Типы альтернативных источников энергии
Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой

Производство энергии, являющееся необходимым средством для существования и развития человечества, оказывает воздействие на природу и окружающую человека среду. С одной стороны в быт и производственную деятельность человека настолько твердо вошла тепло- и электроэнергия, что человек даже и не мыслит своего существования без нее и потребляет само собой разумеющиеся неисчерпаемые ресурсы. С другой стороны, человек все больше и больше свое внимание заостряет на экономическом аспекте энергетики и требует экологически чистых энергетических производств. Это говорит о необходимости решения комплекса вопросов, среди которых перераспределение средств на покрытие нужд человечества, практическое использование в народном хозяйстве достижений, поиск и разработка новых альтернативных технологий для выработки тепла и электроэнергии и т.д.

Во второй половине ХХ столетия перед человечеством восстала глобальная проблема – это загрязнение окружающей среды продуктами сгорания органического топлива. Даже если рассматривать отдельно каждую отрасль этой проблемы, то картина будет складываться ужасная. К примеру, вот данные статистики по выбросам в окружающую среду вредных веществ автомобилями: с выхлопными газами автомобилей в атмосферу попало 14,7 миллиона тонн оксида углерода, 3,4 миллиона тонн углеводородов, около одного миллиона тонн оксидов азота, более 5,5 тысячи тонн высокотоксичных соединений свинца. И это данные на далекий 1993 год и если учесть, что каждый год с конвейеров автомобильных заводов сходит свыше 40 миллионов машин, и темпы производства растут, то можно сказать, что уже через десять лет все крупные города мира увязнут в смоге. К этому еще необходимо добавить продукты сгорания топлива на тепловых электростанциях, затопление огромных территорий гидроэлектростанциями и постоянная опасность в районах АЭС. Но у этой проблемы есть и вторая сторона медали: все ныне используемые источники энергии являются исчерпаемыми ресурсами. То есть через столетие при таких темпах потребления угля, нефти и газа население Земли увязнет в энергетическом кризисе.

Потому ныне перед всеми учеными мира стоит проблема нахождения и разработки новых альтернативных источников энергии.

1.(Обзор) Проблемы энергетики.

Современный период развития человечества иногда характеризуют через: энергетику, экономику, экологию. Энергетика в этом ряду занимает особое место. Она является определяющей и для экономики, и для экологии. От нее в решающей мере зависит экономический потенциал государств и благосостояние людей. Она же оказывает наиболее сильное воздействие на окружающую среду, экосистемы и биосферу в целом. Самые острые экологические проблемы (изменение климата, кислотные осадки, всеобщее загрязнение среды и другие) прямо или косвенно связаны с производством, либо с ис­пользованием энергии. Энергетике принадлежит первенство не только в химическом, но и в других видах загрязнения: тепловом, аэрозольном, электромагнитном, радиоактивном. Поэтому не будет преувеличением сказать, что от решения энергетических проблем зависит возможность решения основных экологических проблем. Энергетика - это та отрасль производства, которая развивается невиданно быстрыми темпами. Если численность населения в ус­ловиях современного демографического взрыва удваивается за 40-50 лет, то в производстве и потреблении энергии это происходит через каждые 12-15 лет. При таком соотношении темпов роста населения и энергетики, энерговооруженность лавинообразно увеличивается не только в суммарном выражении, но и в расчете на душу населения.

Нет основания ожидать, что темпы производства и потребления энергии в ближайшей перспективе существенно изменятся (некоторое замедление их в промышленно развитых странах компенсируется ростом энерговооруженности стран третьего мира), поэтому важно получить ответы на следующие вопросы:

- какое влияние на биосферу и отдельные ее элементы оказывают основные виды современной (тепловой, водной, атомной) энергетики и как будет изменяться соотношение этих видов в энергетическом балансе в ближайшей и отдаленной перспективе;

- можно ли уменьшить отрицательное воздействие на среду современных (традиционных) методов получения и использования энергии;

- каковы возможности производства энергии за счет альтернативных (нетрадиционных) ресурсов, таких как энергия солнца, ветра, термальных вод и других источников, которые относятся к неисчерпаемым и экологически чистым.

В настоящее время энергетические потребности обеспечиваются в основном за счет трех видов энергоресурсов: органического топлива, воды и атомного ядра. Энергия воды и атомная энергия ис­пользуются человеком после превращения ее в электрическую энергию. В то же время значительное количество энергии, заключенной в органическом топливе, используется в виде тепловой, и только часть ее превращается в электрическую. Однако и в том и в другом случае высвобождение энергии из органического топлива связано с его сжиганием, а, следовательно, и с поступлением продуктов горения в окружающую среду. Познакомимся с основными экологическими последствиями современных способов получения и использования энергии.

 

1.1 Атомная энергетика.

 

Энергия - это основа основ. Все блага цивилизации, все материальные сферы деятельности человека - от стирки белья до исследования Луны и Марса - требуют расхода энергии. И чем дальше, тем больше.

На сегодняшний день энергия атома широко используется во многих отраслях экономики. Строятся мощные подводные лодки и надводные корабли с ядерными энергетическими установками. С помощью мирного атома осуществляется поиск полезных ископаемых. Массовое применение в биологии, сельском хозяйстве, медицине, в освоении космоса нашли радиоактивные изотопы.

Значение атомных электростанций в энергобалансе любой страны трудно переоценить. Гидроэнергетика требует создания крупных водохранилищ, под которые затапливаются большие площади плодородных земель. Вода в них застаивается и теряет свое качество, что, в свою очередь, обостряет проблемы водоснабжения, рыбного хозяйства и индустрии досуга.

