Инженерные решения по результатам расчетов
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Перед выполнением данного подраздела студент должен изу­чить методы защиты атмосферного воздуха по учебному пособию [3, с. 98...101 и 106...110], провести соответствующий ана­лиз и расчеты для последующей оценки эффективности и выбора наиболее адекватных методов защиты для ситуации (lпдк> lcзз) когда в зоне максимального (выше ПДК) загрязнения приземно­го слоя данным ИЗА находятся жилые массивы (lcзз - ширина санитарно—защитной зоны). Поэтому им должны быть оценены следующие 4 подхода к защите от загрязнений.

1. Изменение технологических процессов (содержание СО в выбросах резко уменьшается при поступлении в зону горе­ния большего количества чистого воздуха; выбросы SO2 можно снизить заменой или предварительной очисткой топлива; круп­нотоннажные агрегаты уменьшают  сравнительно с малотоннажны­ми  выбросы SO2 в 6...8 раз, а NO2 почти в 1,5 раза).

 

2. Применение высоких (51...500 м) труб. Требуемую для данного ИЗА высоту дымовой трубы Нтр, м, легко рассчитать по преобразованной формуле (1.9), введя в нее ограничивающий фактор ПДК данного 3В. В этом случае

Полученная высота Нтр может быть уточнена с введением в рас­четы новых значений m1 и n1, рассчитанных с учетом новой Н (т.е. для нового Нтр находят f и Vм , а с их учетом по формулам (1.4 и 1.5а или 1.5б) рассчитывают окончательное значение Н0тр) по формуле

3. Предварительная очистка выбросов средствами пылегазовой очистки (ПГО). Из соотношения требуемой концентрации и его ре­ального содержания в приземном слое воздуха можно легко опре­делить требуемую степень очистка, %, по формуле

а из уже известных V и М - производительность требуемых средств ПГО.

 

 

4. Для предупреждения загрязнений больших, чем ПДК, мг/м3 предприятию устанавливаются предельно допустимые выбросы 3В, г/с, определяемые по формуле

где Сф - фоновая концентрация 3В в атмосфере региона, мг/м3 (Сф = 0 при отсутствии ее в исходных данных).

В окончательном инженерном решении по заданию (помимо ука­занных выше характеристик - схемы с зоной загрязнения и радиусом зоны влияния) даются рекомендации по обеспечению тре­буемой чистоты атмосферного воздуха, т.е. принятые решения по вышеуказанным подходам к защите от загрязнений атмосфе­ры.

 

ЗАДАНИЕ №2

ПРОГНОЗИРОВАНИЕ МАСШТАБОВ ЗАРАЖЕНИЯ сильнодействующими ядовитыми веществами ПРИ АВАРИЯХ (РАЗРУШЕНИЯХ) НА ХИМИЧЕСКИ ОПАСНЫХ ОБЪЕКТАХ И ТРАНСПОРТЕ

 

Методики прогнозирования

Методика прогнозирования масштабов заражения сильнодейст­вующими ядовитыми веществами (СДЯВ) при авариях (разрушениях) на химически опасных объектах (ХОО) и транспорте регламенти­рована РД 52.04.253-90 [7]. Она распространяется на случай выброса СДЯВ в атмосферу в газообразном, парообразном ала аэрозольном состоянии.

Данный РД рекомендует два вида прогнозирования:

1) забла­говременное - до аварии при максимальном количестве СДЯВ и худших метеоусловиях (степень вертикальной устойчивости ат­мосферы или СВУА - инверсия и скорость ветра или vВ= I м/с);

2) оперативное - после аварии с учетом конкретного количества выброшенного (разлившегося) СДЯВ и реальных метеоусловий (СВУА и vВ) на момент аварии. При заблаговременном прогно­зировании рассматривают два варианта:

· первый - на случай разрушения единичной наибольшей емкости с разливом СДЯВ в поддон или обваловку (для сейсмических районов берут общий запас СДЯВ на объекте; при авариях на газо- и продуктопроводах - равным максимальному количеству СДЯВ, содержащему в газопроводе между автоматическими отсекателями, например, для аммиакопроводов это составляет 275...500 т);

· второй - на случай разрушения всего ХОО при свободном раз­ливе всего количества СДЯВ на подстилающую поверхность тол­щиной h = 0,05 м.

