода в линии подачи воды обратной промывки фильтра с активированным углем. Реле расхода обратной промывки умягчителя LFS-7721A указывает достижение минимального заданного расхода в линии подачи воды обратной промывки умягчителя. Давление в коллекторе воды обратной промывки PT-7720 передается на местную панель управления и на SCADA.
Ультрафиолетовая дезинфекционная установка 42-UV-N514 представляет собой лампу в специальном корпусе, обеспечивающую облучение воды. Она включается при активации выходного реле расхода, FS-7743. При обнаружении потока на выходе со скида, активация выходного реле расхода воды, FS-7743, включает выходное устройство хлорирования, 42-CIP-7743 и ультрафиолетовую систему, 42-UV-N514.
Рассмотрим КИП системы хлорирования. При низком уровне в резервуаре хлорирования активация реле низкого уровня, LSL-7741, отключает насосы хлорирования, 42-CIP-7741, 42-CIP-7742 и 42-CIP-7743. Аварийный сигнал передается соответственно на местную панель управления. Насос хлорирования на входе, 42-CIP-7741, включается при обнаружении потока на входе скида, FS-7741. Он отключается при низком уровне в емкости хлорирования, LSL-7741. Насос хлорирования на выходе, 42-CIP-7742, включается при обнаружении потока на выходе скида, FS-7743. Он отключается при низком уровне в емкости хлорирования, LSL-7743. Насос хлорирования, 42-CIP-7743, не подсоединен. Он поставляется в качестве «запасного» для входного или выходного насоса хлорирования.
Рассмотрим КИП системы рассола. Во время последовательности регенерации умягчителя, раствор рассола из дозатора, 42-VE-N561, инжектируется в умягчитель. Эжектор рассола, 42-FE-7761, отбирает рассол между уставкой реле высокого уровня, LSH-7761, и уставкой реле низкого уровня, LSL-7761, обеспечивая определенное количество рассола для регенерации. После регенерации умягчителя дозатор рассола, 42-VE-N561, заполняется раствором рассола до уставки реле высокого уровня, LSH-7761. После регенерации умягчителя насыщенный раствор выполняется в хранилище соли, 42-VE-N562, разбавлением хлопьев соли пресной водой, подача которой запускается реле высокого уровня в хранилище соли, LSH-7762. Уровень в хранилище соли контролируется реле высокого уровня, которое открывает входной клапан, BFV-7762, для подачи пресной воды, когда реле сбрасывается, и закрывает клапан, когда реле активируется. Во время регенерации умягчителя клапан подачи рассола, BFV-7761, открывается, позволяя эжектору, 42-FE-7761, отбирать рассол из дозатора, 42-VE-N561, и закрывается, когда уровень падает до уставки реле низкого уровня, LSL-7761. При заполнении системы рассола, после последовательности регенерации, клапан подачи пресной воды, BFV-7762, открывается, пропуская воду в хранилище соли, когда реле высокого уровня, LSH-7762, сбрасывается, и закрывается, когда реле высокого уровня активируется. Этот клапан позволяет прохождение рассола из хранилища соли, 42-VE-N562, в дозатор рассола, 42-VE-N561. Пока не будет достигнут высокий уровень в дозаторе рассола, LSH-7761, клапан открывается после периода приготовления рассола и закрывается, когда реле высокого уровня в хранилище соли, LSH-7762, сбрасывается. Во время последовательности регенерации умягчителя осуществляется «быстрая промывка» умягчителя, во время которой клапан быстрой промывки, BFV-7764, открыт. Алгоритм работы линий очистки воды является объемным, поэтому представлен в виде данного текстового описания.
1.3.4 Резервуары питьевой воды
В таблице 1.11 представлен перечень КИП на резервуарах питьевой воды.