Теплоэнергетические станции в наибольшей степени способствуют разрушению биосферы и природной среды Земли. Они уже израсходовали десятки тонн органического топлива (угля). Для его добычи в сельском хозяйстве и других сферах экономики изымаются огромные земельные площади. В местах открытой добычи угля образуются «лунные ландшафты», а повышенное содержание золы в топливе является основной причиной выброса в воздух десятков миллионов тонн SO2 . Тепловые энергетические установки во всем мире выбрасывают в атмосферу за год до 250 млн. тонн золы и около 60 млн. тонн сернистого ангидрида.

Атомные электростанции (АЭС) - это третий «кит» в системе современной мировой энергетики. Техническая обеспеченность АЭС, бесспорно, являются крупнейшим достижением научно-технического прогресса (НТП). В случае их безаварийной работы не производится практически никакого загрязнения окружающей среды, кроме теплового. Правда, в результате работы АЭС (и предприятий атомного топливного цикла) образуются радиоактивные отходы, представляющие потенциальную опасность для всего живого. Обнадеживает тот факт, что объем радиоактивных отходов довольно мал, они весьма компактны, и их можно хранить в таких условиях, которые гарантируют отсутствие утечки. АЭС много экономичнее обычных тепловых электростанций, а, самое главное, при их правильной эксплуатации – это чистые источники энергии.

В 1990 году атомными электростанциями мира производилось 16% всей электроэнергии. Такие электростанции работали в 31 стране и строились еще в 6 странах. Ядерный сектор энергетики наиболее значителен во Франции, Бельгии, Финляндии, Швеции, Болгарии и Швейцарии, т.е. в тех промышленно развитых странах, где недостаточно природных энергоресурсов. Эти страны производят от четверти до половины своей электроэнергии на АЭС. США производят на АЭС только восьмую часть своей электроэнергии, но это составляет около одной пятой ее мирового производства.

Вместе с тем, развивая ядерную энергетику в интересах экономики, нельзя забывать и о безопасности и здоровье людей, так как ошибки могут привести к катастрофическим последствиям. Всего с момента начала эксплуатации атомных станций в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Наиболее характерные из них: в 1957 г. – в Уиндскейле (Англия), в 1959 г. – в Санта-Сюзанне (США), в 1961 г. – в Айдахо-Фолсе (США), в 1979 г. – на АЭС Три-Майл-Айленд (США), в 1986 г. – на Чернобыльской АЭС (бывший СССР, сейчас Украина).

Атомная энергетика по-прежнему остается предметом острых дебатов. Сторонники и противники атомной энергетики резко расходятся в оценках ее безопасности, надежности и экономической эффективности. Кроме того, широко распространено мнение о возможной утечке ядерного топлива из сферы выработки электроэнергии и его использовании для создания ядерного оружия.

1.3 Нефть и уголь.

Доказанные запасы нефти в мире оцениваются в 140 млрд. тонн, а ежегодная добыча составляет около 3,5 млрд. тонн. Однако вряд ли стоит предрекать наступление через 40 лет глобального кризиса в связи с исчерпанием нефти в недрах Земли, ведь экономическая статистика оперирует цифрами доказанных запасов, то есть запасов, которые полностью разведаны, описаны и исчислены. А это далеко не все запасы планеты. Даже в пределах многих разведанных месторождений сохраняются неучтённые или не вполне учтённые нефтеносные секторы, а сколько месторождений ещё ждёт своих открывателей.

За последние два десятилетия человечество вычерпало из недр более 60 млрд. тонн нефти. Вы думаете, доказанные запасы при этом сократились на такую же величину? Ничуть не бывало. Ситуация парадоксальна: чем больше добываем, тем больше остаётся. Между тем этот геологический парадокс вовсе не кажется парадоксом экономическим. Ведь чем выше спрос на нефть, чем больше её добывают, тем большие капиталы вливаются в отрасль, тем активнее идёт разведка на нефть, тем больше людей, техники, мозгов вовлекается в разведку и тем быстрее открываются и описываются новые месторождения. Кроме того, совершенствование техники добычи нефти позволяет включать в состав запасов ту нефть, наличие (и количество) которой было ранее известно, но достать которую было нельзя при техническом уровне прошлых лет. Конечно, это не означает, что запасы нефти безграничны, но очевидно, что у человечества есть ещё не одно сорокалетие, чтобы совершенствовать энергосберегательные технологии и вводить в оборот альтернативные источники энергии.

Наиболее яркой особенностью размещения запасов нефти является и сверхконцентрация в одном сравнительно небольшом регионе – бассейне Персидского залива. Здесь, в арабских монархиях Иране и Ираке, сосредоточено 2/3 доказанных запасов, причём большая их часть (более 2/5 мировых запасов) приходится на три аравийские страны с немногочисленным коренным населением – Саудовскую Аравию, Кувейт и Объединённые Арабские Эмираты. Даже с учётом огромного количества иностранных рабочих, наводнивших эти страны во второй половине 20 века, здесь насчитывается немногим больше 20 млн. человек – около 0,3% мирового населения.

Среди стран, обладающих очень большими запасами (более 10 млрд. тонн в каждой или более 6% мировых),- Ирак, Иран и Венесуэла. Эти страны издавна имеют значительное население и, более или менее развитую экономику, а Ирак и Иран – и вовсе старейшие центры мировой цивилизации.

Во всех крупных регионах мира, кроме Зарубежной Европы и территории Российской Федерации, отношение запасов нефти по состоянию на 1997 г. составляет более 100%. Даже Северная Америка, несмотря на «консервирование запасов» в США, значительно увеличила общие доказанные запасы благодаря интенсивной разведке в Мексике.

В Европе исчерпание запасов связано со сравнительно небольшой природной нефтеносностью региона и очень интенсивной добычей в последние десятилетия: форсируя добычу, страны Западной Европы стремятся разрушить монополию ближневосточных экспортёров. Однако шельф Северного моря – главная нефтяная бочка Европы – не бесконечно нефтеносен.