Территорию, в пределах которой распространяются СДЯВ в опасных для жизни людей концентрациях, называют зоной хими­ческого заражения (3Х3). Она возникает при проходе первичного и/или вторичного облаков СДЯВ. Первичное облако СДЯВ об­разуется в результате мгновенного (1..3 мин) перехода в ат­мосферу части СДЯВ из емкости (продуктопровода) при ее разру­шении. Его образуют сжатые и сжиженные газы. Вторичное обла­ко СДЯВ образуется в результате испарения разлившегося жидкого вещества и от сжиженного газа. Интенсивность испарения зависит от температуры наружного воздуха, которая меняется в течение суток.

Последствия химического заражения прогнозируются только по ингаляционной токсичности, т.е. через органы дыхания. Степень поражения СДЯВ в этом случае зависит от токсодозы - произве­дения концентрации СДЯВ в воздухе, мг/л, на время, ч, пребы­вания человека в зараженной атмосфере. Различают три токсо­дозы: пороговая - доза СДЯВ, вызывающая начальные симптомы поражения у 50% людей, находящихся 3Х3; поражающая. - доза СДЯВ, выводящая из строя 50% людей; смертельная - доза СДЯВ, вызывающая смертельный исход у 50% пораженных. Границы 3Х3 устанавливаются по пороговой токсодозе.

При прогнозировании следует помнить о том, что метеоусло­вия сохраняются неизменными не более 4 часов. Затем прогноз обстановки необходимо уточнять. Об этом нельзя забывать при оповещении людей об опасности и выборе способов и средств их защиты.

 

Методика прогнозирования масштабов заражения СДЯВ при разрушении единичной наибольшей емкости состоит в следующем:

1. Определяют СВУА по табл. 3.1 в зависимости от метеоусловий на момент аварии, а при заблаговременном прогнозировании ее принимают согласно п. 1.5 РД 52.04.253-90 [7] - инверсию и VВ = 1 м/с.

* В табл. 3.1...3.6 приведены извлечения из приложений I...6 РД 52.04.253-90 [7]

Примечания к табл. 3.1.

1. Под термином "утро" понимают период времени в течение 2 ч после восхода Солнца, а "ве­чер" - в течение 2 ч после захода Солнца; период от восхода до захода Солнца за вычетом двух утренних часов - день, а период от захода до восхода Солнца за вычетом двух вечерних часов - ночь.

2. Буквы в скобках - при снежном покрове.

3. Обозначения ИН следует читать как инверсия, ИЗ - изотермия и КО - конвекция.

Разные СДЯВ имеют различные токсичные свойства, приведен­ные в табл. 3.2. Поэтому эту особенность при расчете учитыва­ют путем пересчета количеств тех или иных СДЯВ, выброшенных в окружающую среду, на эквивалентное количество хлора. Под эквивалентным количеством СДЯВ понимают такое количество хло­ра, масштаб заражения которым при инверсии эквивалентен мас­штабу заражения при данной СВУА количеством СДЯВ, перешедшем в первичное (вторичное) облако.

2. Рассчитывают эквивалентное количество вещества, т, в первичном облаке СДЯВ по формуле

QЭ11К3К5К7Q0                                                          (3.1)

где К1 - коэффициент, зависящий от условий хранения конкрет­ного СДЯВ (берут из табл. 3.2 или приложения 3 РД 52.04.253-90 [7], для сжатых газов К1 = 1, а для других сжиженных газов, не вошедших в приложение 3 данного РД, рассчитывают по формуле (4) РД 52.04.253-90 [7]; К3 - коэффициент, равный отношению пороговой токсодозы хлора к пороговой токcодозе другого СДЯВ (берут из табл. 3.2 или приложения 3 РД [7]); К5 - коэффициент, учитывающий СВУА (для инвер­сии К5 = 1, для изотермии К5 = 0,23, а для конвекции К5= 0,08); К7 - коэффициент, учитывающий влияние темпера­туры наружного воздуха на момент аварии (берут из табл. 3.2 или приложения 3 РД [7],а для сжатых газов K7 = 1);

Qo - количество выброшенного (разлившегося) при аварии ве­щества, т (при авариях на хранилищах сжатого воздуха или на газопроводе Qo рассчитывают по формуле (2) или (3) РД [7]).

3. Находят продолжительность поражающего действия СДЯВ или время испарения, ч, СДЯВ с площади разлива по формуле

T=hd/(K2K4K7)                                              (3.2)

где h - толщина разлившегося слоя СДЯВ, м (при свободном разливе h = 0,05 м по всей площади разлива, а при разли­ве в поддон или обваловку высотой Н величина h = Н - 0,2);

d - плотность СДЯВ, т/м3 (берут из табл. 3.2 или приложения 3 РД [7]); К2 - коэффициент, зависящий от физико-химических свойств СДЯВ (берут из табл. 3.2 иди приложения 3 РД [7];

для СДЯВ, не вошедших в приложение 3 РД, К2 рассчитывают по формуле (6) данного РД); К4 -коэффициент, учитывающий vВ (берут из табл. 3.3).