Таблица 1.11 – Перечень КИП на резервуарах питьевой воды
Перечень КИП | ||
Наименование | 42-TK-N001A | 42-TK-N001B |
Реле низкого уровня в резервуаре питьевой воды | LSLL-0903 | LSLL-0923 |
Входной регулирующий клапан | LV-0905 | LV-0925 |
Датчик уровня резервуара питьевой воды | LIT-0905 | LIT-0925 |
Выходной изолирующий клапан | XV-0910 | XV-0920 |
Рассмотрим логику работы КИП резервуаров питьевой воды. При активации реле очень низкого уровня в резервуаре, LSLL-0903, пока выходной клапан резервуара открыт, XV-0910, блочная установка перекачки питьевой воды, PK-N520, отключена. Аварийный сигнал передается в систему SCADA. Отключение при очень низком уровне в резервуаре, LSLL-0903, блокируется, когда выходной изолирующий клапан резервуара, XV-0910, закрыт. Уровень в резервуаре питьевой воды передается системе SCADA и визуализируется на местном приборе. Дополнительные, регулируемые оператором, аварийные сигналы инициируются системой SCADA при следующих уставках: LAH-0905 - аварийный сигнал высокого уровня в резервуаре 4090 мм. Когда уровень в обоих резервуарах достигает уставки реле высокого уровня, LAH-0905 и LAH-0925, насосы промежуточной емкости необработанной воды, 42-PU-N001 A/B, отключаются. Уровень в резервуаре регулируется дифференциальным контроллером уровня, LIC-0905, воздействующим на входной регулирующий клапан, LV-0905. Регулирующий клапан полностью открыт, когда уровень < 90 %, и полностью закрыт, когда уровень > 95%.
Рассмотрим логику работы блочной насосной установки питьевой воды (PK-N520). Датчик давления передает значение давления в нагнетательном манифольде контроллеру регулируемой скорости. Когда давление в сети падает ниже уставки: насос №1 запускается со скоростью, совместимой с заданным потреблением и давлением. При увеличении потребления: насос №1 достигает 95 % своей максимальной скорости, а насос №2 запускается с минимальной частотой для немедленной готовности к работе по потребности. При увеличении потребления, насос №1 достигает 100 % своей скорости, а насос №2 работает по потребности. Когда потребление стабилизуется, и если насос №1 не достигает своей максимальной скорости за 15 секунд, насос №2 останавливается. Если потребление продолжает увеличиваться, насос №2 достигает 95 % своей максимальной скорости и тогда запускается насос №3 с минимальной частотой для немедленной готовности к работе по потребности. Если потребление продолжает увеличиваться, насос №2 достигает 100 % своей скорости, а насос №3 работает по потребности. Когда потребление стабилизуется, и если насос №2 не достигает своей максимальной скорости за 15 секунд, насос №3 останавливается. Для предотвращения работы всухую блочной насосной установки питьевой воды, она отключается при активации реле очень низкого уровня в рабочем резервуаре питьевой воды, когда выходной клапан соответствующего резервуара открыт. Блочная установка также отключается, когда выходные изолирующие клапаны, XV-0910 и XV-0920, обоих хранилищ питьевой воды закрыты. На рисунке 1.5 представлен алгоритм работы КИП резервуаров питьевой воды.
Рисунок 1.5 – Алгоритм работы КИП резервуаров питьевой воды
1.3.5 Программируемый логический контроллер
Насосы водяных скважин, блочная установка подготовки питьевой воды, а также исполнительные устройства и КИП резервуаров питьевой воды управляются выделенным ПЛК. Для реализации алгоритма управления использован программируемый логический контроллер ControlLogix фирмы Allen-Bradley. Данный ПЛК состоит как минимум из модуля процессора и модулей ввода/вывода в одном шасси ControlLogix с источником питания. Имеется возможность установки коммуникационного модуля на заднюю шину. В этом случае процессор контролирует как модули ввода/вывода в локальном шасси, так и дистанционно расположенные модули ввода/вывода. Для улучшения работы можно устанавливать несколько сетевых модулей на заднюю шину для обеспечения различных путей для передачи данных. Модульность этого ПЛК позволяет эффективно разрабатывать, комплектовать и модифицировать приложения со значительной экономией затрат на инжиниринг. Представим основные особенности программируемого логического контроллера ControlLogix:
На рисунке 1.6 представлен программируемый логический контроллер ControlLogix:
Рисунок 1.6 – Программируемый логический контроллер ControlLogix
Рассмотрим структуру программируемого логического контроллера. Основой контроллера являются два взаимодействующих 32-хразрядных процессора: процессор логики и процессор задней шины. Процессор логики выполняет приложение и управляет процессом обмена сообщениями. Процессор задней шины общается с устройствами ввода/вывода, посылая и передавая данные по задней шине. Процессор задней шины работает независимо от процессора логики, то есть вся информация ввода/вывода передается асинхронно к исполняемой программе. Контроллер имеет память программ и память данных. Память пользователя имеет объем от 750 Кбайт до 8Мбайт. На рисунке 1.7 представлена структура программируемого логического контроллера ControlLogix.