Что же касается заметного уменьшения доказанных запасов на территории Российской Федерации, то это связано не только с физическим исчерпанием недр, как в Западной Европе, и несколько с желанием попридержать свою нефть, как в США, сколько с кризисом отечественной геологоразведочной отрасли. Темпы разведки новых запасов отстают от темпа других стран.

Уголь.

Единой системы учёта запасов угля и его классификации не существует. Оценки запасов пересматриваются как отдельными специалистами, так и специализированными организациями. На 10 сессии Мировой энергетической конференции (МИРЭК) в 1983г. достоверные запасы углей всех видов были определены в 1520 млрд. тонн. Извлекаемыми с технико-экономической точки зрения признаются лишь 2/3 достоверных запасов. На начало 90-х годов, по оценке МИРЭК, около 1040 млрд. тонн.

Небольшими за пределами территории Российской Федерации достоверными запасами располагают США (1/4 мировых запасов), КНР (1/6), Польша, ЮАР и Австралия (по 5-9% мировых запасов), более 9/10 достоверных запасов каменного угля, извлекаемых с использованием существующих в настоящее время технологий (оцениваемых в целом по миру примерно 515 млрд. тонн) сосредоточено, по оценке МИРЕК 1983г., в США (1/4), на территории Российской Федерации (более 1/5), КНР (около 1/5), ЮАР (более 1/10), ФРГ, Великобритании, Австралии и Польши. Из других промышленно развитых стран значительными запасами каменного угля располагают Канада и Япония, из развивающихся – в Азии – Индия и Индонезия, в Африке - Ботсвана, Свазиленд, Зимбабве и Мозамбик, в Латинской Америке – Колумбия и Венесуэла.

Наиболее экономична разработка месторождений каменного угля открытым способом – карьерами. В Канаде, Мозамбике и Венесуэле этим способом могут разрабатываться до 4/5 всех запасов, в Индии – 2/3, в Австралии – около 1/3, в США – более 1/5, в Китае – 1/10. Эти запасы используются более интенсивно, и доля угля, разрабатываемого открытым способом, составляет, например, в Австралии более 1/2, в США более 3/5.

Из общей мировой добычи каменного угля на экспорт идёт около 11%, из которых более 4/5 отправляется морским транспортом. Основные направления вывоза угля: из Австралии и Канады – в Японию, из США и ЮАР – в Западную Европу. ФРГ, в 70 – 80-е годы была крупным нетто – экспортёром коксующегося угля и крупнейшим в мире экспортёром кокса, превратилась в нетто – импортёра угля с неуклонно сокращающимися мощностями и добычей угля. Почти на нет, сошёл экспорт угля и из Великобритании – страны, которая в начале 20 века была крупнейшим поставщиком угля на мировой рынок.

Подавляющая часть разведанных запасов бурого угля и его добычи сосредоточена в промышленно развитых странах. Размерами запасов выделяются США, Германия и Австралия, а наибольшее значение добычи и использование бурого угля имеют в энергетике Германии и Греции. Большая часть бурого угля (более 4/5) потребляется на ТЭС, расположенных вблизи разработок. Дешевизна этого угля, добываемого почти исключительно открытым способом, обеспечивает, несмотря на его низкую теплотворную способность, производство дешёвой электроэнергии, что привлекает к районам крупных буроугольных разработок электроёмкие производства. В капитале, инвестируемом в буроугольную отрасль, велика доля средств электроэнергетических компаний.

1.4 Проблемы развития.

Развитие индустриального общества опирается на постоянно растущий уровень производства и потребления различных видов энергии.

Как известно, в основе производства тепловой и электрической энергии лежит процесс сжигания ископаемых энергоресурсов – угла, нефти или газа, а в атомной энергетике - деление ядер атомов урана и плутония при поглощении нейтронов.

Масштаб добычи и расходования энергоресурсов, металлов, воды и воздуха для производства необходимого человечеству количества энергии огромен, а запасы ресурсов стремительно сокращаются. Особенно остро стоит проблема быстрого исчерпания запасов органических природных энергоресурсов.

Мировые запасы энергоресурсов оцениваются величиной 355 Q, где Q - единица тепловой энергии, равная Q=2,521017 ккал = 36109 тонн условного топлива /т.у. т./, топлива с калорийностью 7000 ккал/кг, так что запасы энергоресурсов составляют 12,81012 т.у. т.

Из этого количества примерно одна треть (что составляет ~ 4,31012 т.у.т.) может быть извлечена с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны, современные потребности в энергоносителях составляют 1,11010 т.у.т./год и растут со скоростью 3-4% в год, то есть удваиваются каждые 20 лет.

Не составляет никакого труда догадаться, что органические ископаемые ресурсы, даже при вероятном замедлении темпов роста энергопотребления, будут в значительной мере израсходованы в самом ближайшем будущем.

Отметим также, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн. тонн сернистого газа и окислов азота, что составляет 70 кг вредных веществ на каждого жителя Земли в год.

Использование энергии атомного ядра и развитие атомной энергетики частично снимает остроту этой проблемы. Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее CC век атомным, стало существенным складом к запасам энергетического ископаемого топлива. Запасы урана в земной коре оцениваются огромной цифрой - 1014 тонн. Однако основная масса этого богатства находится в рассеянном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4109 тонн. В тоже время богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана, которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонны естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время"[4; стр.216].

Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды и воздуха.

Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте.

Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации, что позволяет устранить возможность возникновения парникового эффекта с тяжелыми экологическими последствиями глобального потепления.

Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АЭС, атомная энергетика не создаст особых транспортных проблем, поскольку требует минимальных транспортных расходов, что освобождает общество от бремени постоянных перевозок огромных количеств органического топлива.