 

Таблица 3.3. Величина к4 в зависимости от скорости ветра vВ

vВ, м/с 1 2 3 4 5 6 8 10 15
К4 1 1,33 1,63 2,0 2,34 2,67 3,34 4,0 5,68

 

4. Определяют эквивалентное количество вещества, т, во вторичном облаке СДЯВ по формуле

QЭ2=(1-К1) К2К3К4К5К6К7Q0/(h*d)                         (3.3)

где К6 - коэффициент, зависящий от времени N, ч, прошедше­го после начала аварии. Его значения вычисляют по формуле

а при Т < 1 ч K6 принимается для 1 ч.

5. Находят методом интерполяции максимальную глубину 3Х3 первичным (Г1) и вторичным (Г2) облаками по табл. 3.4 или приложению 2 РД [7] в зависимости от V В и QЭ1 и QЭ2

Например, при V В = 3 м/с и QЭ1 =0,769 т интерполируют по табл. 3.4 величину Г1 так:

6. Вычисляют полную глубину 3Х3, км, по формуле

Г=Г’+0,5Г’’                              (3.5)

где Г/ - наибольшая и Г" - наименьшая величина из значений Г1 и Г2, км.

7. Определяют предельно возможную глубину, км, переноса воздушных масс по формуле

Гп = N * n                                             (3.6)

где N - время от начала аварии, ч; n - скорость переноса переднего фронта облака СДЯВ при данной V В и СВУА, км/ч (берут по табл. 3.5).

8. Сравнивают значения Г и Гп и за окончательную расчетную глубину 3Х3 принимают наименьшее из двух сравниваемых значе­ний. Ее обозначают как Го, км.

9. Вычисляют возможную и фактическую площади 3Х3, км2, по формулам:

Sв=8,72*10-3*Го2*j                             (3.7)

                  Sф8*Го2*N0,2                       (3.8)

где S в возможная площадь 3Х3 или площадь территории, в пределах которой под воздействием изменения направления ветра может перемещаться облако СДЯВ, км2; S ф - фактическая площадь 3Х3 или площадь территории, на которой заражение СДЯВ наблюдается в опасных для жизни людей пределах, км;

j - угловые размеры зоны возможного заражения (принимают по табл. 3.6), град; K8 - коэффициент, зависящий от СВУА (принимают равным: 0,081 при инверсии; 0,133 при изотермии; 0,235 при конвекции).

 

Таблица 3.6. Угловые размеры и форма зоны возможного заражения СДЯВ в зависимости от vВ

Примечание. Точка "О" соответствует источнику заражения.

10. Определяют время, мин, подхода облака СДЯВ к населенному пункту или объекту экономики (ОЭ) по формуле

              t = 60 Х/n                                        (3.9)

где X - расстояние от источника заражения до населенного пункта или ОЭ, км.

11. Производят оценку возникшей обстановки при аварии с наибольшей емкостью на ХОО и разрабатывают меры по повышению безопасности людей, руководствуясь указаниями подразделов 3.3 и 3.4.

Методика прогнозирования масштабов заражения СДЯВ при разрушении всего ХОО (два и более СДЯВ) состоит в следующем.

1. Согласно РД 52.04.253-90 [7] при заблаговременном прогнозировании принимают метеоусловия: инверсия vВ = 1 м/с, а разлив СДЯВ - свободный, т.е. h = 0,05 м; при оперативном прогнозировании - СВУА по табл. 3.1 и vВ на момент аварии, а разлив - свободный.

2. По формуле (3.2) определяют продолжительность поража­ющего действия Т для каждого из разлившихся СДЯВ.

3. Вычисляют коэффициент К6 по формуле (3.4) для каждого из разлившихся СДЯВ, руководствуясь найденными значениями Т и заданной величиной N .

4. Находят суммарное эквивалентное количество СДЯВ, т, во вторичном облаке по формуле

                            (3.10)

 

где К4 - коэффициент, учитывающий vВ (для vВ=1 м/с по табл. 3.3 К4=1); K5 - коэффициент, учитывающий СВУА (для инверсии К5 = 1); К2i, K3i, K7i - те же коэффициенты, что и в формулах (3.1 и 3.3), но для i-го СДЯВ; Qi - запасы i-го СДЯВ на объекте, т; di - плотность i-го СДЯВ, т/м3 (берут из табл. 3.2 или приложения 3 РД [7]).