Рисунок 1.7 – Структура программируемого логического контроллера ControlLogix
Для организации работы автоматизированной системы автономного водоснабжения сконфигурирована сеть, представленная на рисунке 1.8:
Рисунок 1.8 – Конфигурация сети автоматизированной системы управления автономным водоснабжением.
Сеть состоит из трех шасси. Шасси №1 состоит из следующих модулей:
Данное шасси обеспечивает работу системы водяных скважин и промежуточной емкости. Шасси №2 состоит из следующих модулей:
Данное шасси обеспечивает работу блочной установки подготовки воды. К шасси №2 подключен HMI, на котором установлен разработанный программный интерфейс, обеспечивающий работу оператора с автоматизированной системой управления автономным водоснабжением. Шасси №2 связано с HMI посредством модуля EtherNet, установленного в данном шасси. HMI – это специализированные операторские панели. Выполняя функции миникомпьютера, такие панели устанавливаются непосредственно на рабочем месте и позволяют оперативно реагировать на системные запросы и осуществлять контроль, программирование и перепрограммирование системы. Шасси №3 состоит из следующих модулей:
Данное шасси обеспечивает работу исполнительных устройств резервуаров питьевой воды. Стоит отметить, что автоматизированная система построена на базе одного процессора ControlLogix5550. ПЛК связан по средствам сети с шасси, содержащими модули ввода/вывода. Подобная конфигурация сети обеспечивает высокую производительность и облегчает изменение системы в будущем. Сеть, обеспечивающая связь шасси, организована в соответствии с технологией ControlNet.
Сеть ControlNet - быстродействующая детерминированная сеть, используемая для передачи информации, критичной ко времени. В то же самое время сеть используется для передачи некритичных ко времени сообщений, не мешая передаче критичной информации. По сети осуществляется управление в реальном времени и передача и информации между одноранговыми абонентами сети. Эта высокоскоростная связь между контроллерами и устройствами ввода-вывода может комбинироваться с существующими сетями Remote I/O и Data Highway Plus. Ряд устройств может быть подключён к сети ControlNet, включая персональные компьютеры, контроллеры, операторский интерфейс, привода, а также другие устройства с поддержкой ControlNet.
Сеть ControlNet основана на новейших решениях в области открытых сетевых технологий - модели производитель/потребитель. Модель производитель/потребитель позволяет всем узлам сети одновременно получать одинаковые данные от одного источника. В конечном счете, модель обеспечивает: большую производительность и повышенную эффективность системы, т.к. данные формируются только один раз независимо от количества потребителей, и точную синхронизацию, т.к. данные принимаются каждым узлом в одно и то же время.
Возможности традиционных сетей не могут удовлетворить постоянно растущие потребности в большей производительности и высоких эксплуатационных характеристиках системы при обеспечении повторяющейся и предсказуемой связи между устройствами. Простое увеличение скорости передачи данных и повышение эффективность протокола уже недостаточны. Эффективность сети определяется основной технологией, с помощью которой сеть управляет связью между подсоединенными устройствами. Преимущества сети, основанной на модели производитель/потребитель:
Обмен информацией по сети ControlNet. Самая важная функция ControlNet передавать критичную ко времени управляющую информацию (например, состояние ввода/вывода и блокировки управления). Одновременно передаётся и другая информация (например, не критичные ко времени сообщения, такие как загрузка и выгрузка программ), но она не смешивается с критичными ко времени сообщениями благодаря уникальному слоёному временному алгоритму ControlNet. По локальной сети ControlNet информация передаётся между двумя узлами путём установления логического соединения.
Дата: 2019-03-05, просмотров: 225.