 Альтернативные источники энергии.

Итак, отбросив в сторону тепловую энергетику, от которой необходимо полностью отказаться, и атомную энергетику, небольшую долю которой (особенно на первое время) все же придется оставить в мировом энергобалансе, обратимся теперь к альтернативной энергетике, основанной на использовании возобновляемых источников энергии. К ним относятся уже существующие источники энергии, использующие энергию Солнца, ветра, приливов и отливов, морских волн, внутреннее тепло планеты. Рассмотрим теперь подробнее каждый из них и выясним, возможно ли, и насколько эффективно их применение.

 Основные причины перехода к АИЭ.

Основные причины, указывающие на важность скорейшего перехода к АИЭ:

- Глобально-экологическая: сегодня общеизвестен и доказан факт пагубного влияния на окружающую среду традиционных энергодобывающих технологий (в т.ч. ядерных и термоядерных), их применение неизбежно ведет к катастрофическому изменению климата уже в первых десятилетиях XXI веке.

- Политическая: та страна, которая первой в полной мере освоит альтернативную энергетику, способна претендовать на мировое первенство и фактически диктовать цены на топливные ресурсы;

- Экономическая: переход на альтернативные технологии в энергетике позволит сохранить топливные ресурсы страны для переработки в химической и других отраслях промышленности. Кроме того, стоимость энергии, производимой многими альтернативными источниками, уже сегодня ниже стоимости энергии из традиционных источников, да и сроки окупаемости строительства альтернативных электростанций существенно короче. Цены на альтернативную энергию снижаются, на традиционную - постоянно растут;

- Социальная: численность и плотность населения постоянно растут. При этом трудно найти районы строительства АЭС, ГРЭС, где производство энергии было бы рентабельно и безопасно для окружающей среды. Общеизвестны факты роста онкологических и других тяжелых заболеваний в районах расположения АЭС, крупных ГРЭС, предприятий топливно-энергетического комплекса, хорошо известен вред, наносимый гигантскими равнинными ГЭС, - всё это увеличивает социальную напряженность.

- Эволюционно-историческая: в связи с ограниченностью топливных ресурсов на Земле, а также экспоненциальным нарастанием катастрофических изменений в атмосфере и биосфере планеты существующая традиционная энергетика представляется тупиковой; для эволюционного развития общества необходимо немедленно начать постепенный переход на альтернативные источники энергии.

 Энергия солнца.

Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь ничтожная часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Однако не следует сразу отказывать от практически неистощимого источника чистой энергии: по утверждениям специалистов, гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Возможно, также повысить КПД гелиоустановок в несколько раз, а разместив их на крышах домов и рядом с ними, мы обеспечим обогрев жилья, подогрев воды и работу бытовых электроприборов даже в умеренных широтах, не говоря уже о тропиках. Для нужд промышленности, требующих больших затрат энергии, можно использовать километровые пустыри и пустыни, сплошь уставленные мощными гелиоустановками. Но перед гелиоэнергетикой встает множество трудностей с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным, по крайней мере, в обозримом будущем. На протяжении миллиардов лет Солнце ежесекундно излучает огромную энергию. Около трети энергии солнечного излучения, попадающего на Землю, отражается ею и рассеивается в межпланетном пространстве. Много солнечной энергии идёт на нагревание земной атмосферы, океанов и суши. В настоящее время в народном хозяйстве достаточно часто используется солнечная энергия – гелиотехнические установки (различные типы солнечных теплиц, парников, опреснителей, водонагревателей, сушилок). Солнечные лучи, собранные в фокусе вогнутого зеркала, плавят самые тугоплавкие металлы. Ведутся работы по созданию солнечных электростанций, по использованию солнечной энергии для отопления домов и т.д. Практическое применение находят солнечные полупроводниковые батареи, позволяющие непосредственно превращать солнечную энергию в электрическую.

 

 Ветер.

Потенциал энергии ветра подсчитан более менее точно: по оценке Всемирной метеорологической организации ее запасы в мире составляют 170 трлн кВт·ч в год. Ветроэнергоустановки разработаны и опробованы настолько основательно, что вполне прозаической выглядит картина и сегодняшнего небольшого ветряка, снабжающего дом энергией вместе с фермой, и завтрашних тысяч гигантских сотнеметровых башен с десятиметровыми лопастями, выстроенных цепью там, где постоянно дуют сильные ветры, вносящих тоже свой немаловажный “процент” в мировой энергобаланс.

У энергии ветра есть несколько существенных недостатков, которые затрудняют ее использование, но отнюдь не умаляют ее главного преимущества - экологической чистоты. Она сильно рассеяна в пространстве, поэтому необходимы ветроэнергоустановки, способные постоянно работать с высоким КПД. Ветер очень непредсказуем - часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции не безвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но, как мы увидим дальше эти недостатки можно уменьшить, а то и вовсе свести на нет.

В настоящее время разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветре. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть столь же автоматически переводится во флюгерное положение, так что авария исключается.

Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей и обычных ветряков.

Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки при этом стоят рядами на обширном пространстве, потому что их нельзя ставить слишком тесно - иначе они будут загораживать друг друга. Такие “фермы” есть в США, во Франции, в Англии, но они занимают много места; в Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где она никому не мешает, и ветер устойчивее, чем на суше.

Положительный пример по использованию энергии ветра показали Нидерланды и Швеция, которая приняла решение на протяжении 90-х годов построить и разместить в наиболее удобных местах 54 тысячи высокоэффективных энергоустановок. В мире сейчас работает более 30 тысяч ветроустановок разной мощности. Германия получает от ветра 10% своей электроэнергии, а всей Западной Европе ветер дает 2500 МВт электроэнергии.

 Водород.