5. Определяют по табл. 3.4 или приложению 2 РД [7] ме­тодом интерполяция величину Г, т.е. полную глубину 3Х3 в за­висимости от vВ = 1 м/c и найденной величины Qэ.

6. По формуле (3.6) вычисляют величину ГП, т.е. предельно возможную глубину переноса воздушных масс.

7 Сравнивают значения Г и. Гп и за окончательную глубину 3Х3 принимают наименьшее значение, которое обозначают как Го.

8. По формулам (3.7 и 3.8) вычисляют величины SВ и SФ в км2

9. По формуле (3.9) определяют значение t в минутах.

10. Производят оценку возникшей обстановки в случае раз­рушения всего ХОО и разрабатывают меры по повышению безопас­ности людей, руководствуясь указаниями подразделов 3.3 и 3.4.

 

Задание на прогнозирование

Задание № 3.2.1. Заблаговременно спрогнозировать масштабы заражения жидами СДЯВ на случай аварии (разрушения) на ХОО химкомбината по исходным данным, приведенным в табл. 3.7. Оце­нить создавшуюся обстановку при разрушениях единичной наи­большей емкости и всего ХОО. составить тексты оповещения об опасности и дать рекомендации по защите населения микрорайона "Новый" размером 3х5 км. При этом возможные направление ветра и время аварии следует принять для вариантов: I...5 - север­ное и 10 ч 30 мин. 6...10 - южное и 14 ч 05 мин. 11...I5 - восточное и 18 ч 42 мин. I6...20 - западное и 21 ч 13 мин, 2I...25 - юго-западное и 07 ч 27 мин.

 

3.3. Методические указания по выполнению задания и анализу результатов прогноза

Ознакомившись с содержанием данного раздела и особенно с заданием 3.2.1, а также с табл. 5.2 учебного пособия [3], студент рассчитывает по формулам (3.1...3.10) возможные масштабы заражения СДЯВ при разрушении как единичной наибольшей емкости на ХОО, так и всего ХОО. При этом он руководствуется методиками расчетов, приведенными в подразделе 3.1. Затем студент вычерчивает в соответствующем масштабе (например. 1:50000 или 1:100000. т.е. в 1 см 500 или 1000 м) схему зоны S В для прогнозируемых случаев разрушения, используя данные табл. 3.6, заданное направление ветра и размеры микрорайона "Новый" (см. образцы оформления схем SВ на рис. 3.1). Зона SФ  имеет форму эллипса и находится внутри зоны S В , но фиксированное ее изображение на схему не наносят из-за возможного перемещения облака СДЯВ по ветру.

 

 

По вычерченным схемам S В студент производит оценку воз­никшей обстановки, исходя из времени подхода облака 3В к жи­лым кварталам микрорайона "Новый" и продолжительности пора­жающего действия СДЯВ. В частности, он отмечает, что направление ветра в сторону жилых кварталов данного микрорайона, глубина Го зоны S В превышает или не превышает удаление до домов микрорайона и, следовательно, попадают или нет они в 3Х3. Из последнего вытекает есть или нет опасность воздейст­вия СДЯВ на население и через какое время она может возник­нуть (оценивается по величине t) и какая продолжительность поражающего действия СДЯВ, т.е. указывается величина Т в ча­сах. При этом студент должен определиться нужна или нет эва­куация населения микрорайона "Новый" и какая она должна быть (полная или частичная). Необходимость эвакуации населения и ее тип определяются путем сравнения величин Го и X: при Го≤Х не требуется эвакуация населения микрорайона, а уход его в помещения с улицы, закрытие окон и дверей, герметиза­ция помещений, применение подручных средств защиты органов дыхания (например, марлевых повязок, смоченных водой); если Го захватывает 1/3 или 1/2 длины микрорайона, то нужна час­тичная эвакуация населения этой части микрорайона в другую (химически непораженную) его часть с проведением в последней мер по герметизации помещений и использованием подручных средств защиты органов дыхания; в других случаях (когда Го>Х плюс более ½ длины микрорайона) необходима полная эвакуация населения микрорайона "Новый" в населенный пункт, находящийся перпендикулярно ветру и непопадающий в 3Х3 при этой аварии со СДЯВ.

По итогам такой оценки обстановки студент делает вывод, разрабатывает тексты оповещения населения об опасности (или ее отсутствии) для каждого случая возможного разрушения на ХОО химкомбината и определяет единый комплекс организацион­ных и инженерно-технических мероприятий для химкомбината (об этом см. ниже).

 

Дата: 2019-03-05, просмотров: 197.