На данный момент водород является самым разрабатываемым «топливом будущего». На это есть несколько причин: при окислении водорода образуется как побочный продукт вода, из нее же можно водород добывать. А если учесть, что 73% поверхности Земли покрыты водой, то можно считать, что водород неисчерпаемое топливо. Так же возможно использование водорода для осуществления термоядерного синтеза, который вот уже несколько миллиардов лет происходит на нашем Солнце и обеспечивает нас солнечной энергией.

Управляемый термоядерный синтез.

Управляемый термоядерный синтез использует ядерную энергию, выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития. Ядерные реакции синтеза широко распространены в природе, будучи источником энергии звезд. Ближайшая к нам звезда - Солнце - это естественный термоядерный реактор, который уже многие миллиарды лет снабжает энергией жизнь на Земле. Ядерный синтез уже освоен человеком в земных условиях, но пока не для производства мирной энергии, а для производства оружия он используется в водородных бомбах. Начиная с 50 годов, в нашей стране и параллельно во многих других странах проводятся исследования по созданию управляемого термоядерного реактора. С самого начала стало ясно, что управляемый термоядерный синтез не имеет военного применения. В 1956 г. исследования были рассекречены и с тех пор проводятся в рамках широкого международного сотрудничества. В то время казалось, что цель близка, и что первые крупные экспериментальные установки, построенные в конце 50 годов, получат термоядерную плазму. Однако потребовалось более 40 лет исследований для того, чтобы создать условия, при которых выделение термоядерной мощности сравнимо с мощностью нагрева реагирующей смеси. В 1997 г. самая крупная термоядерная установка - Европейский токамак, JET, получила 16 МВт термоядерной мощности и вплотную подошла к этому порогу.

Что же явилось причиной такой задержки? Оказалось, что для достижения цели физикам и инженерам пришлось решить массу проблем, о которых и не догадывались в начале пути. В течение этих 40 лет была создана наука - физика плазмы, которая позволила понять и описать сложные физические процессы, происходящие в реагирующей смеси. Инженерам потребовалось решить не менее сложные проблемы, в том числе научиться создавать глубокий вакуум в больших объемах, разработать большие сверхпроводящие магниты, мощные лазеры и источники рентгеновского излучения, разработать инжекторы способные создавать мощные пучки нейтральных атомов, разработать методы высокочастотного нагрева смеси и многое другое.

Первое поколение термоядерных реакторов, которые пока находятся в стадии разработки и исследований, по-видимому, будет использовать реакцию синтеза дейтерия с тритием D + T = He + n,

в результате которой образуется ядро гелия - Не, и нейтрон. Необходимое условие для того, чтобы такая реакция пошла - это достижение высокой температуры смеси (сто миллионов градусов). Только в этом случае реагирующие частицы могут преодолеть электростатическое отталкивание и при столкновении, хотя бы на короткое время, приблизиться друг к другу на расстояние, при котором возможна ядерная реакция. При такой температуре смесь изотопов водорода полностью ионизируется и превращается в плазму - смесь электронов и ионов. Кроме высокой температуры, для положительного выхода энергии нужно, чтобы время жизни плазмы, t, помноженное на плотность реагирующих ионов, n, было достаточно велико nt > 5*1 000 000 000 000 000 c/см3 . Последнее условие называется критерием Лоусона. Основная физическая проблема, с которой столкнулись исследователи на первых шагах на пути к термоядерному синтезу - это многочисленные плазменные неустойчивости, приводящие к плазменной турбулентности. Именно они сокращали время жизни в первых установках до величины на много порядков меньше ожидаемой и не позволяли достигнуть выполнения критерия Лоусона. За 40 лет исследований удалось найти способы борьбы с плазменными неустойчивостями и построить установки способные удерживать турбулентную плазму.

Существуют два принципиально различных подхода к созданию термоядерных реакторов, и пока не ясно, какой подход окажется наиболее выгодным.

В так называемом инерционном термоядерном синтезе несколько миллиграмм дейтериево-тритиевой смеси сжимаются оболочкой, ускоряемой за счет реактивных сил, возникающих при испарении оболочки с помощью мощного лазерного или рентгеновского излучения. Энергия выделяется в виде микровзрыва, когда в процессе сжатия в смеси дейтерия с тритием достигаются необходимые условия для термоядерного горения. Время жизни такой плазмы определяется инерционным разлетом смеси и поэтому критерий Лоусона для инерционного удержания принято записывать в терминах произведения rr, где r - плотность реагирующей смеси и r - радиус сжатой мишени. Для того, чтобы за время разлета смесь успела выгореть, нужно, чтобы rr Ё 3 Г/см2 . Отсюда сразу следует, что критическая масса топлива, М, будет уменьшаться с ростом плотности смеси, М ~ rr3 ~ 1/r2 , а следовательно и энергия микровзрыва будет тем меньше, чем большей плотности смеси удастся достичь при сжатии. Ограничения на степень сжатия связаны с небольшой, но всегда существующей неоднородностью падающего на оболочку излучения и с несимметрией самой мишени, которая еще и нарастает в процессе сжатия из-за развития неустойчивостей. В результате появляется некая критическая масса мишени и, следовательно, критическая энергия, которую нужно вложить оболочку для ее разгона и получения положительного выхода энергии. По современным оценкам, в мишень с массой топлива около 5 миллиграмм и радиусом 1-2 миллиметра нужно вложить около 2 МДж за время 5-10410-9 с. При этом энергия микровзрыва будет на уровне всего 54108 Дж (эквивалентно около 100 кг обычной взрывчатки) и может быть легко удержана достаточно прочной камерой. Предполагается, что будущий термоядерный реактор будет работать в режиме последовательных микровзрывов с частотой в несколько герц, а выделяемая в камере энергия будет сниматься теплоносителем и использоваться для получения электроэнергии.

За прошедшие годы, достигнут большой прогресс в понимании физических процессов происходящих при сжатии мишени и взаимодействии лазерного и рентгеновского излучения с мишенью. Более того, современные многослойные мишени уже были проверены с помощью подземных ядерных взрывов, которые позволяют обеспечить требуемую мощность излучения. Было получены зажигание и большой положительный выход термоядерной энергии, и поэтому нет сомнений, что этот способ в принципе может привести к успеху. Основная техническая проблема, с которой сталкиваются исследователи, работающие в этой области - создание эффективного импульсного драйвера для ускорения оболочки. Требуемые мощности можно получить, используя лазеры (что и делается в современных экспериментальных установках ), но к.п.д лазеров слишком мал для того, чтобы можно было рассчитывать на положительный выход энергии. В настоящее время разрабатываются и другие драйверы, для инерционного синтеза основанные на использовании ионных и электронных пучков, и на создании рентгеновского излучения с помощью Z пинчей. За последнее время, здесь также достигнут существенный прогресс. В настоящее время в США ведется строительство большой лазерной установки, NIF, рассчитанной на получение зажигания.

Другое направление в управляемом термоядерном синтезе - это термоядерные реакторы, основанные на магнитном удержании. Магнитное поле используется для изоляции горячей дейтериево-тритиевой плазмы от контакта со стенкой. В отличие от инерционных реакторов магнитные термоядерные реакторы - это стационарные устройства с относительно низким объемным выделением энергии и относительно большими размерами. За 40 лет термоядерных исследований были предложены различные системы для магнитного удержания, среди которых токамак занимает сейчас лидирующее положение. Другая система для магнитного удержания плазмы - это стелларатор. Крупные стеллараторы строятся в настоящее время в Японии и Германии.

В токамаке горячая плазма имеет форму тора и удерживается от контакта со стенкой с помощью магнитного поля создаваемого как внешними магнитными катушками, так и током, протекающим по самой плазме. Характерная плотность плазмы в токамаке 100 000 000 000 000 частиц в см3 , температура Т = 10-20 кэВ (1 эВ ¦ 12000¦C) и давление 2-3 атм. Для того, чтобы удержать это давление требуется магнитное поле с индукцией В ¦ 1 Т. Однако плазменные неустойчивости ограничивают допустимое давление плазмы на уровне нескольких процентов от магнитного давления и поэтому требуемое магнитное поле оказывается в несколько раз выше, чем то, которое нужно для равновесия плазмы. Для избежания энергетических расходов на поддержание магнитного поля, оно будет создаваться в реакторе сверхпроводящими магнитами. Такая технология уже имеется в нашем распоряжении - один из крупнейших экспериментальных токамаков, Т-15, построенный несколько лет назад в России, использует сверхпроводящие магниты для создания магнитных полей.

Токамак реактор будет работать в режиме самоподдерживающегося термоядерного горения, при котором высокая температура плазмы обеспечивается за счет нагрева плазмы заряженными продуктами реакции альфа-частицами (ионами Не). Для этого, как видно из условия Лоусона, нужно иметь время удержания энергии в плазме не меньше 5 с. Большое время жизни плазмы в токамаках и других стационарных системах достигается за счет их размеров, и поэтому существует некий критический размер реактора. Оценки показывают, что самоподдерживающаяся реакция в токамаке возможна в том случае, если большой радиус плазменного тора будет 7-9 м. Соответственно, токамак-реактор будет иметь полную тепловую мощность на уровне 1 ГВт. Удивительно, что эта цифра примерно совпадает с мощностью минимального инерционного термоядерного реактора.

За прошедшие годы достигнут впечатляющий прогресс в понимании физических явлений, ответственных за удержание и устойчивость плазмы в токамаках. Разработаны эффективные методы нагрева и диагностики плазмы, позволившие изучить в нынешних экспериментальных токамаках те плазменные режимы, которые будут использоваться в реакторах. Крупные нынешние экспериментальные машины - JET (Европа), JT60-U (Япония), Т-15 (Россия) и TFTR (США) - были построены в начале 80 годов для изучения удержания плазмы с термоядерными параметрами и получения условий, при которых нагрев плазмы сравним в полным выходом термоядерной мощности. Два токамака, TFTR и JET использовали DT смесь и достигли соответственно 10 и 16 МВт термоядерной мощности. В экспериментах с DT смесью JET получил режимы с отношением термоядерной мощности к мощности нагрева плазмы, Q=0.9, и токамак JT60-U на модельной DD смеси достиг Q = 1.06. Это поколение токамаков практически выполнило свои задачи и создало все необходимые условия для следующего шага - строительство установок нацеленных на исследование зажигания, Q Ё 5, и уже обладающих всеми чертами будущего реактора.

 Перспективы развития ветроэнергетики в мире и в Республике Беларусь.

Ветроэнергетика в настоящее время является одной из наиболее динамично развивающихся технологий генерации электроэнергии. В отдельных местах с хорошими условиями ветра ветроэлектростанции (ВЭС) уже сейчас экономически выгодны и конкурентоспособны

Оценивая тенденцию развития ветроэнергетики в ЕС, европейские эксперты отмечают заметное превышение целей, определенных в «Белой книге», подготовленной Европейской Комиссией. Так, при установленном в данном документе показателе 40 ГВт фактический показатель ЕС в 2010 г. составил 84,34 ГВт

Ветрогенераторные установки выпускаются различных конструкций и типов. Они классифицируются по двум основным признакам – геометрии ветроколеса и его положению относительно направления ветра. Если ось вращения ветроколеса параллельна воздушному потоку, то установка называется горизонтально-осевой, если перпендикулярна – вертикально-осевой.

Каждая из указанных систем характеризуется как своими преимуществами, так и недостатками.

Большинство мощных современных ветроустановок относятся к ВЭУ с горизонтальной осью вращения. Ветрогенераторы современного типа имеют трехлопастное ветроколесо, направляемое на ветер с по- мощью специальных двигателей, управляемых компьютерами. Высота мачты промышленного ветрогенератора варьируется в диапазоне от 60до 100 м и выше. Ветроколесо совершает 10–20 поворотов в минуту. В некоторых системах присутствует подключаемая коробка передач, позволяющая ветроколесу вращаться быстрее или медленнее, в зависимости от скорости ветра, при сохранении режима выработки электроэнергии. Все современные ветрогенераторы оснащены системой автоматической остановки на случай слишком сильных ветров

К преимуществам систем с горизонтальной осью вращения относятся следующие:

 изменяемый шаг лопаток турбины, который позволяет использовать энергию ветра по максимуму в зависимости от времени дня и сезона;

 высокая мачта позволяет добираться до более сильных ветров. Нужно иметь в виду, что в некоторых районах сила ветра увеличивается на 20 % и, соответственно, энергетическая выгода на 34 % при повышении на каждые 10 м;

 высокая эффективность благодаря тому, что ветроколесо всегда направляется перпендикулярно ветру, используя весь поток воздуха. В системах с вертикальной осью вращения и большинстве типов воздухоплавательных ветрогенераторов часть системы работает против набегающего потока воздуха, что, отчасти, ведет к снижению эффективности.

К основным недостаткам систем с горизонтальной осью вращения относятся:

 необходимость высоких массивных мачт (свыше 100 м) и длинных лопастей, которые трудно транспортировать, в результате расходы на транспортировку могут достигать 20 % сооружения конструкции и стоимости всего оборудования;

 для сооружения  промышленных ветрогенераторов большой мощности требуется специализированное оборудование и высококвалифицированные сотрудники, в результате их производство осуществляется лишь в ограниченном количестве стран;

 возмущения в радиосигналах и связи из-за их размеров;

 необходимость установки системы направления оси на ветер.

Для условий Республики Беларусь характерны относительно слабые континентальные ветры со средней скоростью 4–6 м/с, поэтому при выборе площадок ветроэнергетических установок требуются специальные исследования и тщательная проработка технико-экономических обоснований по их внедрению.

Ветроэнергетический потенциал Беларуси, технологически возможный для использования выпускаемыми ветроэнергетическими установками (ВЭУ) при среднегодовой скорости ветра 5,7 м/с, составляет 15,65 млрд кВт•ч .

Исследованиями по 244 контрольным точкам, включая 54 метеостанции и 190 контрольных пунктов, на территории Республики Беларусь ветроэнергетический потенциал Беларуси оценен в 220 млрд кВт•ч., и определен ветроэнергетический ресурс по областям и каждому району.

В настоящее время уточнены фоновые среднегодовые скорости ветра в различных регионах Республики Беларусь, проведены расчеты по определению технических ветроэнергоресурсов Беларуси на высотах 10, 40, 50 и 70 м над поверхностью земли.

Для этого территория республики была разделена на 4 ветровые зоны (менее 3,5 м/с, 3,5–4,0; 4,0–4,5; более 4,5 м/с) и 5 регионов с расположением их по высоте над уровнем моря: 100–150 м, 150–200, 200–250, 250–300, 300–350 м.

Это позволило определить ветроэнергетический потенциал республики по рельефным показателям применительно к высоте 50 м над поверхностью земли в местах предполагаемого размещения ВЭУ.

По причине относительно небольших среднегодовых скоростей ветра в настоящее время перспективным следует считать использование автономных ветроэнергетических и ветронасосных установок малой мощности, в основном в сельскохозяйственном секторе. Должны найти применение ВЭУ в диапазоне 100–150 кВт, хорошо зарекомендовавшие себя в эксплуатации в странах со сходными с Беларусью условиями

Выработка в случае строительства ВЭУ на территории регионов со среднегодовой скоростью 7,0 м/с и выше (регионы III, IV, V) составит более 20,0 млрд кВт•ч в год. Этот потенциал наиболее эффективно может быть освоен в случае подключения ВЭУ к общей сети. ВЭУ целесообразно объединять в ВЭС из расчета 5–9 и более ВЭУ на 1 км2.

Чрезвычайно важными факторами при использовании ВЭУ являются себестоимость производимой электрической энергии и окупаемость установки. Основными факторами окупаемости являются:

 энергоэффективность ВЭУ в месте ее размещения, т. е. выработка электроэнергии;

 надежность работы;

 стоимость создания ВЭУ, включая эксплуатационные сроки окупаемости.

На четверти территории нашей страны среднегодовая скорость ветра превышает 5 м/с (при среднегодовой скорости ветра равной 4,3 м/с по стране). Такая скорость соответствует мировым требованиям по показателям коммерческой целесообразности внедрения ветроэнергетических установок. Выборочные обследования зон внедрения этого оборудования на территории Республики Беларусь показали, что при правильном выборе места постановки ветроагрегата (на возвышениях, открытой местности, на берегах водных активов и т. п.) среднегодовая скорость ветра может достигать 6–7 м/с.

Наиболее эффективно использовать ветротехнику на территориях зон со скоростью ветра выше 5 м/с. К ним относятся возвышенности севера и северо-запада республики, центральная зона Минской области, Витебская возвышенность. Использование ВЭУ в указанных зонах гарантирует выработку электроэнергии в объёме 6,5–7,5 млрд кВт•ч.

Согласно стратегии развития энергетического потенциала Республики Беларусь, на территории нашей страны выявлено 1840 площадок для размещения ветроустановок с теоретически возможным энергетическим потенциалом более 1600 МВт. Выявленные площадки – это в основном ряды холмов высотой от 20 до 80 м, где фоновая скорость ветра может достичь 5–8 м/с и на каждой из них можно разместить от 3 до 20 ВЭУ с номинальной рабочей скоростью ветра 12–15 м/с.

К наиболее мощным из функционирующих в Беларуси ветроустановок относятся работающие в п. Дружный Мядельского района Минской области ветроэнергетические установки фирмы Nordex мощностью

250 кВт (рис. 3.14, а) (ввод в эксплуатацию – 2000 г.) и фирмы Yakobs (ввод в эксплуатацию – 2001 г.) мощностью 600 кВт.

К другому имеющемуся на сегодняшний день в Республике Беларусь ветроэнергетическому оборудованию относятся ветроэнергетическая станция ВЭС-200 (3 × 77 кВт производства ООО «Аэролла», СПК «Свитязянка 2003» Кореличского района Гродненской области, ввод в эксплуатацию – 2008 г.) и ветроэнергетическая установка ВЭУ-

(Ветроэнергетический потенциал –дополнительный материал)

Территория Республики Беларусь находится в умеренной ветровой зоне. Стабильная скорость ветра составляет 3.6м/с и соответствует нижнему пределу устойчивой работы отечественных ВЭУ. Поэтому ветроэнергетику можно рассматривать в качестве вспомогательного энергоресурса, решающего местные проблемы, например, отдельных фермерских хозяйств. Готовиться к серийному выпуску ветроустановка мощностью 5–8 кВт, устойчиво работающая при скорости ветра 3,5 м/с. Разрабатывается, и готовиться к испытаниям более мощная ВЭУ с горизонтальным ветроколесом. Автономные ВЭУ обязательно должны комплектоваться резервными источниками электроэнергии или аккумуляторными батареями.

Ветроэнергетика, как и любая отрасль хозяйствования, должна обладать тремя обязательными компонентами, обеспечивающими ее функционирование: 1) ветроэнергетическими ресурсами, 2) ветроэнергетическим оборудованием, 3) развитой ветротехнической инфраструктурой.

Для ветроэнергетики Беларуси энергетический ресурс ветра практически неограничен. В стране имеется развитая централизованная электросеть и большое количество свободных площадей, не занятых субъектами хозяйственной деятельности.

Возможности приобретения зарубежной ветротехники весьма ограничены вследствие отсутствия достаточного выбора именно того оборудования, которое соответствует климатическим условиям Беларуси.

Отсутствие практического опыта и квалифицированных кадров можно преодолеть только в ходе активного сотрудничества с представителями зарубежья.

Проезжая мимо Заславля - демонстрационной зоны ветроустановок «Ветромаша»- сегодня можно было наблюдать некие экзотические устройства с пропеллерами и роторами разных типов, повторяющие западные разработки 40-50 летней давности. Они любопытны, но большинство из них морально устарело много лет назад.

Однако, в реальности все не так уж и плохо - исследования показали, что есть регионы, где скорость ветра гораздо выше и при правильно выбранной площадке обеспечивает достаточно высокую экономическую эффективность. В Беларуси пока нет ни одной ветряной электростанции, и проблема вовсе не в том, что у нас отсутствуют площадки для их установки. Чтобы поставить ветряную электростанцию, нужно вести наблюдения за участком как минимум в течение года.

По последним оценкам, в Беларуси около 1840 площадок, пригодных для установки таких электростанций, с возможным потенциалом 1600 МВт и годовой выработкой энергии 6,5 млрд. кВТ/ч. Однако, сегодня технически возможно использовать только 5% энергопотенциала, т.е.300 МВт или 1 млрд. кВТ/ч. Данные исследований показывают, что на высотах 20-40 м среднегодовые скорости ветра составляют лишь 3,5-4,8 м/с, чего для успешной эксплуатации ветроэнергетичеких установок недостаточно. Однако на высотах 80-100 м, прежде всего на безлесых холмах белорусских возвышенностей, а также открытых пространствах в районе Слуцка, Копыля и Барановичей среднегодовые скорости ветра уже равны 6-6,8 м/с.

В стране существуют две ВЭУ мощностью 250 кВт и 600 кВт на берегу озера Нарочь и в г. Городок Витебской области. Две реально работающие ВЭУ устанавливались и эксплуатируются силами неправительственных организаций (белорусско-немецкая благотворительная общественная организация «ЭкоДом». СЛ 34

Цена ветра. При стоимости ВЭУ мощностью 1 МВт около 1,5 млн евро при ресурсе 20 лет себестоимость одного киловатт-часа составит 5 евроцентов. Для сравнения: только топливная составляющая производства электроэнергии на тепловой станции равна 6 евро-центам за 1 кВт-ч, даже без учета затрат капитальных и эксплуатационных.

 

. Виды фотоэлектрических преобразователей, достоинства и недостатки солнечных батарей.

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП).

В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия. ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием имеют более высокий, чем кремниевые КПД. КПД составляет 28,5% для элементов из кристаллического кремния и 35% - из двухслойных пластин из антипода галлия.

Однако кремний является значительно более доступным и освоенным в производстве материалом, чем арсенид галлия. Кремний широко распространён в природе, и запасы исходного сырья практически неограниченны. Технология изготовления кремниевых ФЭП хорошо отработана и непрерывно совершенствуется. Именно кремниевые СБ можно видеть сегодня на крышах домов разных стран мира.

В отличие от кремния галлий является весьма дефицитным материалом. Галлий добывается в основном из бокситов, однако рассматривается также возможность его получения из угольной золы и морской воды. Самые большие запасы галлия содержатся в морской воде, однако его концентрация там весьма невелика. В космических аппаратах, главным материалом для солнечных батарей, является арсенид галлия.

Дата: 2019-02-25, просмотров: 322.